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SYNTOMIC COHOMOLOGY AND p-AΌIC ETALE COHOMOLOGY

KAZUYA K A T O AND WILLIAM MESSING
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This article is a complement to the paper "/?-adic periods and /?-adic etale
cohomology" [FM] concerning the /7-adic etale cohomology of varieties over /?-adic
fields. In [FM], the absolute ramification index of the base p-adic field was assumed
to be one in the main results. We are interested in composing the method in [FM] and
the study of /?-adic vanishing cycles in the paper [BK]. We show that the composition
gives, for a smooth proper variety with good reduction over a /?-adic field and whose
dimension not too big, fairly short proofs of the Hodge-Tate decomposition and of
the crystalline conjecture [Fox] without the assumption on the absolute ramification
index. The Hodge-Tate decomposition and the crystalline conjecture were proved by
Faltings without any assumption (cf. [Fa x], [Fa2]). The aim of this paper is to show
the existence of a different method. This method has been, with a suitable modification
and combined with ideas of Fontaine, recently found useful in the semi-stable reduction
case as will be discussed elsewhere.

The method of composing the results of [FM] and [BK] as in this paper was
found independently by L. Illusie.

We thank S. Bloch and J.-M. Fontaine for helpful discussions.
In this paper, A denotes a complete discrete valuation ring with field of fractions

K and with residue field k such that char(X) = 0, char(A;)=/?>0, and k is perfect. We
denote by K (resp. k) an algebraic closure of K (resp. k corresponding to K), by A the
integral closure of A in K, and by Cp the completion of K.

For a scheme X, let Xn = X® Z/pnZ. For a scheme X over A, let X=X®AΆ.

1. Comments on crystalline cohomology and de Rham cohomology. In this sec-

tion, we state some results on crystalline cohomology and de Rham cohomology,
whose proofs will be given in § 4.

(1.1) Let Bcrys and BΌR be the rings of Fontaine. We adopt here the following
definitions of them given in [FM] using the crystalline cohomology theory, which are
slightly different from the original definitions in [Fo]. Let Bn be the crystalline
cohomology of degree 0 of Spec(.4//?Λ) over Wn= Wn(k), and let

^Cys = Q® u m / ι Bn -> ^crys = ^c+rys[* ~ *]

where / is any non-zero element of Qp{\) which is canonically embedded in B*rys ([FM]).
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Let JBn be the kernel of Bn-+A/pnA, JB

r] the r-th divided power of the ideal JBn, and let

with t as above. Then B£R is a complete discrete valuation ring with field of fractions

BΌR, with residue field Cp and with a prime element t. Let fiΓ BΌR be the filtration defined

by this discrete valuation. We have B^R/fi\r BΌR = Q ® \imn BJJB

r^ for r > 0 .

PROPOSITION (1.2). Let X be a proper smooth scheme over A and let Y=X®Ak.

Then there exists a canonical isomorphism

Q®\ϊmn Hm((XJ Wn)cτys, ΘXnlWn) ^ B+ys ® w Hm(( Y/ W)crγs, (9Y/W).

(The case A = W{k) is treated in [FM].)

As in [FM], a scheme X over a scheme Y is said to be syntomic over Y if X is

flat and locally of complete intersection over Y.

PROPOSITION (1.3). Let X be a proper syntomic scheme over A such that the

generic fiber XK = X®AK is smooth over K. Then, for any m and r, we have:

(1) Q ® Jim, Hm((XJ Wn)cτys, (9χnlWnIJψnlWn)

= (KR ®KHSR(XK/K))/W(B£R ®K^R{XKIK)) ,

where jψ ,w denotes the r-th divided power of the ideal Jχn/Wn = Ker(Θχn/Wn-+(9χn).

< n n M n 0 < t < r

where (r — i) means the Tate twist.

COROLLARY (1.4). Let X be as in (1.3).

(1) l i m Γ ( β ( χ ) l i m n # ™ ( ( ^ ^ for any m .

(2) Q® \imnH
m((XJWn)cτys, Jψ /J[2+'])(-r)^®Cp(-i) ®κH

m~\Xκ, &Xκlκ)
* n n n n ieZ

if r,meZ and r>m.

2. S* and p-adic vanishing cycles. We review a relationship between the sheaf S£

of [FM] and /?-adic vanishing cycles, which plays an essential role in this paper.

(2.1) Let X be a smooth scheme over A. Let

Let the sheaf S^ on the syntomic site (Xn+r)syn be as in [FM, III, 3.1]. Let
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be the canonical morphisms of sites. The following result (2.2), which relates S£

to /7-adic vanishing cycles, was obtained by Kurihara [Ku] (cf. also [Ka, I, 4.3]) by

using the results on the sheaf i*Rqj^(Z\pn2) of /?-adic vanishing cycles in [BK].

THEOREM (2.2). Let the notation be as in (2.1). Assume 0<r<p-\. Then, there

exists a canonical isomorphism

In particular, if X is furthermore proper over A and if either m<r or r > dimCΛ^), then

(by the proper base change theorem) we have

Hm(X, Sr

n) — H£(XK, Z/pnZ(r)).

Here, as in [FM], we write by Hm(X, Sr

n) the group Hm((Xn+r)syn, Sr

n), which

coincides with Hm((X^)syn, Sr

n) for any i>n + r. We denote by τ< r the canonical

truncation.

REMARK (2.3). If fact the paper [Ku] of Kurihara includes, not only results over

A as above but also results over A relating S* on Xn+r to /?-adic vanishing cycles for

Y->X+-XK.

(2.4) In the rest of this section, we explain how the map β in (2.2) is defined by

using the theory in [FM] (III § 5) (this point does not seem to be explained in detail

Let 2 be the p-adic formal completion lim Xn of X, and let Xsyn_et and ̂ s y n . e t be

the syntomic-etale sites on X and on 2, respectively. We have a commutative diagram

of sites

Ϋ * s e > Ϋ i J s e

syn-et ^syn-et

In (2.1) (2.2), we denoted /et and j e t by / and j , respectively, though ϊse

 a n d Λe a r e

denoted by / and j in [FM], respectively. Let Sr

n ̂  be the direct image of S^ under the

canonical morphism in+r: (Xn+r)syn-^Xsyn.eV Since (in+r)* is exact [FM, III, 4.1], we

have Rε^(S^) = Rεse:i:(Sr ώ. By [FM, III §5], we have a canonical homomorphism

By applying the functor 7?£sej|e to the induced map S'n ̂ i*Rjse^(Z/pnZ(r)X we obtain

a map



K. KATO AND W. MESSING

LEMMA (2.5). i&se*4t

This is reduced to έse*4t = **εse* which follows from the explicit description of ι*

in [FM, III, 4.4].

(2.6) By (2.5), we have

By [Ka, I, 3.6],

/?ίεϊ|ί(*SJJ) = O for q>r.

Hence our map Rε*(Sr

n)^i*Rjetii:(Z/pnZ(r)) factors through τ<ri*Rjet*(Z/pnZ(r)).

3. The Hodge-Tate decomposition and the crystalline conjecture. In this section,

let ^ be a smooth proper scheme over Λ. We explain how the results (1.2), (1.4), (2.2)

can be used to prove the Hodge-Tate decomposition and the crystalline conjecture for

X in the case p > 2 d im^^) + 1.

(The Hodge-Tate decomposition for X follows from the crystalline conjecture, but

we treat the Hodge-Tate decomposition separately, for one can give a separate easy

approach to it.)

(3.1) Recall that the Hodge-Tate decomposition for X is a Cp-linear isomorphism

(3.1.1) Cp ® Q p Hm((Xκ)et, Qp) ^ 0 Cp( — i)®κ Hm \XK, Ωι

Xκ/κ)
ieZ

preserving the actions of Gal(^/A:). Here an element σ of Gal(^/A:) acts on the left

hand side by σ ® σ and on the right hand side by σ ® (id.).

Consider the canonical map

M (X, o π ) —• ti \\Xnl ^JcrygJχ ,w jjχ ,w ) .

If m<p— 1, by taking Q®\\mn and using (1.4) (2) and (2.2), we obtain the desired

Cp-linear map from the left hand side of (3.1.1) to the right hand side of (3.1.1)

preserving the actions of Gal(^/AΓ). If p > 2 dim(A^) + 1, Poincare duality shows that

this map is an isomorphism (cf. [FM, III, 6.3] for this argument).

(3.2) Recall that the crystalline conjecture says that there exists a 2?crys-linear

isomorphism

(3.2.1) Bcrys®Qp p y y

preserving the Frobenius and the actions of Ga\(K/K) such that the composite map

induced by (3.2.1)

(3.2.2) BΌR ®Qp Hm((XR)ct, Qp) ^BDR®W H?rys( Y/ W) ^
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gives an isomorphism of filtrations. Here the Frobenius on the left hand side of (3.2.1)

is φ ® (id.) and that on the right hand side is φ ® φ (φ denotes the Frobenius of Bcτys

and also that of H™ys(Y/W)), an element σ of Gal(^/A:) acts on the left hand side of

(3.2.1) by σ®σ and on the right hand side by σ(χ)(id.), the filtration on the first

group in (3.2.2) is defined by fiT = fiT BΌR ® Hm((XR)ei, Qp\ and the filtration on the

last group in (3.2.2) is the tensor product of the filtration on BΌR and the Hodge

filtration on H£R(XK/K).

By the canonical map Hm(X, S^-^Hm((XJWn)cτys, Jψnjw) and the inclusion map

jψn/wn~*®Xn/wn>
 w e obtain a canonical map

//%?, Sr

n) -> Hm((XJWn)cτys, Θyn/Wn)

on whose image, the Frobenius acts as the multilication by pr. If m<p— 1, by taking

Q® \\mn and using (1.2) and (2.2), we have the desired map from the left hand side

of (3.2.1) to the right hand side of (3.2.1) which preserves the Frobenius and the

actions of Gal(K/K). If p > 2 dim(Ar

A:) + 1 , Poincare duality shows that this map is

an isomorphism. We check that the induced composite isomorphism (3.2.2) preserves

the filtrations. Since this map is induced from

lim, Hm(X, Sr

n)( -r)^\πnN(Q® lim, Hm((XJ Wn)crys, JψnlwJJψn)Wn){ - r))

£f i l ' ( i£ R ® HSR(Xκ/K))(-r) (1.4) (1),

fiΓ' of the first group in (3.2.2) is sent into fiT' of the last group in (3.2.2). Hence, that

(3.2.2) gives an isomorphism of filtrations is, by taking gr. of the filtrations, reduced

to the Hodge-Tate decomposition (3.1.1).

REMARK (3.3). Here we compare the method in [FM] and that in this paper.

Consider the diagram

£ c r y s ®Zp lim, H"(X9 Sr

n)( - r) — Bcrys ®Qp Hm((XR)et, Qp)

(2)

Bcτys®wH?rys(Y/W).

In [FM], it is proved first that if p > dim(A'κ), m<r, and A = W(k), then the map (2)

is bijective. Then, (1) is proved to be bijective (under the same assumption) by using

Poincare duality (cf. [FM, III, 6.1].) In the method in this paper, it is proved first that

if m < r <p — 1, the map (1) is bijective (§ 2). Then, if m < r <p — 1 and p > 2 άim(Xκ) + 1,

(2) is proved to be bijective by using Poincare duality.

(If A ramifies over W{k), it becomes very difficult to prove the bijectivity of (2)

first directly, for the necessary theory of filtered modules becomes complicated in this

case.)
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4. Proofs of the Propositions (1.2) and (1.3).

DEFINITION (4.1). (1) If we are given categories ^n (n>0) and functors θn:

^n + 1^^n («>0), we denote by limπ^π the category of systems {An, ccn}n where An

is an object of %>n and ocn is a morphism θn(An + ί)^>An for each n. (We sometimes

abbreviate {An, ocn}n as {An}n in the following.)

(2) For an additive category ^ , let Q®%> be the category whose objects are the

same as ^ but HomQ ( g ) % = Q ® Hom^. For an object P of ^ , we denote by Q ® P the

object P regarded as an object of Q ® %>.

(4.2) Proof of (1.2). We denote Speφl) by S. Let /„ (resp. /„, gn) be the

morphism Λ^-*^ (resp. Xn^Sn, resp. Y->Wn) and let (/π)c r y s, (/J c r y s, (^π)c r y s be the

induced morphisms between the crystalline sites over Wn, respectively. By the base

change theorem for crystalline cohomology ([B, V, 3.5]), we have

By Berthelot-Ogus [BO 2 ], we have an isomorphism in the category Q®

\imnD((Sn/Wn)crys,ΘSn/Wn));

R { 9 \ ^ n)}nWn R{9n\rys^ Y,Wn

(Here D((SJWn)crys9 &snιwn) denotes the derived category of the category of &sn/wn~

modules on (SJWn)cτys.) Hence we have an isomorphism in Q®\imnD((SJWn)CTys,

By taking RΓ((SJWn)crys,) and by using

Bn = RΓ((SJ Wn)cτys, Θ-SnlWn) (cf. [ F o 2 ] ) ,

we obtain in \imnD (^-modules);

Q® {RΓ((XJWn)cτys, Θχn,wn))n = Q® {Bn®WnRΓ((Y/Wn)crys, Θγ/Wn)}n.

This proves (1.2).

(4.3) We give a preliminary needed for the proof of (1.3).

Generally, let X, Y, Z be schemes, let/ : X^> F, g: Y-+Z be syntomic morphisms,

and assume we are given a quasi-coherent ideal 21 of Θz endowed with a PD-structure.

Endow 9l0 y with the unique PZ)-structure compatible with that on $ϊ. In this (4.3), we

consider the relationship between

Ruxiz*\JχιzlJχιz ) j ^UXIYJ<JXIYIJXIY ) j RUYIZJJYIZIJYIZ )

r, s, t>0, where uXjZ is the canonical morphism (X/Z)crys->XZΛr, J$z is the r-th divided

power ofJx/z = Keτ(Θx/z^>Θx),..., etc. For r, />0, we construct objects Fl in the deriv-
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ed category D(X, 0x) such that F? = Rux/S4t(J]ίfz/Jx

r

/ϊ
1])iind F; = 0 for i>r with

distinguished triangles

If there exists a commutative diagram of schemes

(4.3.1) I
E—

such that the vertical arrows are closed immersions and that E is smooth over F and
F is smooth over Z, then the objects Fι

r are defined as follows. Let / (resp. /', resp. /")
be the ideal of X in E (resp. X in ExFY9 resp. Y in F). Then, Rux/z+(Jx

r}z/Jx

r

/z'
u) is

represented by the complex

(A λ T\ /W//[r+1] • Tlr-l]/τ[r] β> O1 • /[r-2]/ i-[r-l] ̂  £)2 .
V. *^' ) ** I I ^ώ' (P IT EIZ I ^^ &v E/Z ?

where Jlr] is the r-th divided power of Ker(ΘD-»Θx) with D the PD-envelope of Z in
E. Since A' is syntomic over Z, © r e Z */ [ r l /^ [ r + 1 ] is isomorphic to the divided power
polynomial ring on the locally free (^-module I/I2. Denote the degree r part of this
ring by (///2)[r]. Then (4.3.2) is isomorphic with

(4.3.3) ( / / / 2 ) [ r ] - ^ ( / / / 2 ) [ r - 1 1 ® ^ ^ / z ^ - ( / / / 2 ) [ ^

Let Fl (/>0) be the subcomplex of (4.3.3) whose degree q part is the image of

2 [ ] 2[r-l-«l (g) Ω^J (x) Q|-i + i .

Then, Fr° is the complex (4.3.3) itself, Fj; = θ for />r, and the complex F^/F^1 is
isomorphic to the tensor product of the two complex

where the former (resp. the latter) is isomorphic in the derived category to

(resp. J

In general, the diagram (4.3.1) may not exist, but it exists locally on X and Y. In the
general case, the method of the cohomological descent as in [BOX] shows that Fι

r is
defined globally in D(Xzaτ, Θx).

(4.4) We prove (1.3) (2). We apply (4.3) to the case X, Y, Z are Xn, SH9 WH9

respectively (S= Spec(^l)). In fact, Sn is not syntomic over Wn but it is a filtered projective
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limit of syntomic schemes over Wn. By taking inductive limit, we obtain objects Fι

r n in

D(JrB, Θχn) (/>0) such that F°n = Ruχ^WnJLJψ^wJ
jl£w)> FU = 0 for *>r, and that we

have distinguished triangles

(4.4.1) trn ^ r r n ^ KUSnjWn^ SnlwJJ Sniwj ^ Osn

KUXnlSn\
J XnlSjJ XnlSn

Note

(4.4.2) R»snιwn*(JψnlwJJΪ!wϊ) = 4:V4:+ 1 ] (put in degree 0),

(4.4.3) Ru-XnΓs^

βy (4.5) (2) below, we have isomorphisms in Q® X\mnD(Xm (9Xf)\

(4.4.4) Q ® {ΛMχn/^Nl(7j[r)/^/</[Γ^)}n - ϊ ^ β ® { Λ ^ / s ^ ^ / s Λ ^ l π

-=-β®{Oiws,,[-']}••

Now (4.4.1)-(4.4.4) show that the canonical homomorphism

θ β ® {4r'74r''+1] ®^ Λ«ϊn/ir.,(/Jβ/^4'^)}.
0<i<r

^Q®{RuXnlWn^jψnlwJJ{£^\)}n

is an isomorphism in Q®\imnD(Xn, (9Xr) and induces the isomorphism (1.3) (2).

LEMMA (4.5). Let X be as in (1.3).

(1) The canonical morphism in UmnD(Xn, Z/pnZ)

(Ω<r denotes the complex Ω°^Ω1^ ->Ωr~1->0-»0-> •) induces an isomorphism in

Q ® limπ D(Xn, ZlpnZ).

(2) The canonical morphism in limπ D(Xn, ΘXn)

induces an isomorphism in Q ® limπ D(Xn, (9Xt).

PROOF. Since Xκ is smooth over the field of fractions K' of W, we have

RuxKlK'tViliM'Z/® = Ωrχκικl-r] = ΩXκ/κl-r] .

Hence the canonical homomorphism

Ruxiw*\yχιwlJχιw ) ~^ ΏX/A\_ — r]

becomes an isomorphism after ® Q. This proves (2), and (1) follows from (2).
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(4.6) Finally we prove (1.3) (1). By (4.5) (1), we have a canonical homomorphism

from B+K®KHSR(XK/K) to Q® \πnnH
m((XJWn)crys, ®xn,wjjψniw) which annihilates

filΓ(#DR ®κHgR(Xκ/K)). That the induced map

(B+R ®κ HSR(XK/K))/Άr (B+R ®κ Hm(Xκ/K))

-> Q ® lim, Hm((XJ Wn)crys, (9χnlwβψnlw)

is an isomorphism is reduced to (1.3) (2).
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