SECOND RICCI CURVATURE OF HOMOGENEOUS BOUNDED DOMAINS

Kazuo Azukawa and Shigeru Morimoto

(Received February 18, 1991)

Abstract

In this paper it is proved that there exists no non-symmetric homogeneous bounded domain whose second Ricci curvature of the Bergman metric is homothetic to the square of the metric. The argument is based on a result of Geatti and the theory of normal j-algebras.

Introduction. There is a countable sequence of conditions H_{k} which the curvature tensor of harmonic spaces must satisfy. The first condition H_{1} is the Einstein condition. Let D be a homogeneous bounded domain in C^{n} with the Bergman metric g. It is well-known that g always satisfies H_{1}. Recently Geatti [5] proved that if g satisfies Condition H_{2}, i.e., the second Ricci curvature of g is homothetic to the square of g, then D is biholomorphic to one of the following:
(1) the unit ball in C^{n},
(2) the 6-dimensional classical domain of type IV in Cartan's classification,
(3) the exceptional symmetric domain of dimension 16 ,
(4) the exceptional symmetric domain of dimension 27 ,
(5) the domain of dimension 26 of type $\mathrm{T}(8 ; 8,8)$, where

$$
\mathrm{T}(8 ; 8,8):=\left[\begin{array}{rr|r}
1 & 8 & 8 \tag{0.1}\\
& 1 & 8
\end{array}\right]
$$

(see (2.4)). It is well-known (Carpenter-Gray-Willmore [3]) that the first four types of domains actually satisfy Condition H_{2}. In her paper [5] Geatti asked whether the last 26-dimensional domain satisfies Condition H_{2} or not. In the present paper, we shall show that the last domain does not satisfy Condition H_{2} (Proposition 3.1), so that there exists no non-symmetric homogeneous bounded domain whose Bergman metric satisfies Condition H_{2} (Theorem 3.2). Our argument is based on the theory of normal j-algebras which represent the Bergman metric of homogeneous bounded domains.

1. The second Ricci curvature and Condition H_{2}. Let (M, g) be a Riemannian manifold. Let $\nabla_{X} Y$ be the covariant derivative with respect to the Levi-Civita connection of g, and set $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}, R(X, Y, Z, W)=g(R(Z, W) Y, X)$. For a tangent vector $x \in T_{p} M$ at a point $p \in M$, let $S(x) \in \operatorname{End}\left(T_{p} M\right)$ be the mapping defined by

$$
\begin{equation*}
S(x) u=R(u, x) x . \tag{1.1}
\end{equation*}
$$

For every positive integer k, the k-th Ricci curvature $\rho^{[k]}$ of g is, by definition, the symmetric covariant tensor field of degree $2 k$ satisfying

$$
\begin{equation*}
\rho^{[k]}(x, \ldots, x)=\operatorname{trace} S(x)^{k} \quad \text { for all } \quad x \in T_{p} M . \tag{1.2}
\end{equation*}
$$

For $k=1,2$, the manifold (M, g) is said to satisfy Condition H_{k} if there exists a function $\lambda \in C^{\infty}(M)$ such that

$$
\begin{equation*}
\rho^{[k]}(x, \ldots, x)=\lambda(p) g(x, x)^{k} \quad \text { for all } \quad x \in T_{p} M, p \in M \tag{1.3}
\end{equation*}
$$

(cf. Carpenter-Gray-Willmore [3]). We note that $\rho^{[1]}$ is the usual Ricci curvature and H_{1} coincides with the Einstein condition. Let B be a basis of the tangent space $T_{p} M$, $g_{a b}=g(a, b)$ for $a, b \in B$, and $\left(g^{a b}\right)$ be the inverse matrix of $\left(g_{a b}\right)$. For $x \in T_{p} M$, we have

$$
\begin{equation*}
\rho^{[2]}(x, x, x, x)=\sum_{a, b, c, d \in B} g^{a b} g^{c d} R(x, c, x, b) R(x, a, x, d) . \tag{1.4}
\end{equation*}
$$

From now on, we assume that M is a complex manifold and g is a Kähler metric on M. Let p be a point in $M, T_{p} M$ the real tangent space at p, and $j \in \operatorname{End}\left(T_{p} M\right)$ the complex structure on M. The holomorphic tangent space $T_{p}^{h} M$ at p is realized as $\left\{z \in T_{p} M \otimes C ; j z=i z\right\}=\chi\left(T_{p} M\right)$, where $j \in \operatorname{End}\left(T_{p} M \otimes C\right)$ is the complex linear extension of j and $\chi: T_{p} M \rightarrow T_{p} M \otimes C$ is defined by $\chi(x)=2^{-1}(x-i j x)$. As usual, for $x_{a} \in T_{p} M$, set

$$
\begin{gather*}
R_{x_{1} \bar{x}_{2} x_{3} \bar{x}_{4}}=R\left(\chi\left(x_{1}\right), \overline{\chi\left(x_{2}\right)}, \chi\left(x_{3}\right), \overline{\chi\left(x_{4}\right)}\right), \tag{1.5}\\
g_{x_{1} \bar{x}_{2}}=g\left(\chi\left(x_{1}\right), \overline{\chi\left(x_{2}\right)}\right), \tag{1.6}
\end{gather*}
$$

where $g(\cdot, \cdot)$ and $R(\cdot, \cdot, \cdot, \cdot)$ are extended to complex multi-linear mappings. We note that

$$
\begin{equation*}
g_{x \bar{x}}=\frac{1}{2} g(x, x) . \tag{1.7}
\end{equation*}
$$

We need the following lemma.
Lemma 1.1. If B is a subset of $T_{p} M$ such that $B \cap j B=\varnothing$ and $B \cup j B$ is a basis of $T_{p} M$, and if $x \in T_{p} M$, then

$$
\rho^{[2]}(x, x, x, x)=2 \rho_{1}(x, x, x, x)+2 \rho_{2}(x, x, x, x)
$$

where

$$
\begin{align*}
& \rho_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{p, q, r, s \in B} g^{\bar{p} q} g^{\bar{T} s} R_{x_{1} \bar{x}_{2} q \bar{r}} R_{x_{3} \bar{x}_{4} s \bar{p}}, \tag{1.8}\\
& \rho_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{p, q, r, s \in B} g^{\bar{p} q} g^{\bar{T} s} R_{x_{1} \overline{\bar{p}} x_{3} \bar{r}} R_{q \bar{x}_{2} s \bar{x}_{4}}, \tag{1.9}
\end{align*}
$$

and $\left(g^{\bar{p} q}\right)_{p, q \in B}$ is the inverse matrix of $\left(g_{p \bar{q}}\right)_{p, q \in B}$.
Proof. Setting

$$
\tilde{R}(a, b)=\sum_{c, d \in B \cup j B} g^{c d} R(x, c, x, b) R(x, a, x, d)
$$

we have

$$
\begin{equation*}
\rho^{[2]}(x, x, x, x)=\sum_{a, b \in B \cup j \boldsymbol{B}} g^{a b} \tilde{R}(a, b)=\sum_{p, q \in B} g^{\bar{p} q}(\tilde{R}(\overline{\chi(p)}, \chi(q))+\tilde{R}(\chi(q), \overline{\chi(p)})) \tag{1.10}
\end{equation*}
$$

For the same reason we have

$$
\begin{aligned}
\tilde{R}(\overline{\chi(p)}, \chi(q))= & \sum_{r, s \in B} g^{\bar{s} s}(R(x, \overline{\chi(r)}, x, \chi(q)) R(x, \overline{\chi(p)}, x, \chi(s)) \\
& +R(x, \chi(s), x, \chi(q)) R(x, \overline{\chi(p)}, x, \overline{\chi(r)))} .
\end{aligned}
$$

Since $x=\chi(x)+\overline{\chi(x)}$, it follows that

$$
\tilde{R}(\overline{\chi(p)}, \chi(q))=\sum_{r, s \in B} g^{\bar{s} s}\left(R_{x \bar{r} q \bar{x}} R_{x \bar{p} s \bar{x}}+R_{s \bar{x} q \bar{x}} R_{x \bar{p} x \bar{r}}\right) .
$$

Similarly, we have

$$
\tilde{R}(\chi(q), \overline{\chi(p)})=\sum_{r, s \in B} g^{\bar{s} s}\left(R_{x \bar{r} x \bar{p}} R_{q \bar{x} s \bar{x}}+R_{s \bar{x} \times \bar{p}} R_{q \bar{x} \times \bar{r}}\right) .
$$

Substituting these into (1.10) we get the desired formula.
2. The curvature of quasi-symmetric bounded domains. Let D be a homogeneous bounded domain in C^{n} with the Bergman metric g and p be a point in D. Then the real tangent space $T_{p} D$ at p possesses the structure (\mathfrak{g}, j) of a normal j-aljebra such that \mathfrak{g} is a Lie algebra which coincides with $T_{p} D$ as a real vector space, that j is the complex structure of $T_{p} D$, and that if ω is the Koszul form of \mathfrak{g}, i.e., $\omega \in \mathfrak{g}^{*}$ is defined by

$$
\begin{equation*}
\omega(x)=\frac{1}{2} \operatorname{trace}(\operatorname{ad} j x-j \circ \operatorname{ad} x) \quad \text { for } \quad x \in \mathfrak{g}, \tag{2.1}
\end{equation*}
$$

then it holds that $g(x, y)=\omega[j x, y]$ for $x, y \in T_{p} D=\mathfrak{g}$. Here, a normal j-algebra (\mathfrak{g}, j) is, by definition (cf. Pyatetskii-Shapiro [6]), a triangular Lie algebra over \boldsymbol{R} with complex structure j satisfying that $[j x, j y]=j[j x, y]+j[x, j y]+[x, y]$ for $x, y \in \mathfrak{g}$, and that if ω is the Koszul form (2.1) of \mathfrak{g}, then the bilinear form $\langle\cdot, \cdot\rangle$ given by

$$
\begin{equation*}
\langle x, y\rangle=\omega[j x, y] \quad \text { for } \quad x, y \in \mathfrak{g} \tag{2.2}
\end{equation*}
$$

defines a j-invariant inner product on \mathfrak{g}. Two normal j-algebras $(\mathfrak{g}, j),(\tilde{\mathfrak{g}}, \tilde{j})$ are said to be isomorphic if there exists an isomorphism $\Phi: \mathfrak{g} \rightarrow \tilde{\mathfrak{g}}$ of Lie algebras such that $\Phi \circ j=$ $\tilde{j} \circ \Phi$.

Let \mathscr{H}_{n} be the set of all biholomorphic equivalence classes of homogeneous bounded domains in C^{n}, and let \mathscr{A}_{n} be the set of all isomorphism classes of normal j-algebras of dimension $2 n$. The assertion mentioned above yields the existence of a natural mapping from \mathscr{H}_{n} to \mathscr{A}_{n}. It is also known that the mapping is bijective (cf. [6]).

Let (\mathfrak{g}, j) be a normal j-algebra. Set $\mathfrak{n}=[\mathfrak{g}, \mathfrak{g}]$. The dimension R of the orthogonal complement \mathfrak{a} of \mathfrak{n} with respect to the inner product $\langle\cdot, \cdot\rangle$ in (2.2) is called the rank of (\mathfrak{g}, j) or the rank of the corresponding homogeneous bounded domain D. For any linear form $\alpha \in \mathfrak{a}^{*}$ on \mathfrak{a}, set $\mathfrak{n}(\alpha)=\{x \in \mathfrak{n} ;[h, x]=\alpha(h) x$ for all $h \in \mathfrak{a}\}$. Every element of the set $\Delta:=\left\{\alpha \in \mathfrak{a}^{*} ; \mathfrak{n}(\alpha) \neq\{0\}\right\}$ is said to be a root. The structure theorem of Pyatetskii-Shapiro [6] says the following:
(n 1) \mathfrak{a} is a non-trivial abelian subalgebra of \mathfrak{g}, amd \mathfrak{n} has an orthogonal decomposition $\sum_{\alpha \in \Delta} \mathfrak{n}(\alpha)$.
(n2) There are R roots $\varepsilon_{1}, \ldots, \varepsilon_{R}$ such that $j a$ is the direct sum of the 1-dimensional root spaces $\mathfrak{n}\left(\varepsilon_{a}\right)$, and that any of the other roots is one of the forms $2^{-1}\left(\varepsilon_{a} \pm \varepsilon_{b}\right), 2^{-1} \varepsilon_{c}$, where $a, b, c \in\{1, \ldots, R\}$ with $a<b$.
(n3) $j \mathfrak{n}\left(2^{-1}\left(\varepsilon_{a}+\varepsilon_{b}\right)\right)=\mathfrak{n}\left(2^{-1}\left(\varepsilon_{a}-\varepsilon_{b}\right)\right)$ when $a<b$, and $j n\left(2^{-1} \varepsilon_{a}\right)=\mathfrak{n}\left(2^{-1} \varepsilon_{a}\right)$ for all a.
Let us fix some notation. Set

$$
\begin{gathered}
\mathscr{L}=\sum_{a \leq b} \mathfrak{n}\left(\frac{1}{2}\left(\varepsilon_{a}+\varepsilon_{b}\right)\right), \quad \mathscr{U}=\sum_{a} \mathfrak{n}\left(\frac{1}{2} \varepsilon_{a}\right), \\
n_{a b}=\operatorname{dim} \mathfrak{n}\left(\frac{1}{2}\left(\varepsilon_{a}+\varepsilon_{b}\right)\right), \quad n_{a}=\frac{1}{2} \operatorname{dim} \mathfrak{n}\left(\frac{1}{2} \varepsilon_{a}\right) .
\end{gathered}
$$

We then have the decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathscr{L}+j \mathscr{L}+\mathscr{U} . \tag{2.3}
\end{equation*}
$$

We call the table

$$
\left[\begin{array}{lllll|l}
1 & n_{12} & \cdots & n_{1, R-1} & n_{1 R} & n_{1} \tag{2.4}\\
& 1 & \cdots & n_{2, R-1} & n_{2 R} & n_{2} \\
& & \ddots & \vdots & \vdots & \vdots \\
& & & 1 & n_{R-1, R} & n_{R-1} \\
& & & & 1 & n_{R}
\end{array}\right]
$$

of multiplicities the type of the normal j-algebra (g, j) or the type of the corresponding homogeneous bounded domain D in C^{n}. We note that the sum of all numbers in the type table coincides with the complex dimension n of D, because of the decomposition (2.3). Let $r_{a} \in \mathfrak{n}\left(\varepsilon_{a}\right) \backslash\{0\}$ be the unique element such that $\left[j r_{a}, r_{a}\right]=r_{a}$. It is known (cf. [8]) that if we set $\omega_{a}:=\omega\left(r_{a}\right)=\left\langle r_{a}, r_{a}\right\rangle$, then

$$
\begin{equation*}
\omega_{a}=1+\frac{1}{2}\left(\sum_{b>a} n_{a b}+\sum_{b<a} n_{b a}\right)+\frac{1}{2} n_{a} . \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
r:=r_{1}+r_{2}+\cdots+r_{R} \in \mathscr{L} . \tag{2.6}
\end{equation*}
$$

The following is needed.
Lemma 2.1 (Pyatetskii-Shapiro [6]). If $1 \leq a<b<c \leq R+1, x, x^{\prime} \in \mathfrak{n}\left(2^{-1}\left(\varepsilon_{a}+\varepsilon_{b}\right)\right)$, $y, y^{\prime} \in \mathfrak{n}\left(2^{-1}\left(\varepsilon_{b}+\varepsilon_{c}\right)\right)$ with the convention $\varepsilon_{\boldsymbol{R}+1}=0$, then

$$
\left\langle[j x, y],\left[j x^{\prime}, y^{\prime}\right]\right\rangle+\left\langle\left[j x, y^{\prime}\right],\left[j x^{\prime}, y\right]\right\rangle=\frac{1}{\omega_{b}}\left\langle x, x^{\prime}\right\rangle\left\langle y, y^{\prime}\right\rangle .
$$

By the identification $g=T_{p} D$ the covariant derivative $\nabla_{x} y$ with respect to the Levi-Civita connection of the Bergman metric is well-defined as an element of \mathfrak{g} for all $x, y \in \mathfrak{g}$. It is given by

$$
\nabla_{x} y=\frac{1}{2}\left([x, y]-(\operatorname{ad} x)^{t} y-(\operatorname{ad} y)^{t} x\right)
$$

where $(\operatorname{ad} x)^{t}$ is the adjoint operator of ad x with respect to the inner product $\langle\cdot, \cdot\rangle$ in (2.2). For $x, y \in \mathscr{L}$ and $u, v \in \mathscr{U}$, we define

$$
\begin{gathered}
x y=-j \nabla_{x} y \in \mathscr{L}, \\
\varphi(x) u=-2 j \nabla_{x} u \in \mathscr{U}, \\
F(u, v)=\frac{1}{4}([j u, v]+i[u, v]) \in \mathscr{L} \otimes C .
\end{gathered}
$$

It is well-known ([4], [2]) that the quasi-symmetry of D in the sense of Satake [7] is equivalent to the property that $n_{a b}$ are constant for all a, b with $a<b$ and so are n_{a} for all a. We need the following lemma.

Lemma 2.2. Let $x_{a} \in \mathscr{L}$ and $u_{b} \in \mathscr{U}$. The following formulas hold:
(LL $\mid \mathrm{UU}) \quad R_{x_{1} \bar{u}_{2} x_{3} \bar{u}_{4}}=0$,
(LL|LU) $\quad R_{x_{1} \bar{x}_{2} x_{3} \bar{u}_{4}}=0$,
(LU|UU) $\quad R_{x_{1} \bar{u}_{2} u_{3} \bar{u}_{4}}=0$,
(UU|UU) $\quad R_{u_{1} \bar{u}_{2} u_{3} \bar{u}_{4}}=2\left(\left\langle F\left(u_{1}, u_{2}\right), F\left(u_{3}, u_{4}\right)\right\rangle+\left\langle F\left(u_{1}, u_{4}\right), F\left(u_{3}, u_{2}\right)\right\rangle\right)$.
Further, if D is quasi-symmetric, then
(LL|LL)

$$
R_{x_{1} \bar{x}_{2} x_{3} \bar{x}_{4}}=\frac{1}{4}\left(\left\langle x_{1} x_{2}, x_{3} x_{4}\right\rangle+\left\langle x_{1} x_{4}, x_{3} x_{2}\right\rangle-\left\langle x_{1} x_{3}, x_{2} x_{4}\right\rangle\right),
$$

(LU|LU)

$$
R_{x_{1} \bar{x}_{2} u_{3} \bar{u}_{4}}=\frac{1}{2}\left\langle F\left(\varphi\left(x_{2}\right) u_{3}, \varphi\left(x_{1}\right) u_{4}\right), r\right\rangle .
$$

Proof. The first three formulas are given in [1], and formula (UU|UU) in [1], [2]. Formula (LL|LL) follows from Lemma 4.6 and Theorem 2.7 in [2], and (LU|LU) from Lemma 4.7 as well as Theorem 3.7 and Lemma 3.6 in [2].

Since j is a complex structure on each subspace $\mathfrak{n}\left(2^{-1} \varepsilon_{k}\right)$, if we define

$$
\begin{equation*}
\sigma(u, v)=\langle u, v\rangle-i\langle j u, v\rangle, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(\xi+i \eta) u=\xi u+\eta j u \tag{2.8}
\end{equation*}
$$

for $u, v \in \mathscr{U}$ and $\xi, \eta \in \boldsymbol{R}$, then $\left(\mathfrak{n}\left(2^{-1} \varepsilon_{k}\right), \sigma\right)$ is a Hermitian linear space. For a subset $B \subset \mathfrak{n}\left(2^{-1} \varepsilon_{k}\right)$ with $B \cap j B=\varnothing$, we note that the following four statements are mutually equivalent:
(b1) B is an orthogonal basis with respect to σ normalized by $\sigma(u, u)=\omega_{k}$ for $u \in B$.
(b2) $B \cup j B$ is an orthogonal basis with respect to $\langle\cdot, \cdot\rangle$ normalized by $\langle u, u\rangle=\omega_{k}$ for $u \in B$.
(b3) $[j u, v]=\delta_{u v} r_{k},[u, v]=0$ for all $u, v \in B$.
(b4) $4 F(u, v)=\delta_{u v} r_{k}$ for all $u, v \in B$.
3. Curvature properties of the $\mathbf{2 6}$-dimensional quasi-symmetric domain. In this section we shall show the following.

Proposition 3.1. The Bergman metric of the homogeneous bounded domain of type $\mathrm{T}(8 ; 8,8)$ does not satisfy Condition H_{2} (see (0.1)). More presisely, if $\mathrm{g}=\mathscr{L}+j \mathscr{L}+\mathscr{U}$ with $\mathscr{L}=\mathfrak{n}\left(\varepsilon_{1}\right)+\mathfrak{n}\left(\varepsilon_{2}\right)+\mathfrak{n}\left(2^{-1}\left(\varepsilon_{1}+\varepsilon_{2}\right)\right)$ and $\mathscr{U}=\mathfrak{n}\left(2^{-1} \varepsilon_{1}\right)+\mathfrak{n}\left(2^{-1} \varepsilon_{2}\right)$ is the corresponding normal j-algebra, then the function $\rho^{[2]}(x, x, x, x) /\langle x, x\rangle^{2}$ is not constant on the space $\mathrm{n}\left(2^{-1} \varepsilon_{2}\right) \backslash\{0\}$.

Combining this with a theorem of Carpenter-Gray-Willmore [3] and a theorem of Geatti [5] (see the introduction) we obtain the following.

THEOREM 3.2.The Bergman metric g of a homogeneous bounded domain D satisfies Condition H_{2} if and only if D is biholomorphic to one of the following:
(1) the unit ball in C^{n},
(2) the 6-dimensional classical domain of type IV in Cartan's classification,
(3) the exceptional symmetric domain of dimension 16 ,
(4) the exceptional symmetric domain of dimension 27.

Consequently, there exists no non-symmetric homogeneous bounded domain whose Bergman metric satisfies Condition H_{2}.

To prove Proposition 3.1, we proceed as in the argument in the preceding sections,
and assume that D is of type $\mathrm{T}(8 ; 8,8)$. We first note that D is quasi-symmetric and that

$$
\begin{equation*}
\omega_{1}=\omega_{2}=9 \tag{3.1}
\end{equation*}
$$

(see (2.5)). Take $m_{1}, \ldots, m_{8} \in \mathfrak{n}\left(2^{-1}\left(\varepsilon_{1}+\varepsilon_{2}\right)\right)$ so that $\left\langle m_{a}, m_{b}\right\rangle=\delta_{a b} \omega_{1}$, or

$$
\begin{equation*}
\left[j m_{a}, m_{b}\right]=\delta_{a b} r_{1}, \tag{3.2}
\end{equation*}
$$

and take $v_{1}, \ldots, v_{8} \in \mathfrak{n}\left(2^{-1} \varepsilon_{2}\right)$ so that $\left\{v_{1}, \ldots, v_{8}, j v_{1}, \ldots, j v_{8}\right\}$ is an orthogonal basis of $\mathrm{n}\left(2^{-1} \varepsilon_{2}\right)$ with $\left[j v_{a}, v_{a}\right]=r_{2}$, or

$$
\begin{equation*}
4 F\left(v_{a}, v_{b}\right)=\delta_{a b} r_{2} . \tag{3.3}
\end{equation*}
$$

Consider the homomorphisms

$$
\begin{equation*}
\psi_{k}:=\sqrt{2} \operatorname{ad} j m_{k}=\sqrt{2} \varphi\left(m_{k}\right): \mathfrak{n}\left(2^{-1} \varepsilon_{2}\right) \rightarrow \mathfrak{n}\left(2^{-1} \varepsilon_{1}\right) . \tag{3.4}
\end{equation*}
$$

It follows from Lemma 2.1 that ψ_{k} are isometric isomorphisms commuting with j. Let

$$
\begin{equation*}
u_{a}=\psi_{1}\left(v_{a}\right), \quad a=1, \ldots, 8 . \tag{3.5}
\end{equation*}
$$

Then, $\left\{u_{1}, \ldots, u_{8}, j u_{1}, \ldots, j u_{8}\right\}$ is an orthogonal basis of $\mathfrak{n}\left(2^{-1} \varepsilon_{1}\right)$ with $\left[j u_{a}, u_{a}\right]=r_{1}$, or

$$
\begin{equation*}
4 F\left(u_{a}, u_{b}\right)=\delta_{a b} r_{1} . \tag{3.6}
\end{equation*}
$$

For $k=1, \ldots, 8$, we associate a complex 8×8 matrix $A_{k}=\left(\alpha_{k b}^{a}\right)_{a, b}$ so that

$$
\begin{equation*}
\sqrt{2} \varphi\left(m_{k}\right) v_{b}=\sum_{a=1}^{8} \alpha_{k b}^{a} u_{a} \quad \text { for } \quad b=1, \ldots, 8 \tag{3.7}
\end{equation*}
$$

where the scalar multiplication $\alpha_{k b}^{a} u_{a}$ is given by (2.8). In view of (3.1), Lemma 2.1 implies the following:

$$
\begin{equation*}
A_{1}=I_{8}, A_{k}^{*} A_{k}=I_{8}, \text { and } A_{k}^{*} A_{l}+A_{l}^{*} A_{k}=0 \quad(k \neq l) . \tag{3.8}
\end{equation*}
$$

It follows that $A_{k}^{*}=-A_{k}(k \geq 2), A_{k} A_{l}=-A_{l} A_{k}(k, l \geq 2, k \neq l), A_{k}^{2}=-I_{8}(k \geq 2)$. Since the eigenvalues of A_{2} are i and $-i, \boldsymbol{C}^{8}$ is a direct sum of two spaces S^{+}and S^{-}defined by $S^{ \pm}=\left\{v \in C^{8} ; A_{2} v= \pm i v\right\}$. Since $A_{2} A_{3}=-A_{3} A_{2}$, we have $A_{3} S^{+} \subset S^{-}, A_{3} S^{-} \subset S^{+}$; therefore, $\operatorname{dim} S^{+}=\operatorname{dim} S^{-}=4$. Take a unitary 8×8 matrix U so that

$$
U^{*} A_{2} U=\left[\begin{array}{cc}
i I_{4} & 0 \\
0 & -i I_{4}
\end{array}\right] .
$$

Let $k \geq 3$. Since $A_{2} A_{k}=-A_{k} A_{2}$ and $A_{k}^{*}=-A_{k}$, there exists a 4×4 matrix B_{k} such that

$$
U^{*} A_{k} U=\left[\begin{array}{cc}
0 & B_{k} \\
-B_{k}^{*} & 0
\end{array}\right]
$$

It follows from (3.8) that

$$
\begin{equation*}
B_{k}^{*} B_{k}=I_{4}(k \geq 3), \quad B_{k}^{*} B_{l}+B_{l}^{*} B_{k}=0 \quad(k, l \geq 3, k \neq l) . \tag{3.9}
\end{equation*}
$$

Take appropriate unitary 4×4 matrices V_{1}, V_{2} so that $V_{1}^{*} B_{3} V_{2}=I_{4}$. Taking

$$
U\left[\begin{array}{cc}
V_{1} & 0 \\
0 & V_{2}
\end{array}\right]
$$

instead of U in the argument mentioned above, we may assume that

$$
\begin{equation*}
B_{3}=I_{4} . \tag{3.9}
\end{equation*}
$$

Compare (3.9) ${ }_{1}$ and (3.9) $)_{2}$ with (3.8). The same argument as in finding B_{k} from A_{k} implies the existence of a unitary 4×4 matrix V such that

$$
V^{*} B_{4} V=\left[\begin{array}{cc}
i I_{2} & 0 \\
0 & -i I_{2}
\end{array}\right], \quad V^{*} B_{k} V=\left[\begin{array}{cc}
0 & C_{k} \\
-C_{k}^{*} & 0
\end{array}\right] \quad(k \geq 5),
$$

where C_{k} are 2×2 matrices with the properties

$$
C_{5}=I_{2}, \quad C_{k}^{*} C_{k}=I_{2} \quad(k \geq 5), \quad C_{k}^{*} C_{l}+C_{l}^{*} C_{k}=0 \quad(k, l \geq 5, k \neq l) .
$$

Similarly, there exists a unitary 2×2 matrix W such that

$$
W^{*} C_{6} W=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right], \quad W^{*} C_{k} W=\left[\begin{array}{cc}
0 & d_{k} \\
-\bar{d}_{k} & 0
\end{array}\right] \quad(k \geq 7),
$$

where $d_{k} \in \boldsymbol{C}$ with the properties $d_{7}=1,\left|d_{8}\right|=1, \bar{d}_{8}+d_{8}=0$. Taking $-m_{8}$ instead of m_{8} if necessary, we may assume that $d_{8}=i$. Setting

$$
T=U\left[\begin{array}{ll}
V & 0 \\
0 & V
\end{array}\right]\left[\begin{array}{cccc}
W & 0 & 0 & 0 \\
0 & W & 0 & 0 \\
0 & 0 & W & 0 \\
0 & 0 & 0 & W
\end{array}\right]
$$

and taking $\left(v_{1}, \ldots, v_{8}\right) T$ and $\left(u_{1}, \ldots, u_{8}\right) T$ instead of $\left(v_{1}, \ldots, v_{8}\right)$ and $\left(u_{1}, \ldots, u_{8}\right)$, respectively, we may finally assume the following:
$(3.10)_{1} \quad A_{1}=I_{8}, \quad A_{2}=\left[\begin{array}{cc}i I_{4} & 0 \\ 0 & -i I_{4}\end{array}\right], \quad A_{3}=\left[\begin{array}{cc}0 & I_{4} \\ -I_{4} & 0\end{array}\right], \quad A_{k}=\left[\begin{array}{cc}0 & B_{k} \\ B_{k} & 0\end{array}\right] \quad(k \geq 4)$,
where
$(3.10)_{2}$

$$
\begin{gathered}
B_{4}=\left[\begin{array}{cc}
i I_{2} & 0 \\
0 & -i I_{2}
\end{array}\right], \quad B_{5}=\left[\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right], \quad B_{6}=\left[\begin{array}{cccc}
0 & 0 & i & 0 \\
0 & 0 & 0 & -i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right], \\
B_{7}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right], \quad B_{8}=\left[\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

(cf. Geatti [5]). We note that $B:=\left\{r_{1}, r_{2}, m_{1}, \ldots, m_{8}, u_{1}, \ldots, u_{8}, v_{1}, \ldots, v_{8}\right\}$ is an orthogonal system of \mathfrak{g} normalized by $\langle b, b\rangle=\omega_{1}$ for $b \in B$ (see (3.1)) and that $B \cup j B$ is a basis of \mathfrak{g}. We list the relationships among elements in B (for details, see [1], [2]):

$$
\begin{gather*}
\varphi\left(r_{a}\right) u_{h}=\delta_{a 1} u_{h}, \quad \varphi\left(r_{a}\right) v_{k}=\delta_{a 2} v_{k}, \\
\varphi\left(m_{k}\right) u_{a}=\frac{1}{\sqrt{2}} \sum_{b=1}^{8} \bar{\alpha}_{k b}^{a} v_{b}, \quad \varphi\left(m_{k}\right) v_{b}=\frac{1}{\sqrt{2}} \sum_{a=1}^{8} \alpha_{k b}^{a} u_{a}, \tag{3.12}
\end{gather*}
$$

$$
\begin{equation*}
F\left(u_{a}, u_{b}\right)=\frac{1}{4} \delta_{a b} r_{1}, \quad F\left(v_{a}, v_{b}\right)=\frac{1}{4} \delta_{a b} r_{2}, \quad F\left(v_{a}, u_{c}\right)=\frac{1}{4 \sqrt{2}} \sum_{k=1}^{8} \alpha_{k a}^{c} m_{k} \tag{3.13}
\end{equation*}
$$

We shall show the following assertion:

$$
\rho^{[2]}\left(v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}\right)= \begin{cases}12, & \text { if }(s, t) \notin E \tag{3.14}\\ 14, & \text { if }(s, t) \in E\end{cases}
$$

where

$$
\begin{equation*}
E=\{(1,6),(6,1),(2,5),(5,2),(3,8),(8,3),(4,7),(7,4)\} . \tag{3.15}
\end{equation*}
$$

Assertion (3.14) proves Proposition 3.1. To show (3.14) we first note that

$$
\begin{align*}
& \rho_{i}\left(v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}\right)=\rho_{i}\left(v_{s}, v_{s}, v_{s}, v_{s}\right)+2 \rho_{i}\left(v_{t}, v_{s}, v_{s}, v_{s}\right) \tag{3.16}\\
& \quad+2 \rho_{i}\left(v_{s}, v_{t}, v_{s}, v_{s}\right)+2 \rho_{i}\left(v_{s}, v_{s}, v_{t}, v_{t}\right)+2 \rho_{i}\left(v_{s}, v_{t}, v_{t}, v_{s}\right)+\rho_{i}\left(v_{t}, v_{s}, v_{t}, v_{s}\right) \\
& \quad+\rho_{i}\left(v_{s}, v_{t}, v_{s}, v_{t}\right)+2 \rho_{i}\left(v_{t}, v_{s}, v_{t}, v_{t}\right)+2 \rho_{i}\left(v_{s}, v_{t}, v_{t}, v_{t}\right)+\rho_{i}\left(v_{t}, v_{t}, v_{t}, v_{t}\right)
\end{align*}
$$

for $i=1$, 2. Since the basis $B \cup j B$ is orthogonal and normalized by $\langle b, b\rangle=\omega_{1}, b \in B$, it follows from (1.8), (1.9) as well as (1.7), Lemma 2.2 and (3.11)-(3.13) that

$$
\begin{align*}
\rho_{1}\left(v_{a}, v_{b}, v_{c}, v_{d}\right)= & \frac{4}{\omega_{1}^{2}}\left(\sum_{p=q=r_{2}}+\sum_{p=m_{k}, q=m_{l}}+\sum_{p=u_{k}, q=u_{l}}+\sum_{p=v_{k}, q=v_{l}}\right) R_{v_{a} \bar{p}_{b} p \bar{q}} \bar{R}_{v_{d} \bar{v}_{c} p \bar{q}} \tag{3.17}\\
= & \frac{1}{16} \delta_{a b} \delta_{c d}+\frac{1}{64} \sum_{j, h} A_{a d}^{j h} \bar{A}_{b c}^{j h}+\frac{1}{64} \sum_{k, l} A_{a b}^{l k} \bar{A}_{d c}^{l k} \\
& +\frac{1}{16}\left(10 \delta_{a b} \delta_{c d}+\delta_{a d} \delta_{b c}\right), \\
\rho_{2}\left(v_{a}, v_{b}, v_{c}, v_{d}\right)= & \frac{4}{\omega_{1}^{2}}\left(\sum_{p=u_{k}, q=u_{l}}+\sum_{p=v_{k}, q=v_{l}}\right) R_{v_{a} \bar{p} v_{c} \bar{q}} \bar{R}_{v_{b} \overline{p_{v}} \bar{q} \bar{q}} \tag{3.18}\\
= & \frac{1}{64} \sum_{k, l}\left(B_{a c}^{k l}+B_{a c}^{l k}\left(B_{b d}^{k l}+B_{b d}^{l k}\right)^{-}+\frac{1}{8}\left(\delta_{a b} \delta_{c d}+\delta_{a d} \delta_{b c}\right),\right.
\end{align*}
$$

where

$$
A_{s t}^{j h}=\sum_{k=1}^{8} \alpha_{k s}^{j} \bar{\alpha}_{k t}^{h} \quad \text { and } \quad B_{s t}^{j h}=\sum_{k=1}^{8} \alpha_{k s}^{j} \alpha_{k t}^{h} .
$$

We note that
(3.19) ${ }_{1}$

$$
A_{s s}^{j h}=0 \quad \text { when } \quad j \neq h
$$

and that the matrix $\left(A_{s s}^{j j}\right)_{1 \leq j, s \leq 8}$ is given by

$$
\left(A_{s s}^{j j}\right)=2\left[\begin{array}{llll}
I & 0 & I & J \tag{3.19}\\
0 & I & J & I \\
I & J & I & 0 \\
J & I & 0 & I
\end{array}\right],
$$

where $I=I_{2}$ and J is the 2×2 matrix whose entries are all one, while

$$
\begin{equation*}
B_{s s}^{j h}=0 \quad \text { for all } j, h . \tag{3.20}
\end{equation*}
$$

Assume $(s, t) \in E$. Then

$$
\begin{equation*}
A_{s t}^{j h}=0 \quad \text { for all } j, h, \tag{3.21}
\end{equation*}
$$

and there exists a permutation τ of $\{1, \ldots, 8\}$ such that

$$
B_{s t}^{j h}=\left\{\begin{align*}
2, & (j, h)=\left(\tau_{1}, \tau_{2}\right) \text { or }\left(\tau_{3}, \tau_{4}\right) \tag{3.22}\\
-2, & (j, h)=\left(\tau_{5}, \tau_{6}\right) \text { or }\left(\tau_{7}, \tau_{8}\right) \\
0, & \text { otherwise } .
\end{align*}\right.
$$

Next assume $s \neq t$ and $(s, t) \notin E$. Then, there exists a permutation σ of $\{1, \ldots, 8\}$ such that

$$
A_{s t}^{j h}=\left\{\begin{align*}
\pm 2, & (j, h)=\left(\sigma_{1}, \sigma_{2}\right) \text { or }\left(\sigma_{3}, \sigma_{4}\right) \tag{3.23}\\
0, & \text { otherwise }
\end{align*}\right.
$$

and

$$
B_{s t}^{j h}=\left\{\begin{align*}
2, & (j, h)=\left(\sigma_{5}, \sigma_{6}\right) \tag{3.24}\\
-2, & (j, h)=\left(\sigma_{6}, \sigma_{5}\right) \\
0, & \text { otherwise } .
\end{align*}\right.
$$

Lemma 3.3. $\rho_{1}\left(v_{s}, v_{s}, v_{s}, v_{s}\right)=5 / 4$ and $\rho_{2}\left(v_{s}, v_{s}, v_{s}, v_{s}\right)=1 / 4$.
Proof. By (3.17) as well as (3.19) we have

$$
\rho_{1}\left(v_{s}, v_{s}, v_{s}, v_{s}\right)=\frac{1}{16}+\frac{2}{64} \sum_{j, h}\left|A_{s s}^{j h}\right|^{2}+\frac{11}{16}=\frac{5}{4} .
$$

By (3.18) as well as (3.20) we have

$$
\rho_{2}\left(v_{s}, v_{s}, v_{s}, v_{s}\right)=\frac{1}{16} \sum_{k, l}\left|B_{s s}^{k l}\right|^{2}+\frac{1}{4}=\frac{1}{4} .
$$

Lemma 3.4. If $s \neq t$, then $\rho_{i}\left(v_{t}, v_{s}, v_{s}, v_{s}\right)=0(i=1,2)$.
Proof. By (3.17) we have

$$
\rho_{1}\left(v_{t}, v_{s}, v_{s}, v_{s}\right)=\frac{2}{64} \sum_{j, h} A_{t s}^{j h} \bar{A}_{s s}^{j h}=0,
$$

because $A_{s s}^{j h}=0$ when $j \neq h$ (by (3.19)), and $A_{t s}^{j h}=0$ when $j=h$ (by (3.21) and (3.23)). By (3.18) as well as (3.20) we see

$$
\rho_{2}\left(v_{t}, v_{s}, v_{s}, v_{s}\right)=\frac{1}{64} \sum_{k, l}\left(B_{t s}^{k l}+B_{t s}^{k k}\right)\left(B_{s s}^{k l}+B_{s s}^{l k}\right)^{-}=0 .
$$

Lemma 3.5. If $s \neq t$, then $\rho_{1}\left(v_{s}, v_{s}, v_{t}, v_{t}\right)=15 / 16$ when $(s, t) \notin E$, and $=11 / 16$ when $(s, t) \in E$.

Proof. By (3.17) we have

$$
\rho_{1}\left(v_{s}, v_{s}, v_{t}, v_{t}\right)=\frac{11}{16}+\frac{1}{64} \sum_{j, h}\left|A_{s t}^{j h}\right|^{2}+\frac{1}{64} \sum_{k, l} A_{s s}^{l k} \bar{A}_{t t}^{l k} .
$$

It follows from (3.21) and (3.23) that

$$
\sum_{j, h}\left|A_{s t}^{j h}\right|^{2}= \begin{cases}8, & (s, t) \notin E \\ 0, & (s, t) \in E .\end{cases}
$$

It follows from (3.19) that

$$
\sum_{k, l} A_{s s}^{l k} \bar{A}_{t t}^{l k}=\sum_{k=1}^{8} A_{s s}^{k k} \bar{A}_{t t}^{k k}= \begin{cases}8, & (s, t) \notin E \\ 0, & (s, t) \in E .\end{cases}
$$

From these we have the formulas.
Lemma 3.6. If $s \neq t$, then $\rho_{1}\left(v_{s}, v_{t}, v_{t}, v_{s}\right)=5 / 16$ when $(s, t) \notin E$, and $=1 / 16$ when $(s, t) \in E$.

Proof. By (3.17) we have

$$
\rho_{1}\left(v_{s}, v_{t}, v_{t}, v_{s}\right)=\frac{1}{64} \sum_{j, h} A_{s s}^{j h} \bar{A}_{t t}^{j h}+\frac{1}{64} \sum_{k, l}\left|A_{s t}^{l k}\right|^{2}+\frac{1}{16} .
$$

The assertion follows from the equalities in the proof of Lemma 3.5.
Lemma 3.7. If $s \neq t$, then $\rho_{i}\left(v_{s}, v_{t}, v_{s}, v_{t}\right)=0(i=1,2)$.
Proof. By (3.17) as wall as (3.21) and (3.23) we have

$$
\rho_{1}\left(v_{s}, v_{t}, v_{s}, v_{t}\right)=\frac{2}{64} \sum_{j, h} A_{s t}^{j h} \bar{A}_{t s}^{j h}=\frac{1}{32} \sum_{j, h} A_{s t}^{j h} A_{s t}^{h j}=0 .
$$

By (3.18) as wall as (3.20) we see

$$
\rho_{2}\left(v_{s}, v_{t}, v_{s}, v_{t}\right)=\frac{4}{64} \sum_{k, l} B_{s s}^{k l} \bar{B}_{t t}^{k l}=0 .
$$

Lemma 3.8. If $s \neq t$, then $\rho_{2}\left(v_{s}, v_{s}, v_{t}, v_{t}\right)=\rho_{2}\left(v_{s}, v_{t}, v_{t}, v_{s}\right)$ and the value is $1 / 8$ when $(s, t) \notin E$, while is $5 / 8$ when $(s, t) \in E$.

Proof. It follows from (3.18) that

$$
\rho_{2}\left(v_{s}, v_{s}, v_{t}, v_{t}\right)=\rho_{2}\left(v_{s}, v_{t}, v_{t}, v_{s}\right)=\frac{1}{64} \sum_{k, l}\left|B_{s t}^{k l}+B_{s t}^{l k}\right|^{2}+\frac{1}{8} .
$$

If $(s, t) \in E$ then by (3.22) we have

$$
\sum_{k, l}\left|B_{s t}^{k l}+B_{s t}^{l k}\right|^{2}=2^{2} \times 8 ;
$$

while if ($s, t) \notin E$ then by (3.24) we have

$$
\sum_{k, l}\left|B_{s t}^{k l}+B_{s t}^{k t}\right|^{2}=0 .
$$

Proof of Proposition 3.1. We shall show (3.14). First assume $(s, t) \notin E$. It follows from (3.16) as well as Lemmas 3.3-3.8 that

$$
\rho_{1}\left(v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}\right)=\frac{5}{4}+0+0+2 \times \frac{15}{16}+2 \times \frac{5}{16}+0+0+0+0+\frac{5}{4}=5,
$$

and that

$$
\rho_{2}\left(v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}\right)=\frac{1}{4}+0+0+2 \times \frac{1}{8}+2 \times \frac{1}{8}+0+0+0+0+\frac{1}{4}=1 .
$$

Thus $\rho^{[2]}\left(v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}, v_{s}+v_{t}\right)=12$. Similarly, if $(s, t) \in E$, then $\rho^{[2]}\left(v_{s}+v_{t}, v_{s}+v_{t}\right.$, $\left.v_{s}+v_{t}, v_{s}+v_{t}\right)=14$, as desired.

References

[1] K. AzUKawa, Curvature operator of the Bergman metric on a homogeneous bounded domain, Tôhoku Math. J. 37 (1985), 197-223.
[2] K. AzuKawa, Criteria for quasi-symmetricity and the holomorphic sectional curvature of a homogeneous bounded domain, Tôhoku Math. J. 41 (1989), 489-506.
[3] P. Carpenter, A. Gray and T. J. Willmore, The curvature of Einstein spaces, Quart. J. Math. Oxford 33 (1982), 45-64.
[4] J. E. D’Atri and I. D. Miatello, A characterization of bounded symmetric domains by curvature, Trans. Amer. Math. Soc. 276 (1983), 531-540.
[5] L. Geatti, On the curvature of homogeneous Kähler metrics of bounded domains, Ann. Math. Pura Appl. 154 (1989), 341-357.
[6] I. I. Pyatetskii-Shapiro, Automorphic Functions and the Geometry of Classical Domains, Gordon and Breach, New York, 1969.
[7] I. Satake, On classification of quasi-symmetric domains, Nagoya Math. J. 62 (1976), 1-12.
[8] M. Takeuchi, Homogeneous Siegel Domains, Publications of the Study Group of Geometry, Vol. 7, Tokyo, 1973.

Department of Mathematics
Toyama University
Gofuku, Toyama 930
Japan

