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POINCARE SERIES FOR DISCRETE MOEBIUS GROUPS
ACTING ON THE UPPER HALF SPACE

KATSUMI INOUE
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Abstract. Consider the Poincare series of order t for a discrete Moebius group
acting on the ̂ -dimensional upper half-space. If the point at infinity is a horocyclic limit
point or a Garnett point, then the series diverges for any positive number t. If the point
at infinity is an ordinary point or a cusped parabolic fixed point, then the series converges
for any / which is greater than n—\. If the point at infinity is an atom for the
Patterson-Sullivan measure, then the series converges for any t which is equal to or
greater than the critical exponent of the group.

1. Discrete Moebius groups. Let Rn and Rn be the ̂ -dimensional Euclidean space

and its one-point compactification, respectively. We use the notation χ = (χί, . . . , xn)e

Rn and when matrices act on x, we treat x as a column vector. The subspace

Hn = {x e Rn I xn > 0} of Rn is a model for the hyperbolic w-space and supports a metric

p derived from the differential dρ = \dx\/dxn. We call Hn the ^-dimensional upper

half-space.

The (full) Moebius group M(Rn) is the group of Moebius transformations of Rn,

which is generated by inversions in spheres and reflections in planes. Moebius

transformations are classified into three conjugacy classes in M(Rn) as follows. An

element in M(Rn) is said to be loxodromic if it is conjugate to a transformation of the

form

(1.1) γ(x) = λTx,

where λ>0, λ^\, and TeO(n), the group of n x w-orthogonal matrices, and parabolic

if it is conjugate to a transformation of the form

(1.2) y(x)=Tx + a,

where TeO(n), aeR" and Ta = a^0. A non-trivial element is said to be elliptic if it is

neither loxodromic nor parabolic.

By γ'(x) we denote the Jacobian matrix of yeM(Rn) at xeR". For yeM(Rn) the

chain rule implies that γf(x) can be written as γ'(x) = vT(x) with v>0 and TeO{ή). We

denote by |y'(jc)| this positive number v and call it the linear magnification of γ at x.

For γ e M(R") with y( oo) ̂  oo the set I(y) = {xeRn\\y '(x) | = 1} is an (n -1 )-sphere with

center y ^ o o ) . The sphere I(y) is called the isometric sphere of y. The action of y on
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Rn is the composite of an inversion in /(y), followed by a Euclidean isometry. For xeRn

we denote by x* the image of the inversion of x in the unit sphere centered at the origin.

Let γeM(Rn) be an arbitrary element which does not fix oo. Then y can be written

uniquely in the form

(1.3) γ(x) = λT(x-a)* + b,

where λ>0, TeO(n) and a, beR". In this expression λ1/2 is the radius of the isometric

sphere /(y) of y and a = y~ί(cc) (resp. b = y(oo)) is the center of I(y) (resp. /(y" 1)). If

yeM(Rn) fixes oo, then y is written uniquely as a similarity of the form

(1.4) y(x) = λTx + a,

where λ > 0, Te O(n) and a e Rn.

Denote by M(Hn) the subgroup of M(Rn) which keeps the subspace Hn of Rn

invariant. Let Γ be a discrete subgroup of M(Hn). A point ξeRnl = dHn, the boundary

of Hn, is a limit point for Γ if there exist an infinite sequence of ym e Γ and a point

XGC1(//Π), the closure of Hn

9 such that ym(x)-><i; as ra->oo. The set of all limit points

for Γ is the limit set Λ(Γ). The set Ω(Γ) = c\(Hn) - Λ(Γ) is called the region of discontinu-

ity of Γ.

Points of the boundary dHn = R"~1 are classified into three kinds of subsets as

follows. A point ξeR"'1 is a horocyclic limit point for Γ if for every xeHn there

exist a sequence {ym} c Γ and an element /z e M(Hn) such that Λ(ξ) = oo and

τ{hymh~1(x)}-^co as m-+co, where τ(>>) is the n-th coordinate of yeHn. The set of

horocyclic limit points for Γ is called the horocyclic limits set H(Γ). The horocyclic

limit set H(Γ) contains every loxodromic fixed point of Γ. A point ξeRn~1 is a Dirichlet

point for Γ if for every xeHn there exist elements yoεΓ and heM(Hn) such that

h(ξ)=oo and τ(hyoh~1(x))^τ(hyh~1(x)) for every yeΓ. The set of Dirichlet points for

Γ is denoted by D(Γ) and is said to be the Dirichlet set for Γ. We say a point ξ e Rn~x

to be a Garnett point for Γ if there exist x e Hn, a sequence {ym} c f , a transformation

heM(Hn) and a positive number r such that h(ξ) = oo, τ(hyh~1(x))<r for all yeΓ and

τ(AyOTΛ~1(Λ:))tr as ra->oo. The set of Garnett points for Γ is denote by β(Γ). These

three subsets H(Γ), D(Γ) and Q(Γ) are invariant under the action of Γ. Note that

the boundary dHn = Rn~1 can be written in the disjoint union as Rn~1 =

H(Γ)uD(Γ)uQ(Γ).

2. Cusped parabolic fixed points. Let Γ be a discrete subgroup of M(Hn). For

xec\(Hn), the subgroup Γx={yeΓ\y(x) = x} of Γ is called the stabilizer of x. Suppose

that Γ' is a subgroup of Γ. Then a subset X of cl(//π) is said to be precisely invariant

under Γf in Γ, if y(X) = ̂ f b r all yeΓ' and y(X)nX=0 for all yeΓ-Γ'. A parabolic

fixed point ξeR"1 of Γ is called a cusped parabolic fixed point of Γ if either

(1) Γξ has rank n — 1 (in this case the quotient space [Rn~ * — {^}]/Γξ is compact.),

or
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(2) there exist heM{Hn) and d>0 such that h(ξ)=oo and h~1lRn~ί-{Rkx
Bn~k~ι{d)}~\ is precisely invariant under Γξ in Γ, where k (\^k^n — 2) is the rank
of Γξ and Bn-k-\d) = {xeR"-k-1 \ \x\<d). (in this case ίRr^τ-{ξU/Γξ is not com-
pact.)

Examples of non-cusped parabolic fixed points are known. See Apanasov [2] and
Oh take [6]. Denote by C(Γ) the set of cusped parabolic fixed points of Γ.

First of all we prove the following:

LEMMA 1. Suppose that Γ is a non-elementary discrete subgroup of M{Hn) and oo
is a cusped parabolic fixed point of Γ. Then there exists a compact set K<^Rnl <=dHn

such that if an element yeΓ does not fix oo then h1yh2(oo)eK and (h1yh2)~1(oo)eK
for some Al5 h2eΓco.

PROOF. Let y be an arbitrary element in Γ — Γ^. Then y can be written uniquely
in the form y(x) = λT(x-a)* + b, where λ>0, TeO(ή) and a,beRn~1.

First we deal with the case where Γ^ has rank n—\. Since T^ acts on Rn~ι, there
exists a compact fundamental set Kfor Γ^ in Rn~*. We can choose elements Al9 A2 eΓ^
so that h^ia), h2(b)eK. Put hi(x)=Uix + ci for /= 1, 2. Then by simple calculation we
see(h2yhι)(x)=U2{λT(Uix + c1-a)* + b} +c2 = λU2TUi(x-U;ίa+U;1c1)* +U2b +
c2 = λU2TUί(x-hϊ1(a))* + h2(b). Note {h2yh1\^) = h2{b)eK, {h2yhιy\oz) = hϊ\a)e
K and we have the required result.

Next we suppose that the rank of Γ^ is at most n — 2. Conjugating Γ by a suitable
transformation in M(Hn), we may assume that R"'1 — {Rk x Bn~k~1(d)} is precisely
invariant under Γ^ in Γ for some d>0. We can choose a compact set S in Rk so that

is a "compact subset of Λ""1 and \jheΓJι{K)zDRk x Bn~k~\d). Since y±1(oo)e
Λ(Γ)- {oo} a Rk x Bn~k~ \d), we deduce that y~1(oo) = a and y(oo) = b belong to i?Λ x
Bn~k~1(d). Thus we can choose Al5 h2eΓo0 so that Aj"1^), h2(b)eK. By an argument
similar to that in the former case we have the required result. q.e.d.

For t>0 define a subset Ht of Hn by Ht = {xeHn\τ(x)>ή. We denote by Λy the
radius of isometric sphere of yeΓ — Γ^. Suppose that oo is a cusped parabolic fixed
point of Γ. If Γ^ has rank n—\, then Γ^ contains a free abelian normal subgroup of
rank n—\. So Γ^ contains a translation. Hence the set R(Γ) = {Ry\γeΓ — Γao} has a
positive finite supremum r. Note that any element of Γ^ keeps Ht invariant for any
/>0. Hence the set Hr is precisely invariant under Γ^ in Γ. (See Ohtake [6, Corollary
1] or Wielenberg [9, Proposition 4].) If the rank of Γ^ is less than n—l, then there
exist d>0 such that Rn~1-{Rkx Bn~k~ί(d)} is precisely invariant under Γ^ in Γ. We
easily see that for any yeΓ — Γ^ the center of isometric sphere I(y) of γ is contained
in Rk x Bn~k~\d). If sup R(Γ) = oo, then RkxBn~k~1(s) is not precisely invariant under
Γ^ in Γ for any s>0. So sup R(Γ) is positive finite. Take an arbitrary />supi?(Γ).
Then Ht is precisely invariant under Γ^ in Γ. Hence we have the following:
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LEMMA 2. Suppose that oo is a cusped parabolic fixed point of a discrete subgroup

Γ of M(Hn). Then there exists a positive constant t such that the subspace Ht of Hn is

precisely invariant under Γ^ in Γ.

By using Lemma 1 and Lemma 2, we show the next result which is announced in

Nicholls [4] without proof.

THEOREM 3. If Γ is a discrete subgroup of M(Hn\ then C(Γ)aD(Γ).

PROOF. Assume the contrary. Let ξeRn~ι be a cusped parabolic fixed point of

Γ. Conjugating Γ by an element of M(Hn), we may set ξ = oo. Note that Rn~1=dHn

is decomposed into a disjoint union as Rn~ι =H(Γ)UD(Γ)\JQ(Γ). Assume that oo is

a horocyclic limit point for Γ. Then for any point xeHn there exists a sequence {ym}

of Γ such that τ(ym(x))t oo as m-+oo. Since ymeM(Hn) and ym(oo)^oo, we may put

ym(x) = λmTm(x-amr + bm, where λm>0, Tme0(n) and am, ί ^ Λ " " 1 ^dH"^Tn for all

m. Then by elementary calculation we have

(2.1) τ(ym(x)) = λmτ(x)/\x~am\2 .

Note that the denominators on the right hand side of (2.1) are bounded away from

zero. Hence we see Am->oo as ra->oo. It contradicts Lemma 2, so we have oo φH(Γ).

Next we assume ooeβ(Γ). Then there exist XGH", r>0 and {ym}c=Γ — Γ^ such that

τ(γ(x))<r for all γeΓ and τ(ym(x))tr as ra->oo. If sup{|αm | | m= 1, 2 , . . . } = oo,

then sup{Am | ra = 1, 2,...} = oo and it contradicts Lemma 2. Hence there exists a com-

pact set Kι<^Rn~1 so that ameK1 for every m. Now from the proof of Lemma 1

there exist a compact set K2<^Rnl and a sequence {h^czΓ^ so that (/zmym)(co) =

hm(bm)eK2 for every m. Note that (hmym)~1(oo) = ameK1 for every w. Put K=K1uK2.

Then we have (Amym)±1(oo)eA' for every w. Noting Rhmyrn = Rγm> w e c a n P u t

( ^ 7 J W = ^ ^ ( ^ - O * + ̂  where am,βmeK and £/meO(n) for every m. So if

{hmym} contains infinitely many distinct elements, there exist a subsequence {hm.ymj} of

{hmym}> λ>O,a,βeKand UeO(n) such that {hmjymjXx)->λU(x-aί)* + β as j - o o . It

contradicts the discreteness of Γ. So it suffices to show that {/zmym} contains a sub-

sequence consisting of infinitely many distinct elements. Assume the contrary. Then

there exists {gj\j=l, ...9k} = Γ'czΓ so that hmymeΓ' for all m. Hence we have

hmym = gj for some j and for infinitely many m. It follows that τ(ym(x)) = τ(h~1gj(x))

is constant for infinitely many m. It cannot occur. Hence we have coeD(Γ). q.e.d.

3. Atoms for the Patterson-Sullivan measure. In this section we summarize some
properties of the Patterson-Sullivan measure. For definitions and details see Nicholls
[5] and Patterson [8].

Let Γ be a discrete subgroup of M(Hn). For x,yeHn and />0, consider the series

of the form
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(3.1) g{t, x,y)=Σ exP{-tp{x9 y(y))}
γeΓ

The critical exponent δ = δ(Γ) of Γ is defined by δ = inf{t>θ\g(t, x, y)<oo}. It is
well-known that the divergence or convergence of g(t, x, y) does not depend on x, y and
δ^n-l.

For XGH" let Mx be the collection of positive finite measures on c\(Hn) with the
base point x. Here each μxeMx is obtained by weak convergence of sequences of
measures derived from the series (3.1) and is said to be the Patterson-Sullivan measure
with the base point x. We summarize the properties of this measure in the following.
Any measure μx belonging to Mx satisfies

(3.2) μx is supported on the limit set Λ(Γ).

(3.3) For any x, zeHn, μx and μz are absolutely continuous with respect to each other
and the Radon-Nikodym derivative is {dμx/dμz}(ζ) = {P(x, ζ)/P(z, ζ)}δ, where
ζ E dHn and P(x, ζ) is the Poisson kernel on Hn.

(3.4) For any Borel set E of c\(Hn) and any yeΓ, we have μx(y~1(E)) = μγ(x)(E).

A point ξeRn~ι is said to be an atom for μxeMx if μx(ξ)>0. The set of atoms
is denoted by

(3.5) A(Γ) = {ξeRn-1\μx(ξ)>0 for some μxeMx and some xeH"}.

It is known that A(Γ) a D(Γ) n Λ(Γ) and A(Γ)nC(Γ) = 0. (See Bowditch [3] and
Nicholls [5].) It is obvious Ω(Γ)nRn~1cD(Γ). So we deduce from Theorem 3 and
(3.4) the following:

PROPOSITION 4. Let Γ be a discrete subgroup of M(Hn). Then the three sets
Ω(Γ)nRn~\ C(Γ) and A(Γ) are disjoint, invariant subsets of D(Γ) under Γ.

It is not known whether the set D(Γ) - [{Ω(Γ) n Rn~ *} u C(Γ) u A(Γ)~] is empty or
not.

4. Poincare series. For γ e M(Hn) we calculate the linear magnification | y'(x) |
of y. If y(oo)= oo, then y is a similarity of the form (1.4) and we easily see | y'(x) | = λ.
If 7(00)^00, then chain rule implies \y'(x)\ = λ/\x — a\2 from (1.3). Hence (2.1) implies
the following:

LEMMA 5. For y eM(Hn) and xεHn we have τ(y(x)) = τ(x)\ y'(x) \.

Let Γ be a non-elementary discrete subgroup of M(Hn) with the critical exponent
δ. Suppose that 00 is not fixed by any loxodromic element of JΓ. We denote by »S a
system of left coset representatives of Γ^Γ. For xeH" and />0, we consider the
Poincare series of the form
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(4.1) β(*,ί)=Σl/(*)Γ
γeS

Since Γ^ does not contain loxodromic transformations, we see |A'(JC)| = 1 for every

heΓ^ and every xeHn. So for every yeΓ and heΓ^ chain rule implies

\(hy)\x) I = I h'(y{x)) \ \ y\x) \ = \ y'(χ) | for every xeHn. Hence we have the following:

LEMMA 6. Let Γ be a non-elementary discrete subgroup of M{Hn). Suppose that
Γoo does not contain loxodromic elements ofΓ. Then the value of the series (4.1) does not
depend on the choice of coset representatives.

Next we suppose that Γ^ contains a loxodromic element h. We may assume that

oo is an attractive fixed point of h. So h can be written in the form h(x) = λTx + oc, where

λ> 1, Te O(n) and oceRn~ι. Since | h\x) \ = λϊor any xeH\ we see | (hmy)'(x) \ = λm\ y\x) \

for any yeS and any integer m. So it follows that \ (hmy)'(x)\->co (resp. 0) as ra->oo

(resp. — oo). Note that hmy and y belong to the same coset. Hence we conclude that

the value of Θ(x, i) may be finite or infinite according to the choice of a system of coset

representatives. From now on we consider the series Θ(x, t) only in the case where Γ^

does not contain loxodromic transformations.

The purpose of this section is to prove the following theorem.

THEOREM 7. Let Γ be a non-elementary discrete subgroup of M{Hn). Suppose that

oo is not fixed by loxodromic elements of Γ. Then the following hold:

(1) // oo G H(Γ\ then Θ(x, t) = oo for all xeHn and all t > 0.

(2) // oo e Q(Γ\ then <9(x, 0 = oo for all xeHn and all t > 0.

(3) // oo eΩ(Γ)u C(Γ), then Θ(x, t)<oo for all xeHn and all t>n-\.

(4) //OOG A(Γ), then Θ(x, t)<oo for all xeHn and all t^δ.

PROOF. First we show (1). By the definition of horocyclic limit points, there exists

a sequence {ym} of Γ such that τ(ym(x)) | oo as ra->oo for all JCe Hn. Any yeΓ^is written

uniquely in the form

(4.2) y(x)=Tx + a,

where Te 0{ή) and ae Rn~λ c dHn. Since | y'm{x) \ = τ(ym(x))/τ(x) from Lemma 5, we get

y'm(x) I ΐ oo as m-+co. Assume that for some j , k (j<k), yj and yk belong to the same

coset. Then we have yj = hyk for some heΓ^. So we have \y'j(x)\ = \(hyky(x)\ = \yk(x)\

by (4.2). It contradicts the definition of horocyclic limit points. Hence any two elements

of {ym} belong to distinct cosets. So it follows that Θ(x, 0 ^ Σ m = i I VmW Γ = °° f° r a ^

xeH" and t > 0 and we have the required result.

Next we deal with (2). Since oo eβ(Γ) , by Lemma 5 there exist yeHn, α > 0 and

{ym}ciΓ such that I ym(ĵ ) I T α a s w->oo and | / 0 > ) | < α for all yeΓ. Since Γ^ cannot

contain loxodromic elements, we may assume that any element ym can be written in the

form ym(x) = λmTm(x — arn)* + bm. Let x be an arbitrary point in Hn. Since

\y~am\2l\χ — am\2i there exists a positive constant c such that
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Iϊm(x)I/I y'm(y)\>c for all m. By an argument similar to that in the case oo e//(Γ), we

see that any two elements of {ym} belong to distinct consets. Hence we have

θ(x, t)^Σ2=i\ y'rnM Γ ^ Σ m = 11 y'miy) I' = oo for all x e H \ all / > 0 and we prove (2).

Suppose that oo is a cusped parabolic fixed point of Γ. Take and fix an arbitrary

point x0 e Hn. Hence we put S={ym}. Now we show the following. By taking a suitable

system of coset representatives S' = {ηm}, we see that there exist a compact set KaR"'1

and β>0 so that ηm(B(x0, oc))aKx (0, β) for all m and a sufficiently small α > 0 , where

B{x0, 0L) = {yeHn\ p(x0, y) < α} and (0, β) is an open interval.

Suppose that Γ^ has rank n—\. Let T be a compact fundamental set for Γ^ on

R"'1. Then for each m there exist hmeΓ'„ and β o > 0 such that hmym{x0)sTx (0, β0).

By putting ηm = hmγm we easily see that S' = {ηm} is a system of coset representatives of

Γ^XΓ. Hence for a sufficiently small α > 0 there exist a compact set K (=> T) in Rn and

β ( > β0) so that ηm(B(x0, oc))czKx (0, β) for all m. If A:, the rank of Γ^, is less than

n— 1, there exists ί/>0 so that Z?""1 —{Λ f cx^π"k"1(ί/)} is precisely invariant under

Γ^ in Γ. Note that the Euclidean distance between the plane Rk x {(0,..., 0)} in Rn

and ym(x0) remains bounded for every m. Since the quotient of Rk by the restricted

action of Γ^ is compact, there exist ^ e Γ ^ , j? 0 >0 and a compact fundamental

set T for Γ^ on /?* so that hmγm(x0)e TxBn-k~1(β1) x (0, β0) for some jS^O and

every m. Put ηm = hmγm. Hence for sufficiently small α > 0 there exist a compact set K

(^>TxBn~k~1(βι)) in R"'1 and a positive number β (>)81) so that ηm(B(x0, α))c

Here we put Bm = ηm(B(x0, α)). We may set ^m(x) = λ m Γ m ( x - Λ j * + *m I f ^o is not

fixed by any non-trivial element of Γ, then for a sufficiently small α > 0, {Bm} is the set

of disjoint balls. But if x0 is fixed by an elliptic element of order p, then all Bm overlap

p times. Take a positive number TV and consider the integral

m = l j J β ]

< * •

Then there exists a positive constant c1 which depends only on x0 and Γ such that

(4.4)

Note that if / — n> — 1, then the right hand side of (4.4) converges to a positive num-

ber M which does not depends on N. In each integral of (4.3), we make the change

of variable x = ηm(y). By simple calculation and Lemma 5, we see

λj\y — am\2 = τ(x)/τ(y) for every m. Using this equality we get from (4.3)

(4.5) = Σ f f
m=lj JB(xo,a)

where y = (yί9.. ,,yn). Since \η'm(y)\/\η'm(xo)\ = \xo-an\
2l\y-am\2, then for every m

there exists a positive number c2 which depends on JC0, α and Γ such that
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lί»(.P)l/l»/»(*o)l^2 for all yeB(x0, α). From (4.5) it follows that

(4.6) I^c2 Σ I η'Jxo)I* Γ— Γ W ~ " ^ i " ' " ^ = c* Σ I »/«(*o) I'>

where c3 is a positive constant which does not depend on N. Hence by (4.3), (4.4) and
(4.6) we have

(4.7) Σ \ηf

m(x0)\t^M/c3,
m = l

for t>n—\. Note that the right hand side of (4.7) does not depend on N. Since x0 is
an arbitrary point in //", we get

(4.8) Σ k«wr<oo

for every xeH" and t>n— 1. Since τ/m and ym belong to the same coset Γ00^m, we have
I η'm(x) I = I y'mix) I f o r every m. Hence we get Θ(x, t) = Σ y e S I VmW Γ< °° for every I G F
and t>n-\ if OOGC(Γ).

Next suppose that oo is an ordinary point. For any x0 e Hn and any m there exist
positive numbers α, β and a compact set Â  in R"'1 such that ym(2?(.x0, α))c^x(0, β).
By an argument similar to that in the case oo e C(Γ), it follows that Θ(x, t)<co for
every xεH" and t>n— 1, and the statement (3) is proved.

Finally we show (4). Suppose that oo is an atom for a measure μxeMx. It suffices
to show Θ(x, (5)<oo for every xeHn. Note that for γh JJES we have yf H 0 0 ) ^ / ^
if and only if i =j. Hence by (3.4) we get
μx(c\(Hn))<oo. By (3.3) we see

(4.9) Σ/
yeS

Note that the Poisson kernel P(x, oo) for the upper half-space is given by P(x, oo) = τ(x)
for all xeHn. Since oo is an atom for μx, the value μx(oo) is positive finite. Put c = μx(co).
Then the right hand side of (4.9) is cΣγeSlτ(γ(x))/τ(x)f = cΣγeS\γ'(x)\δ by Lemma 5.
Therefore we get Θ(x, <5) = £ s |y(jc) \δ< oo and this is the required result. q.e.d.

5. Radii of isometric spheres. In this last section we describe a property of radii
of the isometric spheres of discrete groups.

Let Γ be a discrete subgroup of M(Hn) and Γ' a subgroup of Γ. We say that
elements yί5 y, eΓ are equivalent with respect to Γ' if there exist hu h2eΓ' such that
yί = hιyjh2.

For a non-elementary discrete subgroup Γ of M(Hn), let {ym} be an enumeration
of Γ — Γ^. For each w we denote by Rm the radius of the isometric sphere 7(ym) of ym.
It is well-known that liminfm^ooi?m = 0. We show the following:
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THEOREM 8. Let Γbe a non-elementary discrete subgroup of M{Hn). Then the

following holds:

(1) If oo eH(Γ) then l i m s u p ^ ^ i ^ ^ o o .

(2) If co e Q(Γ) then lim supm^ ^ > 0.

(4) If oo G C ( Γ ) then for any subsequence {ymj}, which consists of inequivalent

elements of {ym} with respect to Γ^, it follows that \imj^aC)Rm. = 0.

PROOF. Foreachm let ymeΓ — Γa0 be of the form ym(x) = λmTm(x — am)* + bm. Since

\7m(x)\ = KJ\x-<*m\2> w e s e e Rm = W2 = \ym(x)\1/2\x-<*m\ for all XEH". Note that am

belongs to Rn~1 (<^dIΓ) for every m. Then there exists a positive number c which

depend on x and Γ such that \x — am\>c for all m. Hence the statements (1), (2) are

immediate consequences of definitions of horocyclic limit points and Garnett points.

Now we show (3). Since oo is an ordinary point, there exist a compact set Wa Rn~ι

and a positive integer TV such that y^1(oo)e W for all m^N. Assume that there exists

a subsequence {ymj} of {ym} such that \imj^aDRm. = oί. If α = oo, then there exists a point

xeHn such that γmj(x)-+oo asy->oo. This means that oo is a limit point, a contradiction.

Next we consider the case where α is positive finite. By taking a subsequence {ymj}, if

necessary, we have {hmjymβm)~\cQ)-+ζe W, (hm.ym.gmj)(co)^>ηe W and Tm.^TsO(n)

asy->oo. It follows that (hm.ym.gmj)(x)^κx2T(x-ζ)* + ξ asy-κχ) for all xeHn. Then Γ

is not discrete, a contradiction. Hence we have α = 0.

Finally we deal with (4). Assume that there exists a subsequence {ym} of {ym} so

that \imj^aDRm. = R>0. Since oo eC(Γ), there exists d>0 such that the subspace Hd is

precisely invariant under Γ^ in Γ by Lemma 2. So R is positive finite. Then by Lemma

1 there exist a compact set Kin Rn~x and hmp gm.eΓ(X) such that (hmjym.gmj)
±1(oo)eK

for every j . By an argument similar to that in (3), we have a contradiction. Hence the

statement (4) is proved. q.e.d.
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