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Abstract. In this paper it is proved that there exists no non-symmetric homogene-
ous bounded domain whose second Ricci curvature of the Bergman metric is homothetic
to the square of the metric. The argument is based on a result of Geatti and the theory of
normal y-algebras.

Introduction. There is a countable sequence of conditions Hfc which the curvature
tensor of harmonic spaces must satisfy. The first condition Hx is the Einstein condition.
Let D be a homogeneous bounded domain in Cn with the Bergman metric g. It is
well-known that g always satisfies H x. Recently Geatti [5] proved that if g satisfies
Condition H2, i.e., the second Ricci curvature of g is homothetic to the square of g,
then D is biholomorphic to one of the following:

(1) the unit ball in C ,
(2) the 6-dimensional classical domain of type IV in Cartan's classification,
(3) the exceptional symmetric domain of dimension 16,
(4) the exceptional symmetric domain of dimension 27,
(5) the domain of dimension 26 of type T(8; 8, 8), where

(0.1) T(8;8,8) ' ' 8•=•[•:
(see (2.4)). It is well-known (Carpenter-Gray-Willmore [3]) that the first four types of
domains actually satisfy Condition H2. In her paper [5] Geatti asked whether the last
26-dimensional domain satisfies Condition H 2 or not. In the present paper, we shall
show that the last domain does not satisfy Condition H 2 (Proposition 3.1), so that there
exists no non-symmetric homogeneous bounded domain whose Bergman metric satisfies
Condition H 2 (Theorem 3.2). Our argument is based on the theory of normaly-algebras
which represent the Bergman metric of homogeneous bounded domains.

1. The second Ricci curvature and Condition H 2. Let (M, g) be a Riemannian
manifold. Let FxYbc the covariant derivative with respect to the Levi-Civita connec-
tion of g, and set R(X, Y) = [VX, V r]-V [X,y], R(X, Y, Z, W) = g(R(Z, W)Y, X). For a
tangent vector x e TpM at a point psM, let S(x) e Enά(TpM) be the mapping defined by
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(1.1) S(x)u = R(u,x)x.

For every positive integer k, the k-th Ricci curvature p[k] of g is, by definition, the

symmetric covariant tensor field of degree 2k satisfying

(1.2) p[k\x, ...,x) = trace S(x)k for all x e TpM .

For k= 1, 2, the manifold (M, g) is said to satisfy Condition Hk if there exists a function

2 G C ° ° ( M ) such that

(1.3) p{k\x, ...,x) = λ(p)g(x, xf for all x e TpM, peM

(cf. Carpenter-Gray-Willmore [3]). We note that p [ 1 ] is the usual Ricci curvature and

H1 coincides with the Einstein condition. Let B be a basis of the tangent space TpM,

pM we hgab = g(a, b) for a,beB9 and (gab) be the inverse matrix of (gab). For xe TpM, we have

(1.4) p[2](x, x, x, x) = X gabgcdR(x, c9 x, b)R(x, a,x,d).
a,b,c,deB

From now on, we assume that M is a complex manifold and g is a Kahler metric

on M. Let p be a point in M, Γ p M the real tangent space at /?, and7eEnd(Γ p M) the

complex structure on M. The holomorphic tangent space TρM at p is realized as

{zeTpM®C'Jz = iz]=χ{TpM), wherey'eEnd(ΓpM(x)C) is the complex linear extension

of j and χ: TpM-+ TpM®C is defined by χ(x) = 2~ 1(*-ipc). As usual, for xaeTpM, set

(1.5) ^ ^ 3 * 4

(1.6) ί

where g( , •) and Λ( , , , •) are extended to complex multi-linear mappings. We note

that

(1-7) gXχ = — g(x,x)'

We need the following lemma.

LEMMA 1.1. If B is a subset of TpM such that BnjB = 0 and BυjB is a basis of

TpM, and if xe TpM, then

p[2](x, x, x, x) = 2px(x, x, x, x) + 2p2(x, x, x, x ) ,

where

(1.8) Pi(*i, *2> ^3, *4)= Σ gtψ'RxMqrRx^p ,
p,q,r,seB

(1.9) p 2 ( χ 1 , χ 2 J x 3 , x 4 ) = X gpqgrsRXιpX3fRq^sxΛ,
p,q,r,seB
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and (gpq)p,qeB is the inverse matrix of(gpίj)PtqeB .

PROOF. Setting

R(a, b)= Σ QcdR(x> ^ x> b)R(x9 a9x,d),
cdeBϋjB

we have

(l.io) p [ 2 ] (χ,*,*,*)= Σ gabR(a,b)= Σ gpq(R(x(p\x(q))+R(x(qlx(p)))-
a,beBl)jB p,qeB

For the same reason we have

= Σ gF\R(χ,
r,seB

+ R(x, χ(s), x, χ(q))R(x, χ(p), x,

Since x=χ(x) + χ(x), it follows that

Similarly, we have

r,seB

x(P))= Σ 9f\RχrxpRqχSχ + RsxxpRqxx?)
r,seB

Substituting these into (1.10) we get the desired formula.

2. The curvature of quasi-symmetric bounded domains. Let D be a homogeneous

bounded domain in Cn with the Bergman metric g and p be a point in D. Then the real

tangent space TpD at p possesses the structure (g,j) of a normal >aljebra such that g

is a Lie algebra which coincides with TpD as a real vector space, that j is the complex

structure of TpD, and that if ω is the Koszul form of g, i.e., ω e g * is defined by

(2.1) ω(x) = — trace(ad/x — j o ad x) for x e g ,

then it holds that g(x, y) = ω[jx, y] for x, y e TpD = g. Here, a normaly'-algebra (g,y) is,

by definition (cf. Pyatetskii-Shapiro [6]), a triangular Lie algebra over R with complex

structure j satisfying that \_jxjy] =j\Jx, y] +j[x,jy] + ίχ> ϊΛ f°Γ x> ye % a n d t r i at if ω

is the Koszul form (2.1) of g, then the bilinear form < , > given by

(2.2) <x,y> = ωUχ,y'] for x,yeg

defines ay-invariant inner product on g. Two normaly'-algebras (g,y'), (g,y') are said to

be isomorphic if there exists an isomorphism Φ: g-»g of Lie algebras such that Φ°j=
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Let Jf „ be the set of all biholomorphic equivalence classes of homogeneous bounded
domains in Cn, and let s/n be the set of all isomorphism classes of normal y-algebras
of dimension 2n. The assertion mentioned above yields the existence of a natural mapping
from J^n to srfn. It is also known that the mapping is bijective (cf. [6]).

Let (9,7) be a normal y-algebra. Set n = [g, g]. The dimension R of the orthogonal
complement α of n with respect to the inner product < , > in (2.2) is called the rank
of (g,y) or the rank of the corresponding homogeneous bounded domain D. For any
linear form αeα* on α, set n(oc) = {xen; [h,x] = aι(h)x for all he a}. Every element of
the set A : = {αeα*; n(α)^{0}} is said to be a root. The structure theorem of
Pyatetskii-Shapiro [6] says the following:

(nl) α is a non-trivial abelian subalgebra of g, amd n has an orthogonal
decomposition Σα e Jπ(α).

(n2) There are R roots ε l5 . . . , εR such that ja is the direct sum of the 1-dimensional
root spaces n(εβ), and that any of the other roots is one of the forms 2~1(εa±εb), 2"1εc,
where a,b,ce{\9...,R} with a<b.

(n3) yn(2 " x (εβ + εb)) = π(2 " 1 (εα - εfc)) when a < b, and7'n(2 ~1εa) = n(2 " x εβ) for all a.

Let us fix some notation. Set

—-

We then have the decomposition

(2.3)

We call the table

«fl = --dimnί--ε

Γ l n

(2.4)

12

n2,R-l n2R

1 n

1

1,R

of multiplicities the type of the normal y-algebra (g,y) or the type of the corresponding
homogeneous bounded domain D in Cn. We note that the sum of all numbers in the
type table coincides with the complex dimension n of Z>, because of the decomposition
(2.3). Let rflen(εfl)\{0} be the unique element such that [yrβ, ra] = ra. It is known (cf.
[8]) that if we set ωa: = ω(ra) = <rα, rα>, then
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(2-5) ω α = l + i - ( Σ » Λ + Σ

Z \b>a b<a

Let

(2.6) r: = rι + r2+-' +r

The following is needed.

LEMMA 2.1 (Pyatetskii-Shapiro [6]). If 1 < a < b < c < R + 1 , x, x' e n(2" \εa + ε6)),

y , / e n ( 2 " 1 ( ε ί ) + εc)) vvzϊ/i /Â  convention εΛ + 1 = 0 , /Λ̂ «

<C;X y\ ϋ*\ / ] > <[ / ] ίj\ ]>

By the identification q = TpD the covariant derivative Vx>> with respect to the

Levi-Civita connection of the Bergman metric is well-defined as an element of g for all

x, ye§. It is given by

V ( [ ] ( d ) ^

where (ad x)* is the adjoint operator of ad x with respect to the inner product < , > in

(2.2). For x, yeS£ and u, ve<%, we define

F(iι, ι;) = — (Lju, v~] + i[iι, i?]) e
4

It is well-known ([4], [2]) that the quasi-symmetry of D in the sense of Satake [7] is

equivalent to the property that nab are constant for all a, b with a < b and so are na for

all a. We need the following lemma.

LEMMA 2.2. Let xae<£ anduhe°U. The following formulas hold'.

(LL|UU) ** lSa,3S4 = 0>

(LL|LU) ^ ^ ^ = 0,

(LU|UU) RXίΰ2U3ΰ4 = 0,

(UU|UU) RUιΰ2u3ΰ4 = 2(iF{ul9 u2), F(u3, w4)> + <F(W l, iι4), F(u3,

Further, if D is quasi-symmetric, then

(LL|LL) Rχ,x2x,xA = —
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( L U | L U ) RXlx2U3 j

PROOF. The first three formulas are given in [1], and formula (UU|UU) in [1],

[2]. Formula (LL|LL) follows from Lemma 4.6 and Theorem 2.7 in [2], and (LU|LU)

from Lemma 4.7 as well as Theorem 3.7 and Lemma 3.6 in [2].

Since j is a complex structure on each subspace n(2~1εfc), if we define

(2.7) σ(u,v) = (u,

and

(2.8) (ζ + iη)u =

for u,ve°ll and ξ,ηεR, then (n(2~1εfc), σ) is a Hermitian linear space. For a subset

Bczn(2~1εk) with BnjB=0, we note that the following four statements are mutually

equivalent:

(b 1) B is an orthogonal basis with respect to σ normalized by σ(u, u) = ωk for u e B.

(b2) B u jB is an orthogonal basis with respect to < , ) normalized by

<M, u} = ωk for ueB.

(b3) L/w,t;] = δuvrk, [w, v] = 0 for all u,veB.

(b4) 4F(u, v) = δuvrk for all u,veB.

3. Curvature properties of the 26-dimensional quasi-symmetric domain. In this

section we shall show the following.

PROPOSITION 3.1. The Bergman metric of the homogeneous bounded domain of type

T(8; 8, 8) does not satisfy Condition H 2 {see (0.1)). More presisely, if Q = ̂  +J& + W

with ^ = n(ε1)-hn(ε2) + n(2~1(ε1-hε2)) α«ί/^ = n(2" 1 ε 1 ) + n(2" 1 ε 2 ) is the corresponding

normal j-algebra, then the function p [2](x, x, x, x)/<x, x> 2 w «o/ constant on the space

n(2~ 1ε 2)\{0}.

Combining this with a theorem of Carpenter-Gray-Willmore [3] and a theorem

of Geatti [5] (see the introduction) we obtain the following.

THEOREM 3.2. The Bergman metric g of a homogeneous bounded domain D satisfies

Condition H 2 if and only if D is biholomorphic to one of the following:

(1) the unit ball in C\

(2) the ^-dimensional classical domain of type IV in Car tan's classification,

(3) the exceptional symmetric domain of dimension 16,

(4) the exceptional symmetric domain of dimension 27.

Consequently, there exists no non-symmetric homogeneous bounded domain whose Bergman

metric satisfies Condition H 2 .

To prove Proposition 3.1, we proceed as in the argument in the preceding sections,



HOMOGENEOUS BOUNDED DOMAINS 75

and assume that D is of type T(8; 8, 8). We first note that D is quasi-symmetric and that

(3.1) ωi=ω2 = 9

(see (2.5)). Take mu . . . , msen(2~1(ε1+ε2)) so that <raa, mb) = δabωu or

(3.2)

and take t ? l 5 . . . , ί ; 8 en(2~ 1 ε 2 ) so that {vu ..., v89jvu . . . ,yι>8} is an orthogonal basis of

n ( 2 " 1 ε 2 ) with [jυa9 va] = r2, or

(3.3)

Consider the homomorphisms

(3.4) ψk:

It follows from Lemma 2.1 that ψk are isometric isomorphisms commuting withy. Let

(3.5) "* = *Ai(O, fl=l,...,8.

Then, {w1?..., u8ju1,... ,/w8} is an orthogonal basis of n(2~1ε1) with [ywa, we] = r l 5 or

(3.6) 4F(ua,ub) = δabrι.

F o r A:= 1 , . . . , 8, we associate a complex 8 x 8 matrix A = (αk/!)α,f,
 s o t n a t

(3-7) sjl φ(mk)vb= Σ *k

a

bua for b= 1, . . . , 8 ,
α = l

where the scalar multiplication αfc£wα is given by (2.8). In view of (3.1), Lemma 2.1

implies the following:

(3.8) ^ i = / 8 > AΐAk = Is, and A ^ + AfA^O (* :#/) .

It follows that i4jf =->4 fc(fc>2), AkA^ -AxAk{kA>2,kφl\ Al=-Is (k>2). Since

the eigenvalues of ̂ 42 are i and — /, C 8 is a direct sum of two spaces S+ and »S~ defined

by S± = {veCs;A2v=±ίv}. Since ^ 2 ^ 3 = - ^ 3 ^ 2 , we have A3S
+aS~, A3S'czS + ;

therefore, d i m 5 r + =dim»S'~ = 4 . Take a unitary 8 x 8 matrix U so that

LO - i / J

Let A:>3. Since A2Ak= —AkA2 and ^4*= — ^4k5 there exists a 4 x 4 matrix Bk such that

It follows from (3.8) that
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Take appropriate unitary 4x4 matrices Vu V2 so that Kf

u\

= /4. Taking

instead of U in the argument mentioned above, we may assume that

(3.9)2 Λ3 = / 4 .

Compare (3.9)χ and (3.9)2 with (3.8). The same argument as in finding Bk from Ak

implies the existence of a unitary 4x4 matrix V such that

o -ii
v*BkV l-ct o

where C k are 2 x 2 matrices with the properties

C 5 = / 2 , Cj?Ck = / 2 ( f c > 5 ) , C?

Similarly, there exists a unitary 2 x 2 matrix W such that

W*C6W=•=P °1 W*CW=\ ° dΛ (k>Ί)
Lo - d ' k L-<4 oj

\-d8 = 0. Taking — m8 instead ofwhere ί/kGCwith the properties dΊ=\, | d 8 | = l, d
m8 if necessary, we may assume that d8 = ί. Setting

Lo v\

W 0 0 0

0 W 0 0

0 0 W 0

LO 0 0 WΔ

and taking (u l 5 . . . , u8)Γ and (M15 . . . , u8)T instead of (ι; l 5 . . ., v8) and (w1? . . . , w8),
respectively, we may finally assume the following:

(3.10)!

where

<->> * - [ ί -°J ' - [ Λ
0 0 i 0
0 0 0 -/
1 0 0 0

_ 0 -/ 0 O j

0 0 0 1

0 0 - 1 0

0 1 0 0

L-l 0 0 0J

0 0 0 i

0 0 i 0

0 i 0 0

Li 0 0 OJ
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(cf. Geatti [5]). We note that B: = {rl9 r2, mu . . . , m8, wl5 . . . , w8, vί9 . . . , v8} is an

orthogonal system of g normalized by <ft, b) = ω1 for beB (see (3.1)) and that BujB

is a basis of cj. We list the relationships among elements in B (for details, see [1], [2]):

2 * ' * ' 2 f c ' '

</>OαK = δaίuh , φ ( r > k = δa2vk ,

2 fc=i
V

1 1 1 £
(3.13) F(ua, ub) = — δabr1 , F(vω vb) = — δabr2 , F(va, uc) = — — Σ *ka™k

4 4 4yy^=i
We shall show the following assertion:

(3.14) p[ Kvs + υt9vs + Όt9Όa + vt9υa + vt) = ^ { { { s t ) e E

where

(3.15) ^ = { ( 1 , 6), (6, 1), (2, 5), (5, 2), (3, 8), (8, 3), (4, 7), (7, 4)} .

Assertion (3.14) proves Proposition 3.1, To show (3.14) we first note that

(3.16) Pi(vs + vt9 vs + υt9 vs + vt9 vs + vt) = pt(vs, υs9 υS9 vs) + 2pt(vt9 υs9 υS9 vs)

θi(vs, vv vs, vs) + 2pi(vs, vs, vt, vt) + 2pi(vs, vt, vt, vs) + Pi(vt, vs, vt, vs)

θi(vs, vt, vs, vt) H- 2pι(vt9 vs, vt9 vt) 4- 2pi(vS9 vt, vt, vt) + pi(vt, vt9 vt, υt)

for /= 1, 2. Since the basis BujB is orthogonal and normalized by <fe, b} = ω1, beB,

it follows from (1.8), (1.9) as well as (1.7), Lemma 2.2 and (3.11)—(3.13) that

4 / \
(3.17) P1(Vα9Vb9Vc9Vd) = - Ύ l Σ + Σ + Σ + Σ I RvαvbpqRvdvcpq

^ 1 \ P = ί = ι;2 p = mk,q = mι p = uk,q = uι p = vk,q = vιj

16 64 j,h 64 *,;

+ -—
ID

4 ( \
(3.18) p2{vα,Vh,Vc,Vd) = —-I Σ + Σ )^ α pt; c ^ b p^-

64 M

where
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We note that

(3.19)! Mh

s = 0 when jφh

and that the matrix G4£)i<7 , s < 8 is given by

I 0 I J

(3.19)2

0 I J I

1 J I 0

_/ / 0 /J

where I=I2 and J is the 2 x 2 matrix whose entries are all one, while

(3.20) B j

s

h

s = 0 f o r a l l j 9 h .

Assume (s, t)eE. Then

(3.21) AjJl = 0 for all j9 h,

and there exists a permutation τ of {1,..., 8} such that

2, (y, Λ) = (τ l 5 τ2) or (τ3, τ4)

(3.22) Bj*=- -2, (y,A) = (τ 5,τ 6) or (τ7, τ8)

0 , otherwise .

Next assume 5// and (5, 0 £ ^ Then, there exists a permutation σ of {1,..., 8} such

that

(3.23)

and

: 2 , 0', λ) = (σ l s σ2) or (σ3, σ4)

0, otherwise

2 , (7, A) = (σ5, σ6)

(3.24) i?i*=. - 2 , (7,Λ) = (σ6,σ5)

0, otherwise .

LEMMA 3.3. pγ{vs, υa9 υS9 va) = 5/4 and p2(vs, υs9 υS9 υs) = 1/4.

PROOF. By (3.17) as well as (3.19) we have

Λ 1 2 ^ , i J L i . 11 5
Pi(vS9va9va9vs) = -Γ7 + T T Σ

16 6 4 j,h 16 4

By (3.18) as well as (3.20) we have
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vs,vs) ^ Σ \ B s s \ + \
16 k,ι 4 4

LEMMA 3.4. If sφt, then p ̂ vv vs, vs, vs) = 0 (/= 1, 2).

PROOF. By (3.17) we have

2 _

, va9 υs9 vs) = ΣA^Ajh 0
ΣA^Ass 0 ,

64 j,ft

because y4£ = 0 whenyVA (by (3.19)), and ̂ /s

h = 0 wheny = A (by (3.21) and (3.23)). By

(3.18) as well as (3.20) we see

Pi(vt, vs, υ8, vs) = - 1 - Σ (ΛS + 5{ϊ)(5ϊί + 52)" = 0 .
64 k,ι

LEMMA 3.5. If sφt, then px{vs, vs, vt, vt)= 15/16 when (s, t)φE, and = 11/16 when

(s,t)eE.

PROOF. By (3.17) we have

Pι{υv v» υt9 t;t) = 16 64 XV 64

It follows from (3.21) and (3.23) that

f8, (s,t)φES'^| 2 ={o' t
It follows from (3.19) that

V ΛikΆik = y Akkjkk = ί 8 ' (^ 0 Φ E

From these we have the formulas.

LEMMA 3.6. If sφt, then p1(vs9vΐ,vt,vs) = 5/l6 when (s,t)φE, and =1/16 when

(s,t)eE.

PROOF. By (3.17) we have

64 j,h 64 k,ι 16

The assertion follows from the equalities in the proof of Lemma 3.5.

LEMMA 3.7. If sφt, then Pi(vs, υt9 υs9 vt) = 0 (i= 1, 2).

PROOF. By (3.17) as wall as (3.21) and (3.23) we have
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Pl(vs, υt, υs, υt) = ̂ -ΣAΆ ^
o 4 j,h 3 2 j,h

By (3.18) as wall as (3.20) we see

64 k,ι

LEMMA 3.8. Ifsφt, then p2(vs, vs, vt, vt) = p2(vs, vt9 vt, vs) and the value is 1/8 when

(s, ήφE, while is 5/8 when (s, t)eE.

PROOF. It follows from (3.18) that

ΣI Bkl + B* |2 +F2fe, va9 υt9 υt) = p2(v89 vt9 υt9 vs) = --Σ\Dkl^ Ώlk'2

6 4 k,ι

If (s9 ήeE then by (3.22) we have

LI Bst + Bst I = ^ x o

while if (J, 0 ^ ^ then by (3.24) we have

PROOF OF PROPOSITION 3.1. We shall show (3.14). First assume (s, t) φ E. It follows

from (3.16) as well as Lemmas 3.3-3.8 that

Pι(vs + υt9vs + vt9vs + υt,vs + vt) = — + 0 + 0 + 2x + 2x + 0 + 0 + 0 + 0 + — = 5 ,
4 16 16 4

and that

Pi(Vs + vt> v s + υ» v s + v t , v s + v t ) = — + 0 + 0 + 2 X — + 2 x — + 0 + 0 + 0 + 0 + — = 1 .
4 8 8 4

Thus p[2](vs + vt, vs + vt, vs + vt9 vs + vt)= 12. Similarly, if (s, t)eE, then pl2](vs + vt9 vs + vt,

vs + υt, vs H- vt) =14, as desired.
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