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Abstract. In this paper it is proved that there exists no non-symmetric homogene-
ous bounded domain whose second Ricci curvature of the Bergman metric is homothetic

to the square of the metric. The argument is based on a result of Geatti and the theory of
normal j-algebras.

Introduction. There is a countable sequence of conditions H, which the curvature
tensor of harmonic spaces must satisfy. The first condition H; is the Einstein condition.
Let D be a homogeneous bounded domain in C" with the Bergman metric g. It is
well-known that g always satisfies H,. Recently Geatti [5] proved that if g satisfies
Condition H,, i.e., the second Ricci curvature of g is homothetic to the square of g,
then D is biholomorphic to one of the following:

(1) the unit ball in C",

(2) the 6-dimensional classical domain of type IV in Cartan’s classification,

(3) the exceptional symmetric domain of dimension 16,

(4) the exceptional symmetric domain of dimension 27,

(5) the domain of dimension 26 of type T(8; 8, 8), where

0.1) T(8; 8, 8):=[1 ?‘2]

(see (2.4)). It is well-known (Carpenter-Gray-Willmore [3]) that the first four types of
domains actually satisfy Condition H,. In her paper [5] Geatti asked whether the last
26-dimensional domain satisfies Condition H, or not. In the present paper, we shall
show that the last domain does not satisfy Condition H, (Proposition 3.1), so that there
exists no non-symmetric homogeneous bounded domain whose Bergman metric satisfies
Condition H, (Theorem 3.2). Our argument is based on the theory of normal j-algebras
which represent the Bergman metric of homogeneous bounded domains.

1. The second Ricci curvature and Condition H,. Let (M, g) be a Riemannian
manifold. Let Iy Y be the covariant derivative with respect to the Levi-Civita connec-
tion of g, and set R(X, Y)=[Vy, Vy]—Vix.v;, R(X, Y, Z, W)=g(R(Z, W)Y, X). For a
tangent vector x e T,M at a point pe M, let S(x) € End(T,M) be the mapping defined by
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(1.1 S(x)u=R(u, x)x .

For every positive integer k, the k-th Ricci curvature p™ of g is, by definition, the
symmetric covariant tensor field of degree 2k satisfying

1.2 p®(x, ..., x)=trace S(x)* forall xeT,M.
p

For k=1, 2, the manifold (M, g) is said to satisfy Condition H, if there exists a function
A€ C*®(M) such that

(1.3) pM(x, ..., x)=Ap)g(x,x)*  forall xeT,M,peM

(cf. Carpenter-Gray-Willmore [3]). We note that p!!! is the usual Ricci curvature and
H, coincides with the Einstein condition. Let B be a basis of the tangent space T,M,
d.s=9(a, b) for a, be B, and (¢g*°) be the inverse matrix of (g,,). For xe T,M, we have

(1.4) PP, x, x, x)= Y, g*g“R(x, c, x, b)R(x, a, x, d) .

a,b,c,deB

From now on, we assume that M is a complex manifold and g is a Kéhler metric
on M. Let p be a point in M, T,M the real tangent space at p, and je End(7,M) the
complex structure on M. The holomorphic tangent space ThM at p is realized as
{ze T,M®C; jz=iz} = y(T,M), where je End(T,M® C) is the complex linear extension
of jand y: T,M—>T,M®C is defined by y(x)=2""(x—ijx). As usual, for x,e T, M, set
(1.5) R\ 5x5,= R(x(x1), x(x2), x(x3), x(x4)) »

(1.6) x5, =9((x1), x(x2)) 5

where g(-, -) and R(-, -, -, -) are extended to complex multi-linear mappings. We note
that

(1.7) x,z=%g(x, Xx).

We need the following lemma.

LemMA 1.1. If B is a subset of T,M such that BnjB= & and BUjB is a basis of
T,M, and if xe T,M, then

p[Z](x’ X, X, x): 2pl(x’ X, X, x)+ 2p2(x5 X, X, X) s

where

(1.8) P1(X1, X3, X3, X4)= Z gﬁngSRxl)?zqFRx3i4sp' 5
p.q,r,s€B

(1.9) P2(X1, X2, X3, X4) = Z gﬁqngRxlﬁxﬂquzsx‘, >

p,q,r,seB
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and (§"?),, 4ep IS the inverse matrix of (9,5)p.qcB -
PrROOF. Setting
Ra,b)= Y g“R(x,c x,bR(x,a,x,d),
c,deBU jB

we have

(1.10)  p2x,x,x,x)= Y g®Ra b= Y. g"R(x(p), x(q)+ R(x(q), 1(p)) -

a,beBUjB p,qeB

For the same reason we have

Ri(p), 1@)= Y. 9™ (R(x, x(r), x, 2@)R(x, x(p), x, x(s))

r,seB
+R(x, (), %, 2(@)R(X, x(p), X, 1()))-

Since x = y(x)+ x(x), it follows that

ﬁ(m, x(@)= Z ng(er‘qinﬁsx"' Rsiq)'cRxpxF) .

r,seB

Similarly, we have

E(X(q)’ M) = Z gr—s(er’xﬁRq)'csi + RsixﬁRquF) .

r,seB

Substituting these into (1.10) we get the desired formula.

2. The curvature of quasi-symmetric bounded domains. Let D be a homogeneous
bounded domain in C" with the Bergman metric g and p be a point in D. Then the real
tangent space T,D at p possesses the structure (g, j) of a normal j-aljebra such that g
is a Lie algebra which coincides with T,D as a real vector space, that j is the complex
structure of 7,D, and that if o is the Koszul form of g, i.e., w e g* is defined by

1
2.1 w(x)=?trace(adjx—joad X) for xeg,

then it holds that g(x, y)=w[ jx, y] for x, ye T,D =g. Here, a normal j-algebra (g, j) is,
by definition (cf. Pyatetskii-Shapiro [6]), a triangular Lie algebra over R with complex
structure j satisfying that [ jx, jy]=j[jx, y]1+jlx,jy]1+[x, y] for x, yeg, and that if w
is the Koszul form (2.1) of g, then the bilinear form <-, - > given by

2.2) {x, yy=wljx, y] for x,yeg

defines a j-invariant inner product on g. Two normal j-algebras (g, /), (§, /) are said to
be isomorphic if there exists an isomorphism @: g—§ of Lie algebras such that @oj=
Jod.
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Let £, be the set of all biholomorphic equivalence classes of homogeneous bounded
domains in C", and let </, be the set of all isomorphism classes of normal j-algebras
of dimension 2n. The assertion mentioned above yields the existence of a natural mapping
from #, to «/,. It is also known that the mapping is bijective (cf. [6]).

Let (g, /) be a normal j-algebra. Set n=[g, g]. The dimension R of the orthogonal
complement a of n with respect to the inner product <-, -» in (2.2) is called the rank
of (g, j) or the rank of the corresponding homogeneous bounded domain D. For any
linear form o€ a* on a, set n(a)={xen; [h, x]=n(h)x for all hea}. Every element of
the set A:={aea*;n(a)#{0}} is said to be a root. The structure theorem of
Pyatetskii-Shapiro [6] says the following:

(nl) a is a non-trivial abelian subalgebra of g, amd n has an orthogonal
decomposition ) _ ().

(n2) Thereare Rrootse,, ..., &g such that ja is the direct sum of the 1-dimensional
root spaces n(e,), and that any of the other roots is one of the forms 27 (g, +¢,), 2™ e,
where a,b, ce {1, ..., R} with a<b.

(n3) QR Ye,+¢))=n( '(e,—&,)) whena<b,and jn(2~ e,)=n(2" l¢,) foralla.

Let us fix some notation. Set

L= n(%(sa-i-e,,)), %zza:n(%e,J),

a<b

1 1 1
ng=dimn( —(,+¢,) ), n,=—dimn{—¢,].
=dimn( Gten). m=-dimn(e)

We then have the decomposition
(2.3) a=L+jL+U.
We call the table

1 ny, - nypo1 Mg ny
1 Tt N p-1 Mapr n;
2.4)
1 NR-1,R | BRr-1
1 g

of multiplicities the type of the normal j-algebra (g, j) or the type of the corresponding
homogeneous bounded domain D in C". We note that the sum of all numbers in the
type table coincides with the complex dimension n of D, because of the decomposition
(2.3). Let r,en(e,)\ {0} be the unique element such that [jr,, r,]=r,. It is known (cf.
[8]) that if we set w,:=w(r,)={r,, r,», then



HOMOGENEOUS BOUNDED DOMAINS 73

1 1
(25) wa=l+<z nab+ Z nba>+\na .
2 b>a b<a 2
Let
(2.6) ri=ri+ry+-+rre?.

The following is needed.
LemMa 2.1 (Pyatetskii-Shapiro [6]). If 1<a<b<c<R+1,x, x en(2” (e, +¢)),
Y, ¥ en(2™ Y, +¢,)) with the convention e, , =0, then

1
<[jxa y], [jxl’ yl]> + <[jx7 y,]’ [jx,’ YJ> =? <x7 X’><y, yl> .
b

By the identification g=T,D the covariant derivative V,y with respect to the
Levi-Civita connection of the Bergman metric is well-defined as an element of g for all
x, yeg. It is given by

1
V.y= ) ([x, y]1—(ad x)'y—(ad y)'x) ,
where (ad x)' is the adjoint operator of ad x with respect to the inner product (-, -> in
(2.2). For x, ye & and u, ve%, we define
xy=—jV.ye?,
oxu=—-2jVuei,

F(u, v)=%([ju, v]+i[u, v]) e ZRC.

It is well-known ([4], [2]) that the quasi-symmetry of D in the sense of Satake [7] is
equivalent to the property that »n,, are constant for all a, b with a<b and so are »n, for
all a. We need the following lemma.

LemMA 2.2. Let x,€ ¥ and u,e%. The following formulas hold:

(LL|UV) Riiixia, =0,
(LLILV) Ry 23x,2,=0
(LU[UU) Ry, =0,
(UUJUD) Rusiyuyng = 2(KFuy, uy), Flus, ug)) +<Fuy, ug), Flus, u5))) -

Further, if D is quasi-symmetric, then

1
(LL|LL) Ry 5x354 =?(<x1x2, X3X4) + X1 Xg, X3X2) — X1 X3, X2X4)) »
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1
(LUlLU) Rxlizu3ﬁ4=7<F(<P(X2)“3a O(xy)ug), r) .

Proor. The first three formulas are given in [1], and formula (UU|UU) in [1],
[2]. Formula (LL|LL) follows from Lemma 4.6 and Theorem 2.7 in [2], and (LU|LU)
from Lemma 4.7 as well as Theorem 3.7 and Lemma 3.6 in [2].

Since j is a complex structure on each subspace n(271¢,), if we define

(2.7). o(u, v)=<u, vy —iju, vy,
and
2.8) (E+inu=Eu+nju

for u,ve and &, neR, then (n(2”'¢,), ) is a Hermitian linear space. For a subset
Bcn(27 te) with Bn jB= (¥, we note that the following four statements are mutually
equivalent:

(bl) Bisan orthogonal basis with respect to ¢ normalized by a(u, u)=w, for ue B.

(b2) BujB is an orthogonal basis with respect to {-,-)> normalized by
{u,up=w, for ue B.

(b3) [Ju,v]=0u," [u, v]=0 for all u,veB.

(b4) 4Fu,v)=94,,r, for all u,veB.

3. Curvature properties of the 26-dimensional quasi-symmetric domain. In this
section we shall show the following.

ProrosITION 3.1. The Bergman metric of the homogeneous bounded domain of type
T(8; 8, 8) does not satisfy Condition H, (see (0.1)). More presisely, if g=F +jL +U
with L =n(e,)+n(e,) + (2~ (e, +¢,)) and U =n(2™'e,) +n(2™ e,) is the corresponding
normal j-algebra, then the function p'*)(x, x, x, x)/{x, x>? is not constant on the space

n(27 e\ {0}.

Combining this with a theorem of Carpenter-Gray-Willmore [3] and a theorem
of Geatti [5] (see the introduction) we obtain the following.

THEOREM 3.2.The Bergman metric g of a homogeneous bounded domain D satisfies
Condition H, if and only if D is biholomorphic to one of the following:

(1) the unit ball in C",

(2) the 6-dimensional classical domain of type IV in Cartan’s classification,

(3) the exceptional symmetric domain of dimension 16,

(4) the exceptional symmetric domain of dimension 27.
Consequently, there exists no non-symmetric homogeneous bounded domain whose Bergman
metric satisfies Condition H,.

To prove Proposition 3.1, we proceed as in the argument in the preceding sections,
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and assume that D is of type T(8; 8, 8). We first note that D is quasi-symmetric and that
3.1 0 =w,=9

(see (2.5)). Take my, ..., mgen(2™ (¢, +¢,)) so that (m,, m,»=3J,,w,, or

(3.2) Ljmg, my] =041y 5

and take vy, ..., vgen(27'¢,) so that {v, ..., vg, jvy, ..., jvg} is an orthogonal basis of
n(27'e,) with [jv,, v,]1=r,, or

3.3) 4F(v,, 0,) =015 -

Consider the homomorphisms

(3.4) Vii=+/2adjm=/2 p(my): n(2 ™ 'ey)»n(2 " e,) .

It follows from Lemma 2.1 that i, are isometric’isomorphisms commuting with j. Let
(3.5 U=y ,(v,), a=1,...,8.

Then, {uy, ..., ug, juy, ..., jug} is an orthogonal basis of n(2™ '¢,) with [ju,, u,]=r,, or
(3.6) 4F(u,, up) =04r, -

For k=1, ..., 8, we associate a complex 8 x 8 matrix 4,=(x3), , so that

8
(3.7 V2 omyv,= Y agu, for b=1,...,8,
a=1

where the scalar multiplication o gu, is given by (2.8). In view of (3.1), Lemma 2.1
implies the following:

(3.8) A =Iy, A*A,=1I5, and A*A,+AF4,=0  (k#]).

It follows that A¥= —A,(k>2), A,Ad,= — A, Ak, [>2,k#]), A?= —1g (k>2). Since
the eigenvalues of 4, are i and —i, C® is a direct sum of two spaces S* and S~ defined
by S*={veC8®; A,v=+iv}. Since 4,43=—A3A4,, we have 4,87 =S, 435 <=S™;
therefore, dim S* =dim S~ =4. Take a unitary 8 x 8 matrix U so that

(i, 0
L0 —il, |

U*A2U=

Let £>3. Since 4,4, = — Ay A, and Af = — A,, there exists a 4 x 4 matrix B, such that
"0 B

U*A4,U=
| —B¥ 0]

It follows from (3.8) that
(3.9), B¥B,=1, (k=3), B}B,+BfB,=0 (k,I=3,k#l).
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Take appropriate unitary 4 x 4 matrices V,, V, so that V¥B,V,=1,. Taking

U[V1 0 ]
instead of U in the argument mentioned above, we may assume that

(3.9), By=1I,.

Compare (3.9), and (3.9), with (3.8). The same argument as in finding B, from A4,
implies the existence of a unitary 4 x 4 matrix V such that

V*B,V= [’{)2 _(112] , V*Bsz[_OC: f)"] (k>5),
where C, are 2 x 2 matrices with the properties
Cs=I,, C¥C.=I, (k=5), C{C,+CfC,=0 (k,I=5k#l).
Similarly, there exists a unitary 2 x 2 matrix W such that

;0 0 4
W*C6W=[’ } W*CkW=[ _ "] k=7,
0 —i —d, 0

where d, e C with the properties d,=1, |dg|=1, dg+dg=0. Taking —my instead of
myg if necessary, we may assume that dg =i. Setting

w 0 0 0
V 0] 0 W 0 0
T:
U[O V] 0 0 w o/
0O 0 0 W
and taking (vq,...,0g)T and (u,, ..., ug)T instead of (vq,...,vg) and (uy, ..., ug),

respectively, we may finally assume the following:

i, 0 0 I, 0 Bk]
3.10), A,=Iy, A,= , Ay= . A= k>4),
GA0: A=l A [0 —m] : [—14 0] . [Bk o] *=9

where

0 0 i 0
il, 0 0 I, 0 0 0 —i
3.10 B,= , Bs= , Be=| . ,
(3.10); “[0 —i12] 5[—12 o] *“l'i 0 0 0
0 —i 0 0
0 0 0 1 0 0 i
0 0 —1 0 00 0
B=lo 1 0 o] B7|o i oo
10 0 0 i 000
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(cf. Geatti [5]). We note that B:={r{,r,,my, ..., Mg, Uy, ..., Ug, Uy, ..., Vg} i an
orthogonal system of g normalized by <b, b) =w, for be B (see (3.1)) and that BujB
is a basis of g. We list the relationships among elements in B (for details, see [1], [2]):

(31 1) rarb=5abra s Py = FE ., mmy :? 5klr )

O(ro)uy =01ty ,  P(r)v=20,,0y
1 38 1 &
Pmu,=——= Y, Gy, emIvy=—= Y. aiu,,
2 b=1 ﬁ a=1

J2

1 1 |
G13)  Flugu)=--burss Flow )= Ourss Flowu)="—= X dim.
4

2 k=1

(3.12)

We shall show the following assertion:

" _f12, if(s, D¢E
(3.14) o v, +v,, v+ v, v+ v, V4 1,) {]4’ if(s, e E,
where

(3.15) E={(1,6), (6, 1), (2,5), (5,2), (3,8), (8,3), (4, 7), (7, 4)} .

Assertion (3.14) proves Proposition 3.1. To show (3.14) we first note that
(3 16) pi(vs + Uy, O+ 0y, U5+ 0y, U5+ Ur) = Pi(l?s, Uss Us, Us) + zpi(vn U, Usy vs)
+2pi(vs’ vta Us, Us) + 2pi(vs’ vs’ Ut’ U,) + 2pi(us’ Uu vt’ vs) +pi(vt’ vs’ Ut’ vs)
+pi(vss Uy, U, Ut) + 2p,-(U,, Uss Ups vt)+2pi(vs’ Vg Uy, U,)+Pi(U,, Uy, Uy, U!)

for i=1, 2. Since the basis BujB is orthogonal and normalized by <b, b)=w,, be B,
it follows from (1.8), (1.9) as well as (1.7), Lemma 2.2 and (3.11)—~(3.13) that

4 —
(3 1 7) pl(va’ Ups Ucs vd) =7 < Z + Z + 2 + Z ) RvaﬁquRvdﬁch
p=

1 q=r2 p=mg,q=m  p=ug,q=u;  p=vk,q=v;

1 1 I 1 -
=— 00 +—, AMAM+ — A% 4%
16 bYcd 64 JZ':' d<* b 64 ’; b4 d

1
+ 16 (100,404 + 94a05c) »

4 _
(3.18)  py(v4, Oy, Vs Ud)=;7< > o+ X )Ruaﬁch‘Rmvdq

1 P= Uk, q=u; P=Vk,q=01

1 1
= 64 Z (Bl;i' + BLIZ)(B’;L + Bg:i) T+ -8' (5ab5cd + 5ad5bc) H
k,1

where
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8 8
jh _ jz h jh __ Ju h
Ast - Z OlysOlyee and Bst - Z Oy -
k=1 k=1

We note that

(3.19), A#=0  when j#h
and that the matrix (4%), . ; ;¢ is given by
I 0 I J
. I J 1
3.19 AN=2
( )2 ( ss) I J I O s
J I 0 I

where /=1, and J is the 2 x 2 matrix whose entries are all one, while

(3.20) B"=0 forall j, h.
Assume (s, )€ E. Then
(3.21) At=0 forall j, h,

and there exists a permutation 7 of {1, ..., 8} such that
2, (JsW)=(rq, 1) or (13,74)
(3.22) Bit=1 =2, (j,h)=(1s,16) Or (15, 7g)
0, otherwise.
Next assume s#¢ and (s, £) ¢ E. Then, there exists a permutation ¢ of {1, ..., 8} such
that
(3.23) Aiﬁ‘={i2 (R =001, 09 or (73 0)
0, otherwise

and

2 s (]’ h)=(0'5, 66)
(3.24) Bii={ =2, (j,h)=(0e, 05)

0, otherwise.
LeMMA 3.3. p,(v,, v, U5, v5) =5/4 and p,(v,, v,, v, V) =1/4.

s Vs

ProOOF. By (3.17) as well as (3.19) we have

12 . 1
Us’ Usa vs’ vs =—+— Ai: 2+7=7'
P ) 16 64 ,-,Z,.I ! 16 4

By (3.18) as well as (3.20) we have
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1 1
Vg, Vg, U, V) =—— ) | B |24 —=— |
pa( )= T kzll sl 112
LEmMMmA 3.4, If s#t, then p(v,, v, v, v) =0 (i=1, 2).
ProoF. By (3.17) we have

79

pl(vta Us, Us, Us) =LA Z AJhAJh

because 4" =0 when j##h (by (3.19)), and 4=

(3.18) as well as (3.20) we see

pZ(Ut’ Us, U, U ) 672 (B:‘sl

LeEMMA 3.5.
(s, )eE.
Proor. By (3.17) we have

1
pl(us, Vs, Uy vt)z

—l""—},

0 when j=h (by (3.21) and (3.23)). By

+ B¥)(BX+ B%)~ =0.

If s#t, then p (v, vy, v,, v,)=15/16 when (s, t)¢ E, and =11/16 when

ZAlkAlk .

16 64 jn

It follows from (3.21) and (3.23) that

2|A4’r12={
Jsh

8,
O’

It follows from (3.19) that

ZAlkAlk Z AkkAkk_{

From these we have the formulas.

LemMma 3.6. If s#t, then p,(vg, v, U,
(s, eE.

Proor. By (3.17) we have

pl(vs’ Ups Uy s)—6—2 AJhAJh

(s, )¢ E
(s,)eE.

8, (5, 0D¢E
0, (s,0)eE.

v,)=5/16 when (s, )¢ E, and =1/16 when

Z‘Alk

16

The assertion follows from the equalities in the proof of Lemma 3.5.

LemMa 3.7. If s#t, then p(vg, v, v,

Proor. By (3.17) as wall as (3.21) and

v)=0 (i=1, 2).

(3.23) we have
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p1(v, vy, v, v,)__6_z Al gih— Z A ghi =
By (3.18) as wall as (3.20) we see
pl(vm Uy, Vs, Ul) - 6_4 Z BMBM O

LEMMA 3.8. If s#t, then p,(vg, vy, U, 0,) = p,(0s, U, U,y U) and the value is 1/8 when
(s, )¢ E, while is 5/8 when (s, )€ E.

ProOF. It follows from (3.18) that
1 1
Pz(vs, Uss Uy, Dt):pZ(Us’ Ups Uy vs)z_z | B Blk |2 +—.
64 i1 8
If (s, ) € E then by (3.22) we have
Y| By + By P =22 x8;
k,1
while if (s, £) ¢ E then by (3.24) we have
3| B+ BY=0.

PrROOF OF PROPOSITION 3.1. We shall show (3.14). First assume (s, ?) ¢ E. It follows
from (3.16) as well as Lemmas 3.3-3.8 that

5 15 5 5
p1(v,+ v, U+ 0, O+, V,+0)=—+04+0+2X —+2%x —+04+0+0+0+—=5,
4 16 16 4
and that
1 1 1 1
P2+ v, v+ 0, U+, vs+v,)=Z+O+0+2x§+2x§+0+0+0+0+1=l .

Thus p!? v, +v,, v,+v,, v+ 1,, v,+v,) = 12. Similarly, if (s, 7)€ E, then p'*(v,+v,, v,+v,,
v+, v,+v,) =14, as desired.

REFERENCES

[1] K.Azukawa, Curvature operator of the Bergman metric on a homogeneous bounded domain, T6hoku
Math. J. 37 (1985), 197-223.

[2] K. Azukawa, Criteria for quasi-symmetricity and the holomorphic sectional curvature of a
homogeneous bounded domain, T6hoku Math. J. 41 (1989), 489-506.

[3] P.CARPENTER, A. GRAY AND T. J. WILLMORE, The curvature of Einstein spaces, Quart. J. Math. Oxford
33 (1982), 45-64.



HOMOGENEOUS BOUNDED DOMAINS 81

[4] J. E. D’ATRI AND 1. D. MIATELLO, A characterization of bounded symmetric domains by curvature,
Trans. Amer. Math. Soc. 276 (1983), 531-540.

[5]1 L. GEATTI, On the curvature of homogeneous Kéhler metrics of bounded domains, Ann. Math. Pura
Appl. 154 (1989), 341-357.

[6] 1. I PyATETsK1-SHAPIRO, Automorphic Functions and the Geometry of Classical Domains, Gordon
and Breach, New York, 1969.

[7] I SATAKE, On classification of quasi-symmetric domains, Nagoya Math. J. 62 (1976), 1-12.

[8] M. TakeucHi, Homogeneous Siegel Domains, Publications of the Study Group of Geometry, Vol. 7,
Tokyo, 1973.

DEPARTMENT OF MATHEMATICS
TovyAaMA UNIVERSITY

Goruku, Toyama 930

JAPAN








