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ON COMPACT CONFORMALLY FLAT 4-MANIFOLDS
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Abstract. We prove a certain gap theorem concerning the Yamabe invariants for
compact conformally flat 4-manifolds with positive Euler numbers.

1. Introduction. Let M be a smooth manifold and C a conformal class of metrics
of M. (M, C) is said to be conformally flat if, for any peM, C contains a metric which
is flat in some neighborhood of/?. A conformal class C is called aflat conformal structure
on M if (M, C) is conformally flat. A Riemannian manifold (M g) is said to be conformally
flat if (M, C) is conformally flat for the class C containing g. In order to understand
conformally flat manifolds from the Riemannian-geometric viewpoint, it is useful to
choose reasonable metrics as representatives of conformal classes. In the two-dimensional
case, for any conformal class of a connected surface, such metrics are given as complete
constant curvature metrics by the uniformization theorem of Riemann surfaces. If M
is compact and connected, then the Yamabe problem gives representatives in higher
dimension.

Let M be a compact connected manifold with dim M=n ^ 3. The Yamabe functional
I on a conformal class C (not necessarily conformally flat) of M is defined as

J M

RgdVg

1(9) = JM

) (n-2)/n

for g E C, where Rg and dVg denote the scalar curvature and the volume element of g,
respectively. The infimum of this functional is denoted by μ(M, C), i.e.,

geC

and called the Yamabe invariant. The Yamabe problem asks the existence of a metric
satisfying I(g) = μ(M, C). By Yamabe [13], Trudinger [12], Aubin [2], and Schoen [11]
this question was answered affirmatively as we see in Theorem 2.1. Thus, for any (M, C),
we can choose a metric geC such that I(g) = μ(M, C). Moreover, by so normalizing g
that Vol(M, #)=1, the scalar curvature of g is constant and equal to μ(M,C) (see
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Proposition 2.2). Then it seems that the Yamabe invariant μ(M, C), which is considered

as the scalar curvature of a representative metric of C, gives some information on

(M, C). The purpose of this paper is to prove a certain gap theorem concerning the

Yamabe invariants for conformally flat 4-manifolds.

We denote by C o the conformal class of the standard metric g0 of Sn and RPn.

Then our result is stated as follows:

THEOREM. Let M be a compact connected 4-manifold with positive Euler number,

and C aflat conformal structure on M.

(1) If M is orίentable and μ(M, C)> — μ(S4, Co), then (M,C) is conformal to

(S\ Co).

(2) IfM is orίentable andμ(M, C) = — μ(S4, Co), then C contains a negative constant

curvature metric.

(3) If M is non-orientable and μ(M, C)> —μ(RP4', Co), then (M, C) is conformal

to (RP\ Co).

(4) If M is non-orientable and μ(M, C)= — μ(RP*9 Co), then C contains a negative

constant curvature metric.

REMARK. The conformal classes of flat metrics on Γ 4 are conformally flat and

their Yamabe invariants are equal to zero. For any positive integer k and any positive

real number ε, there exists a flat conformal structure C on a connected sum of fc-copies

of S1 x S3 such that its Yamabe invariant is greater than μίS 4 , Co) — ε (this follows

from [5, Theorem 2]). Thus, for a manifold M with non-positive Euler number, we

cannot determine (M, C) up to conformal equivalence by the Yamabe invariants.

By Lemma 2.3, Corollary 2.4, and Proposition 2.5 in the next section, we have the

following corollary.

COROLLARY. Let (M, g) be a compact, connected, and conformally flat Riemannίan

4-manifold with positive Euler number.

(1) // M is orientable and min/^{Vol(M,0)}1 / 2> - μ ( 5 4 , Co), then {M,g) is

conformal to (S4, g0).

(2) If M is orientable and Rg{Vo\(M,g)}1/2= - μ ( S 4 , Co), then g has negative

constant curvature.

(3) IfM is non-orientable and min ^{Vol(M, g)}1/2 > -μ(/?P 4 , Co), then (M, g) is

conformal to [RPA, g0).

(4) IfM is non-orientable and Rg{ Vol(M, g)}1/2 = - μ(RP4, Co), then g has negative

constant curvature.

2. Preliminaries. First, we discuss Yamabe metrics and their known properties

which will be needed later. We assume that M is a compact and connected manifold

with d i m M = « ^ 3 , and that (M, C) is not necessarily conformally flat.
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THEOREM 2.1. For any (M, C), there exists a metric g in C such that I(g) = μ(M, C).

Moreover μ(M, C) satisfies

μ(M, C)^μ{S\ C0) = n(n- l){Vol(S", go)}2'» ,

and the equality holds if and only if (M, C) is conformal to [Sn, Co). In particular,

I(go) = μ(Sn,Co).

Since the Yamabe functional / remains invariant under homothetic change of

metrics, we can choose a metric g with Vol(M, g)=l, and I(g) = μ(M, C) for any (M, C).

By computing the first variation of /, we see that geC is a critical point of / if and

only if the scalar curvature Rg of g is constant. Thus we can rewrite Theorem 2.1 as

follows:

PROPOSITION 2.2. For any (M, C), there exists a metric geC with Vol(M, g)=l, and

Rg ΞΞ μ(M, C) ^ μ(Sn, Co). The equality Rg = μ{Sn, Co) holds if and only if(M9 C) is conformal

to (Sn, Co).

A metric g eC is called a Yamabe metric if I(g) = μ(M, C). A Yamabe metric with

Vol(M, g) = 1 is called a normalized Yamabe metric in this paper.

By the definition of μ(M, C), any (M, C) satisfies μ(M, C)^(max/y{Vol(M, #)}2 / π

for arbitrary g e C.

LEMMA 2.3 (see [5] or [6]). If μ(M,C)^0, then the scalar curvature Rg of any

geC satisfies

(min/y{Vol(M, ^)}2/M^μ(M, C)^(maxΛfl){Vol(M, g)}2/n,

of the two equalities implies that Rg is constant.

COROLLARY 2.4 (see [6]). If C contains a metric with positive (resp. zero, resp.

negative) scalar curvature, then μ(M, C) is positive (resp. zero, resp. negative).

PROOF. If the scalar curvature Rg is negative for some geC, then μ(M, C ) < 0 by

the second inequality in Lemma 2.3, which always holds. Similarly if ^ = 0 then

μ(M, C ) ^ 0 . Applying the first inequality, we get μ(M, C) = 0. For the case Rg>0,

suppose μ(M, C ) ^ 0 . Then by the first inequality, m i n / ^ ^ 0 , a contradiction. q.e.d.

Combining Corollary 2.4 with Lemma 2.3, we see that if the scalar curvature Rg

of g is equal to a non-positive constant, then g is a Yamabe metric. On the other hand,

it is well-known that if μ(M, C ) ^ 0 (i.e., C contains a metric with non-positive constant

scalar curvature), then two metrics with constant scalar curvature in C are proportional

to each other (see [1]). Therefore we get the following:

PROPOSITION 2.5. If (M, g) has non-positive constant scalar curvature and

Vol(M, g)= 1, then g is a uniquely determined normalized Yamabe metric.

A similar result holds for Einstein manifolds other than (Sn, g0).
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PROPOSITION 2.6 (see [10]). Suppose that (M, C) is not conformal to (S", Co), and
that C contains an Einstein metric g with Vol(M, g)=\. If g'eC has constant scalar

curvature and Yol(M, g')= 1, then g — g'. In particular g is a uniquely determined

normalized Yamabe metric o/(M, C).

{\o\(Sn,g0)}~2lng0 is a normalized Yamabe metric for (Sn, Co) by Theorem 2.1,
but the uniqueness does not hold because the functional / remains invariant under the
action of conformal transformations, and (Sn, g0) admits non-isometric conformal
transformations. In this case, Obata's theorem [10] gives the following.

PROPOSITION 2.7. Every geC0 with constant scalar curvature and Vol(M, g)= 1 is
obtained as a pull-back of{Yo\(Sn, go)}~2/ngo by some conformal transformation. In other
words, g is a normalized Yamabe metric.

Generally speaking, the uniqueness does not hold. The space of normalized Yamabe
metrics is studied, for example, in [4] and [7].

Next, we review the formulae for the characteristic numbers of 4-manifolds. For
any Riemannian ^-manifold (n ̂  4) (M, g\ the Riemannian curvature tesnor R of g has
the orthogonal decomposition

2n(π-l) n —

where (Ric)° denotes the traceless Ricci tensor, i.e., (Ric)° = Ric — (Rg/n)g, and the
4-tensor h k denotes the Kulkarni-Nomizu product of symmetric 2-tensors h and k,
and is defined by

(hk)(X, Y,Z, U) = h(X,Z)k(Y, U) + h(Y9 U)k(X,Z)

-h(X9 U)k(Z Z)-h(X Z)k(Xy U).

W is called the Weyl tensor and the theorem of Weyl-Schouten states that (M, g) is
conformally flat if and only if the Weyl tensor vanishes. (When n = 3 the above
decomposition is still valid in principle. But the Weyl tensor always vanishes and
conformal flatness is characterized in another way. See for example [9]). It is easy to
see that (Ric)° vanishes if and only if g is an Einstein metric. Moreover both (Ric)°
and W vanish if and only if g has constant curvature. With respect to this decomposition,
the Gauss-Bonnet formula for a compact Riemannian 4-manifold (M, g) is written as

= ±r ί R2

gdVg-2ί |(Ric)°|2^+ |
6 JM JM J

(2.1) 32π2χ(M) = ±r ί R2

gdVg-2ί | (Ric)° | 2 ^+ | | W\2dV| \2dVg

M

If M is oriented, then its orientation and volume form determine the star operator
* of (M, g). With respect to *, a 2-form α has an orthogonal decomposition α = α+ +α~,
where oc+ =(α + *α)/2 and α" =(α —*α)/2. Thus by considering the Weyl tensor W of g
as an End(ΓM)-valued 2-form, W splits as W= W+ + W~. Then, the signature τ(M)
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of a compact oriented (M, g) is given by

(2.2)
24π2 J M

M

For a detailed exposition on the subject above, see [3].

3. Proof of Theorem.

(1) Fix an orientation of M and take a normalized Yamabe metric g of (M, C).

Since (M, C) is conformally flat, the Weyl tensor of g vanishes. Thus by (2.2), the

signature τ(M) of M vanishes. τ(M) is the signature of the interesection form of

M, which is a non-degenerate bilinear form defined on H2(M, R). Therefore

b2(M) = dim H2(M9 R) is even. Hence χ(M) is even by the Poincare duality. Since we

assume χ(M) to be positive, we have χ(M)^2. Thus by (2.1),

32π2χ(M) = —{μ(M, C)} 2 -2 |(Ric)° \2dVg^64π2

6 JM

holds for g. By Theorem 2.1, the standard metric of Sn is a Yamabe metric of (<SM, Co).

Then,

follows from (2.1). Theorefore g satisfies

(3.1) ~{μ(M,C)} 2 -2

In particular, |μ(M, C) |^μ(S 4 , Co) holds. Since we assume μ(M, C)> -μ(S 4 , Co), we

get μ(M, C)^μ(S 4 , Co). Hence, by Theorem 2.1, (M, C) is'conformal to (S4, Co).

(2) Fix an orientation of M and take a normalized Yamabe metric g. By the

proof of (1), g satisfies (3.1). Since we assume μ(M, C)= — μ(S4, Co), (Ric)° must vanish.

Thus # has negative constant curvature.

(3) Take a normalized Yamabe metric g. Let M be an orientable double cover

of M, </ a pull-back of # by the covering map, and C its conformal class. Note that

R$=μ(M, C). If μ(M, C)^0, then g is a Yamabe metric by Proposition 2.5. Thus,

μ(M, C) = ̂ {Vol(M, £)}1 / 2 = 21/2μ(M, C).

If μ(M, C) > 0, then μ(M, C) > 0 by Corollary 2.4. Hence, by our assumption, in both cases

(3.2) μ(M,C)>-2V2μ(RP\C0)

holds. By Proposition 2.6, the Yamabe metric g' of (/?P4, Co) is a constant curvature

metric. Thus, by Theorem 2.1,
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') = I(gf) = μ(S\ Co),

where g' is the pull-back of g' by the covering map S4-+RP*. Thus (M, C) is conformal
to (S4, Co) by (1) (note that χ(M) = 2χ(M)>0). By Proposition 2.7, g has positive con-
stant curvature, hence so does g. Since an even-dimensional Riemannian manifold with
positive constant curvature is homothetic to (Sn, g0) or (RPn, g0) (see for example
[8]), (M, g) must be homothetic to (RP4, g0). That is, (M, C) is conformal to (RP*, Co).

(4) We use the same notation as in the proof of (3). By the proof of (3),
μ(M, C)= — μ(S4, Co) and χ(M)>0. Thus C contains a negative constant curvature
metric by (2). Then, by Proposition 2.5, g has negative constant curvature, hence so
does g. q.e.d.
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