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POLYNOMIAL REPRESENTATIONS OF KNOTS*
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Abstract. In this paper, we show that every 1-dimensional knot-type in the
three-dimensional Euclidean space has polynomial representations. We also write down
specific polynomial expressions for the trefoil knot and the figure eight knot. This result
strengthens a conjecture of Abhyankar, that there exist non-rectifiable polynomial
embeddings of the complex line in the three-dimensional complex affine space.

1. Introduction. In 1977, at a Kyoto conference, Abhyankar [1] conjectured
that there exist polynomial embeddings of the affine line A1 in A3, which are in-
equivalent under the polynomial automorphisms of A3. If our field k is algebraically
closed, then this is equivalent to saying that there exist ring-theoretic epimorphisms
α, β: k[x, y, z]-•/:[/] such that for no automorphism φ of k[x, y,z\ we have α o φ = β.
In support of this conjecture, Abhyankar further conjectured that the embeddings
θ(m, n, I) given by

m, tn, tι + t)

where the natural number ra,«, / are such that none of them belongs to the additive
semigroup generated by the other two are not equivalent to the standard embedding:

*!->(*, 0,0),

i.e., θ(m, n, I) are non-rectifiable.

Subsequently, several authors have shown that, this latter conjecture is somewhat
far-fetched! (For relevant literature, see [2], [3], [4], and [6].) To be precise, for
instance, Creighero [3] showed that the embedding θ(m, n,l) is indeed equivalent to
the standard embedding. Perhaps, after presenting a proof of the now famous
EPIMORPHISM THEOREM, it was quite natural for Abhyankar to make the above
conjecture, since the main step in the proof of this theorem is that if JCI—•/(£), y*->g(t)
defines an epimorphism of k[x, >>] onto k[f\, then deg/divides degg or deg# divides
deg /. (Here, ch(λ ) = 0). However, a more important aspect of the results of these authors
is that they obtain plausible candidates for non-tame automorphisms of A3.

To bring in the topological point of view, let us from now on assume that the field
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is either R or C. It is not very difficult to see that θ(m, n, I) over R defines a trivial
knot. Thus one is not very much surprised that they are actually equivalent to the
standard embedding, even in this strong (algebraic) sense. If we are looking for
embeddings which are not rectifiable, then why not take an embedding θ over C which
is defined over R, and which defines a nontrivial knot? To be precise, we are led to the
following questions:
Q. 1 Are there any real polynomial functions

representing a nontrivial knot and defining an embedding of C in C3?

Q.2 Does every knot have a real polynomial representation

which defines an embedding of C in C3?
Here, we are going to answer Q.2 in the affirmative. So, Q.I becomes redundant

anyway. However, writing down some specific polynomial representations for at least
a few specific knots has its own importance, particularly from the algebraists' point of
view. We shall do this for the trefoil knot and the figure eight knot, these being the
simplest knots.

Finally, we note that Madhav Nori has proved that any two embeddings of An in
A2n + 1 are isotopic (see, for instance, [6]). Here is a simple version of his argument
for n = 1.

Given an embedding φ:/ι—>(α(/),/?(/), y(/)), by performing a linear change of
coordinates one can assume that t\-+(ot(t), β(t)) is a generic immersion. Then consider
the set X of points λ in C such that

is not an embedding. This set X is finite, and hence, there exists a path ω :[0, 1] ->C\X,
joining λ = 0 and λ = 1. Define the isotopy

φ: Cx[0, 1]->C3

by the formula

φ(t, 5) = (α(ί), β{t\ ω

from the embedding φ to the embedding ίι—>(α(ί), β(t), t). Repeating this procedure or
otherwise, one can produce an isotopy from the given embedding and the embedding
ίι->(t,ί,t).

This may lead one to thinking that, perhaps, there are no non-rectifiable em-
beddings of A in A3. However, we feel that, unlike in the topological case, there is a
large gap between isotopy and equivalence through affine automorphisms.
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2. The main theorem. Let us first recall a few basic ways of describing a knot-type.
We consider piece wise linear (PL-) embeddings k:S1->S3 which map the base point
(0, ^ e S 1 to the base point (0, 0, 0, l )eS 3 . Two such embeddings kl9 k2 are said to be
equivalent if there is an orientation preserving PL-homeomorphism/: S3-+S3 such that
kί o f— k2. Such an equivalence class is called a knot-type. Using standard techniques
in topology, one sees that a knot-type is the same as the base-point preserving PL-
isotopy classes of base-point preserving PL-embeddings of S1 in S3. By taking one-
point compactifications one checks that a knot-type is the same as a proper PL-isotopy
class of a proper PL-embedding of R in R3 which are linear outside a closed interval.
This is the model of a knot-type that we are going to use in our input.

On the other hand, there is also the piecewise smooth model in which one con-
siders piecewise smooth embeddings of S1 in S3 and their isotopy classes to repre-
sent a knot-type. Under one-point compactification, this corresponds to taking piece-
wise smooth proper embeddings of R in R3 given by coordinate functions which
are monotone outside a closed interval and their proper isotopy classes. This is the
model of a knot-type that we are going to use for our output.

Recall further (see [5]) that a knot-type is determined by a knot-data, which
consists of

(1) a knot-projection, viz., a generic proper PL-immersion φ:

of R in R2 with finitely many crossings (each such crossing being an ordinary double
point), and

(2) a set of under(over)-crossing data at each of these crossings.

THEOREM 1. Every knot-type has a polynomial representation.

PROOF. Given a knot-type, our task is to find real polynomials/(ί), g{t), h(t) such
that the map t κ-> (f(t), g(t), h(t)) defines an embedding of Cin C3, and as an embedding of
R in R3, it is in the given knot-type. So, given a knot-type, let [α, b~] be the interval
in which all the crossings of the knot-projection φ occur. Though strictly not necessary,
we may (and are going to) assume that, φ(( — oo, a]) lies in the third quadrant, and
φ([b, oo)) lies in the first quadrant. Choose points a< tλ < < t2n+1<b in R such that

(i) φ(ti) are smooth points of φ,
(ii) in the interval [α, b~] all the crossings are either over-crossings or all are

under-crossings and
(iii) if in [mti^u tj we have under-crossings (resp. over-crossings), then in [tb ti+ι~\

we have over-crossings (resp. under-crossings). Now define

ι = 1

Here, the sign of hί should be determined depending on the first crossing from the left.
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Now the given knot-type is represented by the map

It is fairly easy to see that there exists c<a<b<dsuch that \h1(c)\ = \hί(d)\>\h1(ί)\
for all te(c, d) and h1 is monotonic in (— oo, c] as well as in Id, oo). This observation
is crucial to our argument. In particular, note that h1 is injective outside the interval
lc,dl

By Weierstrass's approximation theorem, we can now choose polynomials /, g,
sufficiently close to α and β such that their derivatives are also sufficiently close to the
derivatives of α and β, respectively, in the interval [c, d] and such that hx separates the
singularities of the curve it—•(/(£), g(t)), in the interval [c, d~\. Since outside this interval
h1 is injective, the mapping tv-^(f(t\g(t\h1{t)) is an embedding of R in R3. This
embedding has the 'same' projection data within the interval [c, d~\ as that given by
ί i—>(α(ί), >S(ί)). However, this is enough for our purpose: the knot-type represented by
(/>9i ni) i s t r ie same as that represented by (α, β, Λx). One has only to look at the piece
of the knot lying between the two horizontal planes Z= ±h1(c). Neither the portions of
the knot for t<c and t>d get entangled with the rest of the curve nor they are knotted
by themselves.

Finally, we shall modify hx to h so that (/, g, h) defines an embedding of C as
follows. Let sl9 . . . , sn be the set of points in Cat which f'(Sj) = gf(Sj) = 0, and let (zfc, wk)
be the set of all pairs of points in C such that (f{zk), g(zk)) = (f(wk\ g(wk)). These sets
being finite, we can choose the coefficients of h very close to that of hι such that Λ/^ )
do not vanish and such that h(zk)^h(wk). This assures that (/, g, h) is an embedding of
C. If the coefficients of h are chosen sufficiently close to that of hί9 then we can assure
that h provides the same under(over)-crossing data as provided by hi. Hence, the
knot-type does not change. This completes the proof.

3. The two examples.

1. The trefoil knot:
Set

/(ί) = ί3-3ί, g(t) = t*-4t\ h(t) = t5-\0t.

First, check that the corresponding ring-homomorphism φ:fc[ΛΓ, l^Z]->/c[ί] defined
by

Z\-+h(t)

is surjective: infact, it is easily verified that

φ(YZ-X3-5XY+2Z-7X) = t.

This porves that the mapping defines an embedding of C in C 3 . Let us now consider
the knot Ra R3 defined by this mapping. Note that the derivatives of/and g do not



POLYNOMIAL REPRESENTATIONS OF KNOTS 15

have any common zeros. So the AΎ-projection of φ is an immersion. To find the multiple
points on the curve, we proceed as follows: we seek points txφt2 in R such that
Λh)= f(h) a n d g(ti)= gih)- So, we must solve the following equations simultaneously:

Putting t1 + t2 = O (from the second equation) into the first equation yields,
(Ί> t2) = (\/ 3 , —V 3 ). The other factor of the second equation, viz., t\-t\ = Q, yields

(ίi, h)=(-W 6 + y 2 )/2, (V 6 - V 2 )/2)

or

This shows that, there are precisely three multiple points. One can easily verify that
these are actually ordinary double points.

Finally note that

and

H-

Thus the under(over)-crossings are as required in the trefoil-knot (see Figure 1 and
Figure 2).

2. The figure eight knot:
Here we define ψ: C->C3, by taking

( ί 3 -3t , r 4 -4t 2 )

FIGURE 1.

2 , - D

(/3-3ί,r4-4ί2,ί5-10ί)

FIGURE 2.
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= t(t2-l)(t2-4)

= tΊ-42t.

One verifies that the corresponding ring homomorphism

maps X2Z-XY2-7X2Y-23X3~3Z+22Y+Ί\X to t and hence is surjective. As
before, we proceed to show that the XF-projection is a generic immersion. The com-
putations are necessarily messier here, though not very difficult. We find that there
are four ordinary double points corresponding to the parametric values

(-2,1),

(-1,2),

Again we note that

-K-U2 +J 6)/2<U2 -J6)/2<\<U2 +J6)/2<2

and finally,

FIGURE 3.

( ί 3 - 3 ί , ί 5 - 5 ί 3 + 4 ί , ί7—42ί)

FIGURE 4.
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This shows that φ represents the figure eight knot (see Figure 3 and Figure 4).
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