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Abstract. In this paper, we investigate the cohomology of infinitesimal quantum
groups (and algebras) associated to classical quantum groups (and algebras) at a root
of unity. A main result expresses the Ext-groups between irreducible modules in terms
of those for the full quantum group. Under the assumption that certain module categories
for the quantum group have a Kazhdan-Lusztig theory (in the sense of Cline, Parshall,
and Scott), this permits explicit calculations of cohomology in terms of Kazhdan-Lusztig
polynomials. This assumption in turn follows from recently announced results of
Kazhdan and Lusztig.

Let ̂  be a highest weight category, as introduced in [6]. In recent work [8], the first
author, together with E. Cline and L. Scott, defined the concept of a Kazhdan-Lusztig
theory for the category .̂ The notion played a key role in various significant
simplifications of Lusztig's famous conjecture [26] concerning the characters of simple
modules for a semisimple algebraic group G over a field of positive characteristic. In
addition, when this conjecture holds, one obtains a combinatorial calculation of the
groups Έxt°G(L(X), L(v)), whenever λ, v are regular dominant weights satisfying the
Jantzen condition. In [9], this work was extended to include the representation theory
of G^Γ, the pull-back through the Frobenius morphism F of a maximal torus T of G.

Similar results apply to the category <βq of rational modules for quantum groups
and quantum enveloping algebras at a root of unity. In particular, assuming the recently
announced work of Kazhdan-Lusztig [24], it follows from [8] that the full subcategory
of <βq whose objects have composition factors with /-regular highest weights has a
Kazhdan-Lusztig theory. Thus, the groups Ext£ (L%λ), Lq(v)) are completely determined
in terms of Kazhdan-Lusztig polynomials when the highest weights λ, v are /-regular.

As is well-known, the finite (or "infinitesimal") quantum groups (first introduced
in the setting of quantum enveloping algebras by Lusztig [28]) play a role somewhat
analogous to that of the restricted enveloping algebras of the Lie algebras of semisimple
algebraic groups in positive characteristic (or, equivalently, that of the group scheme
Gi = KerjF). Also, the cohomology theory of these restricted enveloping algebras has
interesting geometric interpretations. In fact, there are analogues of many results from
the study of the spectrum of the cohomology ring of finite groups (although the proofs
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are often considerably different). See [13], [14], for example. This paper represents a
first step in investigating the cohomology of the infinitesimal quantum groups with the

eventual aim of obtaining a geometric interpretation of this cohomology. Using the
characteristic p theory as a guide, we are able to give, often assuming [24], many
calculations in the quantum case, although we do not consider here any precise geometric
meaning. Also, we briefly take up the question of extending some of the results of [9]

to the quantum analogue of G±T (see Theorem 5.3).

This paper is organized as follows. In Section 1, we review some results from
Kazhdan-Lusztig theory for highest weight categories. In §§2, 3, we describe the various
module categories with which we work. We have tried to set things up so that they

apply to the case both of quantum groups and quantum enveloping algebras. In the

former, we rely heavily on results established in our previous paper [31]. In the latter,
we make use of work of Andersen-Polo-Wen [2], [3]. In Section 4, we consider the
cohomology of the "Frobenius kernel" (Gq)l9 while Section 5 treats that of the pull-back
(Gq)ιT of the maximal torus under the Frobenius morphism. The main computational
device, which is very elementary, is given in Theorem 4.2. It expresses certain Ext1

groups for the Frobenius kernel in terms of the corresponding Ext* groups for the full
quantum group. Assuming that certain module categories for the quantum group have
a Kazhdan-Lusztig thoery (a consequence of [24] and [8]), we readily obtain some
explicit calculations. (For example, see Proposition 4.5, Corollary 4.6, and Remark
4.7e.) We obtain similar calculations for (G^^T m §5. Finally, since the cohomology
of a quantum group is essentially the cohomology of comodules over a coalgebra, we

have included an Appendix which collects together some elementary facts concerning

comodule cohomology of a coalgebra.
In a sequel, we treat several questions left open by this paper. For example, although

Theorem 5.3 proves (assuming the results of [24]) an "even-odd vanishing behavior"
for the Ext" groups between simple (G^Γ-mo'dules (having /-regular highest weights),

we leave unanswered here the question as to whether the associated (G^Γ-module
cagegory has a Kazhdan-Lusztig theory. Also, we will consider the geometric
interpretation of the cohomology of infinitesimal quantum groups (i.e., the theory of
support varieties) suggested by this paper.

We take this opportunity to thank Leonard Scott for helpful discussions on some
of the issues of this paper.

LIST OF NOTATION.

Φ Irreducible root system (finite, crystallographic) in a Euclidean space E
having inner product ( , ). Usually, E is the span of Φ. However, if Φ

has type A n _ 1 ? the following exceptional case is also allowed: E has a

basis e l 9 e2,...,en with φ = {ei-ej\iίj}.
h The Coxeter number of Φ.

Φ v Root system dual to Φ.
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Φ + (resp., Φ~) Fixed set of positive (resp., negative) roots.
Π Set of simple roots with respect to the above choice of Φ + .

W Weyl group of Φ.
Q The Z-span of Φ.
X Integral weight lattice of Φ (in the exceptional case above, X is the

Z-span of ef's).
X+ {λ e J!f I (A, α v ) > 0, Vα e 77} , the set of dominant integral weights.

p α/2)Σ.6φ+«> the Wey! weisht

/ An odd integer > 1 (in the case of quantum enveloping algebras, / is
assumed to be a power of an odd prime p in [2], and / is assumed to

equal p in [3]).
XI {λeX\Q<(λ, α v )</, Vαe 77}, the set of /-restricted dominant weights.

Cl {λeE\Q<(λ + p, α v )</, V α e Φ + }, the bottom /-alcove.
^z-reg^reg μ e ̂  | (̂  + p? α v ) ̂  Q (mod /), Voc e Φ}, the set of /-regular integral

weights. Thus, Xr

& The Kostant partition function defined on X\ for λeX, p(λ) is the
number of ways to write λ as a non-negative integral linear combination
of positive roots.

pi The "/-part" partition function: for λeX, p/(λ) is the number of ways
to write λ as a non-negative integral linear combination of positive
roots with coefficient sum i.

(resp., ^j) Group of translations tlλ: E^E, x\-+x + lλ for λeQ (resp., λeX).
Wl Wχ^~h the affine Weyl group of Φ with parameter /.
Wt Wx&Ί, the extended affine Weyl group of Φ with parameter /. For

we Wl and xeE, write w x = w(x + p) — p.

t Uparrow partial ordering on X induced by Wh [19; §11.6].
< Usual partial ordering on X: λ<μofc>(μ — λ)>0.
/ The standard length function on Wh given by the formula

α e Φ + n w

for we W and ^e^T (see [18; Prop. 1.23]). Also, we denote by / the
length function on Xres: if λ = wtlμ τ for τeC / ? we W and μεX, put

-φv)+ Σ (wμ,α
αeΦ +

If λeX+, then /(A) - /(w/ίμ), see [9; 3.12.5].
, the Weyl character.

The ^-linear endomorphism of the group algebra RX, for a com-
mutative ring R, induced by the endomorphism λ\-+lλ of X. (The
notation also serves for "Frobenius twist", see §3.)



398 B. PARSHALL AND J.-p. WANG

1. Kazhdan-Lusztίg theories. Throughout this paper, let k be a fixed field. Let
($ be a highest weight category over k, having weight poset A (which is always assumed

inteval-finite) and satisfying the following conditions (1. !)-(!. 4):

(1.1) ^ is finite; i.e., objects in ^ have finite length. If Leθb(^) is simple,

(1.2) The opposite category ^op is a highest weight category with the same weight

poset A. (For a weight λ eA, let A(λ), V(λ), and L(λ) denote, respectively, the "induced",

the "Weyl" object, and the simple object corresponding to λ.)

(1.3) There is a fixed duality D : V^op (in the sense of [7]). Thus, DL(λ)^L(λ)

and DA(λ) ^ V(λ) for all λ e A.

(1.4) There is given a fixed function Λ A-+Z, called the "length function" on

the weight poset A which is compatible with A in the sense that λ<v =>/(λ)</(v).

If ^ is a highest weight category as above and if Γ is an ideal in the weight poset

A, let #[Γ] denote the full subcategory of # consisting of objects having composition

factors L(γ) for yeΓ. Then [̂Γ] is a highest weight category with weight poset Γ.

(Also, we will often use without further comment the fact that Db(^[Γ~\) is a full

subcategory of Db(%>)\ see [6; Thm. 3.9] and [9; (1.2)].) For a general discussion of

highest weight categories, see [6]-[9].

Consider the bounded derived category Db(Ή] of #. Let T: Db(Ή}-*Db(<£) be the
translation operator, and -write X[n] = TnX for nεZ and X<=Ob(Db(<g)). For Xe
Ob(Db(^)) and veΛ, the left Poincare polynomial /?v>ΛΓeZ[ί, ί"1] is defined by the

expression:

(1.5)

where, for JST,

-»], F) .

In particular, if X, YεΉ, then

(1.6) HomJ^JT, Y) * ExtKΛΓ, 7) .

The r/g/z/ Poincare polynomial p^x is defined by

(1-7) P*X=PV,DX>

using the fact that the duality D extends naturally to Db(^}. Thus, if X is self-dual, we

have plχ=pVίX. If X=L(λ), we write pvMλ}=pVtλ, so that /?f f L ( A )=pv,A for all A,

Thus, thanks to (1.6), we have

(1.8)
n

Using the Poincare polynomial pv,λ, we define the corresponding Kazhdan-Lusztig
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polynomial

(1.9) P^ = t'w-'MP,.i.

(Here, and in what follows, / for /eZ[ί, f - 1] denotes the image of / under the
automorphism of Z[ί, ί"1] defined by /t-*/"1.) Thus, in case A is finite, we have

(1.10) LL(λ)-]=Σ(~ i)'α)-'(v)Λu(-- i)Mv)]
V

in the Grothendieck group of ̂  [8; Prop. 3.2]. (A similar, but more complicated formula
holds when A is not finite [9; Prop. 3.1 1]. However, we will not use this here.) Observe
that PVtλ = Q unless v<λ.

Let $ L be the full subcategory of Db(%>) with objects X such that, for any weight
v and integer n, if /" has nonzero coefficient mpVtX, then n = £(v) (mod 2). Put $>R = DS'L.
Following [8; Defn. 2.1], # has a Kazhdan-Lusztig theory if and only if L(Λ)[-/(/l)] e<fL

for all λeΛ. (When the weight poset A is finite, this condition is equivalent to the
assertion that L(/l)[-/(/l)]eOb(Z)b(^)) has a "filtration" (in a certain sense) by shifted
Weyl modules K(v)[fc] with fc = φ) (mod 2). See [8; Thm. 2.4] and [10; §3].) The
importance of these concepts is suggested by the fact, established in [8; §3], that if
X, ΓeOb(<fL), then

(1.11) Σ dim HomePC £7)^ = £ Pτ,χPτ,γ

Thus, if ̂  has a Kazhdan-Lusztig theory, the groups Ext%(L(λ), L(v)) can be calculated
in terms of the Poincare polynomials. In turn, these polynomials are often recursively
determined. (See Theorem (3.5) below, for example.)

2. Relations between representations of GLq(ri) and SLq(n). The representations
of quantum linear groups Gq = GLq(ri) and Gq ~ SLq(ri), q a nonzero element of k, are
studied in detail in [31]. This section is devoted to making clear the connections between
the representations ofGq and those ofGq. Some results are quoted from [31], and some
results are new (and complete those of [31]). (For further results on GLq(n), SLq(ri) and
their infinitesimal subgroups and the finite quantum enveloping algebras of [28], see
[33].)

We adopt the "naϊve" point of view of [31], identifying the category QGrfc of
quantum groups over k with the dual of the category &-Hopf of fc-Hopf algebras. The
Hopf algebra corresponding to a quantum group G, denoted by fc[G], is usually called
the coordinate algebra of G. From this point of view, a rational G-module is nothing
but a /c[G]-comodule. Recall the construction of the coordinate algebras fc[GJ and
&[GJ for a nonzero parameter qek. We begin with an associative algebra k[Mq(ri)\
generated by n2 elements Xij9 ij= 1, 2, . . . ,«, with relations
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(2.1) XriXai = q-lXaiXri9

Xri Xsj = Xsj Xri , if r < s and / >j

r y if r<s and i<j .

It is known that k\_Mq(n}] is a noncommutative "polynomial" algebra in the above-
mentioned n2 generators. It is also known that k[Mq(n)~\ is a bialgebra whose co-
multiplication A and augmentation map ε are given by

(2.2)
fc

There is a central group-like element, called the quantum determinant, given by

(2.3) z>,= Σ (-<

where <Ξ>n is the symmetric group in n letters, serving as the Weyl group. The coordinate
algebra ofGq (resp., Gq) is the localization of k[Mq(n)~\ at Dq (resp., the quotient algebra
of k\_Mq(n)~\ by the ideal generated by Dq— 1). These algebras are Hopf algebras with
the same comultiplication Δ and augmentation map ε as given in (2.2).

The closed subgroup Tq (resp., Tq) of Gq (resp., Gq) defined by the ideal generated
by the Xip iφj, is an algebraic torus, in the usual sense, with character group

(the operation in the group is the multiplication in the coordinate algebra). Let

in both cases. Then Φ is a root system of type Δn_± with Φ+ as its set of positive roots,
and X(fq) (resp., X(Tq)) is identified with the weight lattice X as defined in the "List of
Notation" (in the case of Gq, Xmust be the exceptional case as mentioned there). Recall
that there is a surjective homomorphism X(fq)-*X(Tq)9 λt-*I9 which is the identity on

Xit for i<n and sends Xnn to X^X^" '^"-i.n-i Also

? λeX(ΐq)+ if and only if
λ€X(Tq) + . As in the classical case, now we can define the weights and formal characters
for rational G^-modules or rational G^-modules.

Now let q be an /-th primitive root of 1 . (What we will say will be trivial if q is
not a root of 1.) For λeX(ΐq)+ (resp., Z(Γ^)+), we have the following rational modules
for Gq (resp., Gq):

Lq(λ) (resp., Lq(λ)) — the irreducible (^-module (resp., G^-module) with highest
weight λ.

Vq(λ) (resp., Vq(λ)) — the Weyl module (i.e., the universal highest weight module) with
highest weight λ for Gq (resp., Gq).



INFINITESIMAL QUANTUM GROUPS 401

Aq(λ) (resp., Aq(λ)) — the "induced" module with highest weight λ for Gq (resp., for
Gq); the module can be described as the universal module with
the property that it has an irreducible socle Lq(λ) and all other
composition factors have smaller (with respect to the ordering
<) highest weights. Also, this module is denoted by H°(λ) in

[31].

Tq(λ) (resp., Iq(λ)) — the injective hull of Lq(λ) (resp., Lq(λ)).

Since Gq is a closed subgroup of Gq we have a restriction functor from the category of
rational G^-modules to the category of rational G^-modules. Concerning this functor,
we have the following theorem:

(2.4) THEOREM. For λeX(fq) + 9 we have
(1)
(2)

(3)
(4)

PROOF. This theorem, except for (4), is a special case of the connection between
the representations of a parabolic subgroup of Gq and its "semisimple part" developed
in [31]. See [31; (8.4.8) and (8.4.6)] for (1) and (3); (2) then also follows, since the
well-known duality between Weyl modules and "induced" modules. As for (4), [31;
(8.4.4)] claims that Iq(λ)\Gq is injective. Then (4) follows from Lemma (2.5) below, Π

The coordinate algebra /c[GJ is Z-graded in the usual manner, and all its
homogeneous components are subcoalgebras. We call a rational G^-module V with
structure map τ homogeneous of degree r if τ(K)c V® fc[(/Jr. A standard argument
shows that any (^-module is a direct sum of its homogeneous components. In particular,
an indecomposable (^-module is homogeneous. This is the first conclusion of the
following lemma. (One also obtains the conclusion from the linkage principle [31;
(10.3.5)], noting that the affine Weyl group W{ is degree-preserving.)

(2.5) LEMMA. (1) An indecomposable Gq-module is homogeneous and it remains
indecomposable when restricted to Gq;

(2) For a homogeneous Gq-module V, a subspace is a Gq-submodule if and only if
it is a Gq-submodule.

PROOF. To prove (2), suppose our module V has degree r. Recall that we have a
canonical epimorphism

θ:GqxGm->Gq

defined in [31; (6.2.2)], where Gm, whose coordinate algebra is fc[C?m] = Λ[ί, ί"1], is
viewed as the scalar subgroup of fq. Thus, a subspace of V is a G^-submodule if and
only if it is a Gq x G"w-submodule. However, it is easy to see that the restriction of V to
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Gm has the map v\-^v® f, for all ve F, as its structure map. Obviously, this implies

(2) of the lemma. The second conclusion of (1) now also follows. Π

Now we have the following result in the opposite direction.

(2.6) THEOREM. Every indecomposable Gq-module lifts (not uniquely) to a homo-

geneous Gq-module.

PROOF. Let V be a indecomposable G^-module. Thanks to the linkage principle

for Gq ([31; (10.3.5)]), the injective hull of V is of the form

for a fixed λeX(Tq) + . Let λeX(Tq) + be an inverse image of λ. Then

is a lifting of/, by Theorem (2.4). Since / i s homogeneous, Lemma (2.5) can be used

to obtain a G^-submodule of /which is a lifting of V. Π

It is known that the formal characters of Weyl modules (which are the same as
the formal characters of "induced" modules, and are exactly the Weyl characters) form
a Z-basis for the subring of ^-invariants in ZX(Tq) (resp., ZX(Tq)). Also, any chLq(λ)

or chLq(λ) is PF-in variant. Thus, we can express chLq(λ) and chLq(λ) as Z-linear

combinations of the formal characters of certain Weyl modules. Suppose that λ eX(fq)

is a weight in the bottom /-alcove, and that WE H^with w λeX(Tq)+. Using the linkage

principle again, we have

y λeX(fq) +

and

chLq(w λ) = Σ cywchVq(y λ)
yeWl

y XεX(Tq) +

for cy?w, cy>weZ.

From the above discussion, we have the following result:

(2.7) THEOREM. With the above notation and assumption, cy^ = cy^for all y, w.

As defined in [31;, Chapt. 7], there is a Frobenius morphism F: Gq-+G = GL(ri),

whose comorphism sends xij9 the (i, j)-coordinate function of G, to X\j. Let (Gq)ί, the

Frobenius kernel of Gq, be the kernel of F in the categorical sense, and (G^^T be the

pull-back under F of the diagonal torus T of G. Moreover, F induces a morphism, also
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called the Frobenius morphίsm, F: Gq-+G = SL(n). We define the Frobenius kernel (Gq)1

and the pull-back (G^Γ of the diagonal torus T of G similarly.
In [31; Chapt. 9], a representation theory for (Gq)1 and (G^Γis developed. It is

also possible to develop a similar theory for (Gq)1 and (G^Γ. Also, an "infinitesimal
version", i.e., a similar theory for (G^Γand (G^Γ, of the theory in this section can
also be obtained. We will not go into details here. However, we would like to point
out some key links to the theory. One of them is a "density theorem" for (G^Γ. It
may be obtained from the "density theorem" for (G^^T ([31; (9.1.2)]) together with
the canonical epimorphism Θ1: (Gq)1TxGm-^(Gq)1f, which is the restriction of the
epimorphism θ used in the proof of Lemma (2.5). Also, in order that the infinitesimal
"induced" module A\(λ) (denoted by Z(λ) in [31]) for (G^Γhave "correct" dimen-

sion, we need a result similar to [31; (9.6.1)]. However, the proof for [31; (9.6.1)]
works also for our case. Finally, for a result similar to Theorem (2.6) above, a linkage
principle for (G^ Γ-modules is necessary. Here we give the statement and a proof of
the strong version of the principle.

(2.8) THEOREM (infinitesimal strong linkage principle). Let λ,μeX(fq) (resp.,
λ, μeX(Tq)) be such that the irreducible (G^^T-module (resp., (Gq) ^-module) with highest
weight μ is a composition factor of the "induced" module with highest weight λ. Then μ | λ.

PROOF. Since we will have a result similar to Theorem (2.4) without using the
linkage principle, we need only to consider the case of (Gq)1 Γ-modules. Denote the
irreducible and the "induced" (G^ Γ-modules with highest weight λ by L\(λ) and A\(λ),
respectively. Note that in the "List of Noation" the uparrow partial ordering is
defined as in [19], instead of that used in [31] (two orderings are the same in the
dominant chamber, see [34]). This orderingJs preserved by translations in Wλ. Thus,
we may assume that all composition factors A\(λ) have dominant highest weights. Then

by [31; (10.1.1)], together with the Kempf vanishing theorem for G, we see that if L\(μ)
is a composition factor of A\(λ), then Lq(μ) is a composition factor of Aq(λ). Now the
strong linkage principle for Gq gives the needed result. Π

The method used in the above proof is also used by [3; §2.9] in the circumstances
of quantum enveloping algebras.

3. Quantum groups and quantum enveloping algebras. In the remainder of this
paper, except for the Appendix, we assume that the field k has characteristics zero. Let
q E k be a fixed primitive /-th root of 1. We are interested in the cohomology of quantum
groups and quantum enveloping algebras with parameter q. In order to unify the
treatment in both cases, we make the following general set-up.

We are working with four abelian categories: <$, ̂ , $q and Ήq. The main features
of these categories are as follows:

(1) The category <& is semisimple (i.e., any object in this category is a direct sum



404 B. PARSHALL AND J.-P. WANG

of irreducibles), with X+ as the indexing set of its irreducibles. Thus, # can be viewed
as a highest weight category via a partial ordering on X+9 say "<". Denote by L(λ)
the irreducible object with highest weight λeX+. Hence, A(λ) = V(λ) = L(λ).

(2) The category (6q (resp., #*) is a highest weight category with indexing poset
(X+91) (resp., (X9f)) and duality functor D (resp., D^). We will denote the irreducible,
"induced" and "WeyΓ objects in <gq with highest weight λ by Lq(λ), Aq(λ) and Vq(λ),
respectively, and denote those objects in $q by L\(λ)9 A\(λ) and V\(λ), respectively.

(3) The full subcategory <£?* (resp., (#*)reg) of <gq (resp., <#*) consisting of all
objects whose composition factors have regular highest weights satisfies the
conditions (1.!)-(!.4) with length function £ as defined in the "List of Notation". (In
order that these subcategories are nonempty, we must assume l>h.)

(4) The irreducible objects in ^\ are indexed naturally by X/IX. For λ e X9 denote
the irreducible object with "highest" weight λ (mod IX) by L\(λ).

(5) There is a "Frobenius twist" functor F* : tf-^, Fι-> V(l\ such that L(λ)(l} =
Lq(lλ) for a\\λeX+.

(6) There are restriction functors ̂ ->^ and ̂ -> ,̂ both of them preserve the
irreducibility of any irreducible object with /-restricted highest weight.

(7) There are additive functions (the formal character functions) ch from the
categories #, C6q and ^\ to the group ring ZX such that

ch(K(ϊ)) = (chK)( l ), for Feθb(^); ch K=ch(K|#ι), for Feθb(^),

and chL(λ) = χ(λ) for λeX+.
There are many other properties these categories and functors have. It is almost

impossible to list all them. Instead, we will indicate what there categories and functors
are in the case of quantum groups and in the case of quantum enveloping algebras, in
order that we can freely use all known results related to our set-up.

A. The case of quantum groups: This case is fully discussed in §2. Let Gq be
GLq(n) or SLq(n)9 G the corresponding reductive algebraic group over k9 (Gq)ί the
Frobenius kernel, and (G^^T is the pull-back of the diagonal subgroup T of G. Then
we have the following four categories.

^ — the category of finite dimensional, rational (/-modules;
y>q — the category of finite dimensional, rational G^-modules;
$q —the category of finite dimensional, rational (C/^Γ-modules;
^ —the category of finite dimensional, rational (Gq)1 -modules.

Let the "Frobenius twist" functor F* be the pull-back via the Frobenius morphism
F: Gq^G as defined in §2, and the restriction functors <eq-+$l and ^-»^ be the
ordinary restrictions. By the theory developed in [31] and §2, all conditions above are
satisfied.

B. The case of quantum enveloping algebras: We adhere generally to the notation
of [27], [2], [3]. We remind the reader that in using the results of [2] (resp., [3]) we
are often required to assume that / is a power of an odd prime p (resp., equals an odd
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prime/?). For the simple Lie algebra cj with root system Φ, denote by £7(g) its universal

enveloping algebra. We can consider the "arithmetic" quantum deformation Uq(§) as

defined by Lusztig [27], see also [2], [3]. As an algebra, Uq(§) is generated by elements

Ei9 E
(l\ Fh F(P and Kf* (/= 1, 2, . . . , rank g) satisfying a set of now well-known relations.

Also, Uq(o) decomposes as £7+£7°£7~, where U+ (resp., £7") is the subalgebra generated

by the Ei9 E(}} (resp., Fi9 F\l)), and £7° is a subalgebra generated by the K*1 and certain

other elements, denoted l'c for ceZ and teZ+ in [27], [2], [3]. It is known that

X can be identified with a subgroup of the group Homalg(£7°, fe).

As in [27; Prop. 7.5], there is a "Frobenius homomorphism" F: £7g(g)->£7(g),

which sends Eh Ft and Kf1 — 1 to 0, and sends Is jz) (resp., Ff}) to the root vector of the

i-ih simple root (resp., negative simple root). The image of £7° is £7(fy), the universal

enveloping algebra of a Cartan subalgebra of g. On the other hand, the subalgebra

u of Uq(o) generated by Ei9 Ft and K*1, which is finite dimensional, serves as the

"Frobenius kernel". We also consider the subalgebra of u generated by 11 and £7°.

An £7<ϊ(g)-module V is called integral if it is a direct sum of 1-dimensional

£7°-submodules and if the Ei9 Fh E\l) and Fj° act locally finitely. If, in addition, the

algebra homomorphisms U°-+k (weights) determining the 1-dimensional £/°-
submodules of V are all in X9 V is said to have type 1. Similar definitions are applied"
to w-modules, as well as to w-modules if we use w° = £7°nw instead of £7°. Then by
weights of an integral £7/z(g)-module or a w-module V we mean the £7°-weights of V,

and the formal character ch Fis its £7°-formal character. The weights and formal character
of a £7(g)-module are defined in the usual way.

As in the quantum group case, we have a list of categories:

* — the category of finite dimensional £7(g)-modules;
<βq — the category of finite dimensional, integral £7€(g)-modules of type 1
<$q — the category of finite dimensional, integral w-modules of type 1;
Ήq — the category of finite dimensional, integral w-modules of type 1.

The "Frobenius twist" functor is the pull-back via F, and the restriction functors ̂ -̂

and Ήq^Ήq are the ordinary restrictions.

We now summarize some general facts concerning these various categories which

will be used in this paper.

The following result for quantum linear groups is proved in [31; (7.4.1)] (together

with the theory in §2). From the viewpoint of quantum enveloping algebras, see

Andersen-Polo-Wen [3; Thm. 4.6].

(3.1) PROPOSITION. The restriction to ̂  and^q of an infective object in <6!

q remains

ίnjective.

A proof of the following elementary result for quantum group GLq(n) is given by
Chen [5]. It holds for SLq(n). For the representations of quantum enveloping algebras,
the result is due to Andersen-Polo-Wen [3; Thm. 3.4]. (In fact, the proof given in [3]
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applies equally well in the case of quantum groups.)

(3.2) PROPOSITION. For any object in ̂ q, the ^q-socle of V equals the $q-socle and
^l-socle of V.

For λ e X, we denote by Ήq(λ) the full subcategory of ̂ q consisting of objects whose
composition factors have highest weights in Wl λr\X+, and denote by ^q(λ) the full
subcategory of $q consisting of objects whose composition factors have highest weights

in Wt λ. Then <gq (resp., #£) is the "direct sum" of ^(/l)'s (resp., $*(λ)'s), λ running
over Ct n X. Moreover, we have the following result.

(3.3) PROPOSITION. Assume that l>h, and fix λeX+ r\Ct. Then

(1) Ήq(λ) is a highest weight category with weightposet (W^λftX+,]}. It satisfies

conditions (!.!)-(1.4) and has irreducible (resp., induced, Weyΐ) objects Lq(τ) (resp., Aq(τ),

(2) Similarly, $q(λ) is a highest weight category weight poset (Wt λ, ΐ). It also
satisfies all the conditions (!.!)-(1.4) and has irreducible (resp., induced, Weyΐ) objects
L\τ) (resp., A\(τ), V\(τ)} for τεW^λ.

PROOF. For GLq(n), (1) (resp., (2)) follows easily from [31; (10.4.8)] (resp., [31;
(9.8.3)]) together with the linkage principle for <gq (resp., #*) proved in [31; (10.3.5)]
(resp., (2.8)). For SLq(ή), we can then use the discussion of §2. Note that the argument
used in the proof of [31; (10.4.8)] works also for quantum enveloping algebras (see
also [11; Thm. 3.2]). This, together with [2; Thm. 8.1], gives (1) for quantum enveloping

algebras. Finally, by [3; Lemma 4.10 and Prop. 2.9], we also have (2) for quantum

enveloping algebras. Π

Let 0>Xiy be the classical Kazhdan-Lusztig polynomial associated to x, y e Wl (as
defined in [23]) or, more generally, associated to x, ye W{ (as defined in [21]). In this
paper, it is convenient to regard the Kazhdan-Lusztig polynomials as polynomials in

t = q 1 / 2 , where q is the variable in [23]. (Thus, in (3.4) below, we evaluate our poly-
nomials at t= — 1.) Recall that Lusztig [27] has conjectured, in the context of quantum
enveloping algebras, that for λe(£lnX+, we have, for any we Wl with w λeX+,

(3.4) chL«(w λ)= Σ (-l/(y) /(w)^wo.wWo(-l)chK^ λ).
yeWl

In (3.4), the summation is over all ytW{ such that ywQ<wwQ and y λeX+. (Here
w0 e W is the long word in the Weyl group W.) It follows easily from [20] (together

with the theory of #-Schur algebras developed in [31; Chapt. 11]) that the validity of
(3.4) in type A n _! is equivalent to the analogous statement for the quantum group
SLq(ή). (See also results of Lin [25] for the relationship between the representation
theory of the quantum enveloping algebra in type A n _! and that of SLq(n).) Also, by
Theorem (2.7), the character formula (3.4) is equivalent to the analogous statement for

GLq(n).
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The following result is due to Cline-Parshall-Scott, see [8; (5.8)], [10; §5]. (These
results generally assume that the highest weight category has a finite weight poset.
However, since Xr+g is bounded below, the results clearly generalize to the present

situation.)

(3.5) THEOREM. Assume that l>h, and fix λec^l^X+. Let A be an ideal in the
poset (WΊ λnX+tϊ), and denote by ^q(K)\_A\ the full subcategory of^q(λ) consisting of
objects whose composition factors have highest weights in A. Then the following statements

are equivalent.
(1) The category ^q(λ)\_A] has a Kazhdan-Lusztig theory (as defined in §1).
(2) For any w λeA, the character formula (3.4) is valid.

Furthermore, when either of these conditions hold, the Kazhdan-Lusztig polynomials Py.λίW.λ

(in the sense of (1.9)) are given in terms of the classical Kazhdan-Lusztig polynomials by

the rule

P — ̂-1 y λ,wλ ^ woy,\vo\v

Also, for y λ, w λeΛ, we have (by (1.11))

z λeΛ

A straightforward argument, given in [10; Prop. 5.7], shows that in formula (3.4)
one can replace the terms ^ywo>wwo(— 1) by ^Woy,WoW(— 1). Thus, the description of the
•Py λ,w λ given in (3.5) and the formula (1.9) are consistent with the character formula
(3.4) above. Also, we adopt the convention that &y W = Q if y ^w.

We observe that in [24], Kazhdan-Lusztig announce a proof of the formula (3.4).
Thus, for any λ e (6l n X+ , the category Ήq(λ) has a Kazhdan-Lusztig theory by Theorem
(3.5). Because the full details of the proof of [24] are not yet available, we often prefer

in certain results in the next two sections to regard the condition that ^q(λ) has a
Kazhdan-Lusztig theory as a hypothesis. Observe that under the hypothesis that (3.4)
holds for all regular weights, Theorem (4.2), Corollary (4.3), and Theorem (5.2) below
all give, in view of Theorem 3.5 above, explicit cohomology calculations in <βq and <$q.

(3.6) NOTATIONAL CONVENTION. Let 3t be one of the categories #, <SV <€\ or #£.
There is a trivial object kεOb(@). (That is, there is a 1 -dimensional vector space on
which a module structure over a Hopf algebra is given by the augmentation map, or
a comodule structure over a Hopf algebra is given by the unit map. In our case this

trivial object is exactly the irreducible object with 0 highest weight.) We will denote by
>, V) the group Ext^(&, V) for any object V of ®.

4. Cohomology of Ήq. We begin with the following lemma which follows im-
mediately from Propositions (3.1) and (3.2).
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(4. 1) LEMMA. A minimal infective resolution for an object V in ̂ q remains a minimal
injective resolution for V viewed as an object in if* or ̂  .

Recall that for objects A and B in <e\, Ext^A, B)^H\^ B ® A*) is canonically
an object in #. (Clearly, we only need to consider the case z = 0. For quantum linear
groups, see [31; (2.8.2) and (2.11.1)]; for quantum enveloping algebras, this is almost
trivial.) The following theorem gives the ^-object structure for certain Ext groups.

(4.2) THEOREM. For any object V in Ήq and any λεXh we have the following

isomorphism in %>:

), K)(x>L(τ),
τeX +

where Ext^g(L9(/l + /τ), V) is regarded as a trivial object in Ή.

PROOF. Let 0->F->7" be the minimal ^-injective resolution of F, which is also
the minimal ^-injective resolution of F, by Lemma (4.1). Clearly, the minimality of

the resolution and the irreducibility of Lq(λ) and L\ (λ) imply that both the complexes

0-»Hor% (Lq(λ), 7") and O-^Hom^L^/l), /') have zero maps as their differentials.

Thus,

τ), /') ® L(τ)

, F)®L(τ),

as required. Π

In many problems, we are mainly interested in the special case in which V=Lq(μ)

for a dominant μe X+, and both A, μ are in the ίFrorbit (under the dot action) of 0.
In this situation, we can strengthen the above result to the following corollary.

(4.3) COROLLARY. Suppose l>h. Let w, w'e W and μeX with w' Q + lμeX+. Then
we have the following Ή -isomorphism

Ext^j (L\(w 0), Lq(w' 0 + /μ)) £ φ Ext ̂ q(Lq(w 0 + Iλ + /τ), Lq(w' 0 + /μ)) ® L(τ) ,
τeX +

λ-μ+τeQ

where λeX is uniquely determined by the condition that w Q + lλeXt. In particular,

H'φϊ, k)* ® Ext^ί/τ), k) ® L(τ) .
τ e Q f ) X +

PROOF. Since Lj(wO)^L^(wO + /A), we need only to show, by Theorem (4.2),

that Ext^ (Lq(w Q + lλ + h), Lq(w' Q + lμ))^0 for some / implies A-μ + τeβ. The link-
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age principle ([31; (10.3.5)] and [2; §8]) shows that, if ExtyZΛ>
, then w 0 + W + /τ = z (w/ 0-f /μ) + /ζ for somezeWandζeQ. That is,

This in turn implies that w~lzw'=l and w~1λ + w~1τ — w~1zμ — w~1ζ = 0, since from
the condition l>h we obtain that |(j 0, α v ) | < / for any ye J^and αe77. Thus,

as required. Π

It is interesting that, assuming the character formula (3.4), well-known identities

involving Kazhdan-Lusztig polynomials readily yield closed formulas for certain

cohomology groups. We illustrate this with the following result, which uses the
Kato-Lusztig interpretation of the ^-analogue of Kostant's weight multiplicity formula.

(4.4) THEOREM. Assume that l>h and assume that the character formula (3.4) is
valid for all regular dominant weights. Fix zeW and λ e X so that z 0 + lλ e X+ . Then for
any integer i the *$ -object Hl(%>^ A(z Q + lλ)) has character given by

μeX+ we\V

PROOF. For a dominant weight z 0 + /Λ, we have

(4.4.1) Ex4.(fc,Λ«(Z 0 + /λ))^ 0
μeX +

as an object in ̂ , by Theorem (4.2). Also, since l>h, z Q + lλeX+ implies that λ eX+.
Using the formula for the length function on X given in "List of Notation", together
with (1.6) and (1.9), we conclude that

(4.4.2) ΣdimExt^(LmΛ<(z 0 + /^^

Since ^(w0//μ) = /(w0) + /(//j[ί), the recursive relations [23; (2.3.g)] for Kazhdan-Lusztig
polynomials, together with Theorem (3.5), give

(4.4.3) ^ 0+Zλ,// i = ̂ WθZίlz~ 1 A,HΌί/μ~^ί/z~ 1 A,VVoίZμ~ t ^ίZAZ,>Voί{ μ '

If ξ i— > £* = — w0(£) is the opposition involution on X, w0tlμ = ί__ ίμ*w0. An easy application

of the length formula in the "List of Notation" gives, since μ* is dominant, that

S(t.l*) = S ( ί l ) . Hence

so that
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for all simple reflections se Wt. Therefore, by [23; (2.3.g)] again, we have that

By [21; Thm. 1.8] (together with the length formula in the "List of Notation", which
establishes that, for ξeX+, the longest word wξ in WtlξW is w0tlξ),

(4.4.5) ^Wo,,Λ.« o.,μ = '2(A~* ' W ) Σ Σ (-l^pfr μ-Xit2'
weW

for λ<μ. Observe that if λ£μ, then vμ0/u^w0/ ί μ (see [29; p. 210]), so, by our conven-
tions, the left hand side of (4.4.5) vanishes. But the right hand side of (4.4.5) vanishes
trivially when λ£μ, so it follows that (4.4.5) holds for all λ, μeX+. If M is a finite
dimensional rational (/-module, let [M : L(τ)] denote the multiplicity of L(τ) as a com-
position factor of M. By (4.4.1)-(4.4.5), we have

=Σ Σ (-iX^-Ww μ-λ)/'.
i \veW

D

Let @ = (£,(&q or ̂ , and denote by ^grd the category in which objects are graded
vector spaces A = @ieZ + Aί with ^eOb(^) for all / and morphisms are homogeneous
homomorphisms φ = Σi<=z+(Pi °f degree 0 such that each φf is a morphisms in 2. Define
the graded formal character of A = @ieZ+AieOb(^gτd) to be the element in the group
algebra Z[[/]][Z] of X over the ring of formal power series over Z in a variable t given

by

CΆ(A)= Σ chμ^'
ieZ +

Let g be the semisimple (split) Lie algebra over k having root system Φ, and G the
corresponding algebraic group. Let Jf = Jf(^} be the G- variety of nilpotent elements
in cj. It is well-known that &[,/K], as a G-algebra, is isomorphic to S'(g*)/7, where /is
the ideal in the symmetric algebra fc[g] = 5"(g*) generated by the G-invariants S+(cj*)G

(i.e., G-invariants having 0 constant terms). Since the ideal /is homogeneous, k\_Jf] is
graded as a rational G-module. That is, it is an object in ^grd. It is also known that

can be expressed in terms of the "/-part" partition function as follows ([16]):

(4.5)

As an immediate application of (4.4), (4.5) and (A. 3. 5) we make the following ob-
servation.

(4.6) COROLLARY. The graded character of //"(#*, k) e Ob(^grd) w given by
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Thus, H'^q, k) is a commutative , graded algebra concentrated in even degrees.

(4.7) REMARKS, (a) In view of (4.4), it is natural to define the cohomology variety

of ̂  to be the scheme Spec(7Γ(<^, k)\ By (4.4), H2(^q, fc)^g^g* as an object in #.

Grade the symmetric algebra £'(9*) by giving g* homogeneous degree 2. Therefore,

any ^-isomorphism Ψ2 : g->#2(^), k) extends to a ^grd-morphism

of commutative ^8rd-algebras. Since Extjβ(fc, fc) = 0 for «>0 (see [31; (10.4.6)], where

the argument works also for the case of quantum enveloping algebras; see also [2;

(9.9)]), Corollary (4.3) implies that Hn(^,k)G = Q for all such n. Thus, Ψ' factors

through the surjective mapS^g)-^^] to induce a ^grd-homomorphism

It seems likely that Ψ' is an isomorphism of ^grd-algebras.

(b) Let M be an object in ^\. As discussed in §A.4, the natural algebra
homomorphism &— >End(M)^M*® M defines an algebra homomorphism

obtained by composing Ψ' above with the natural algebra homomorphism

//'(#*, k)^Hm(<#*, End(M)), see (A.4.2) in the Appendix. Then, mimicking [13], define,

for an object M in ̂  its support variety | g |M to be the algebraic subscheme of

g = SpecS'(g*) defined by the ideal Ker(*PM). (To keep in strict analogy with [13], one

should replace Ker(*FM) by its radical.)
(c) The conclusion of (4.4) is inspired by an analogous result for the cohomology

of the Frobenius kernel of a reductive group in characteristic p proved in [1; 3.8] (under

a sometimes restrictive condition on λ). Relative to (4.6), see [1] as well as in [12].

(d) Assuming that (3.4) holds, (4.2) yields explicit determinations of the Ext'

groups between irreducible objects in #£, in view of (3.5). In particular, we have the

following explicit description of Ext1 groups for #*. Suppose w.yeW and ξ,ηeX are

such that w Q + lξ€Xl and y Q + lηeX^ Then, as an object in <g, we have

θ-ξeX+

θ-ηeQ

where μ : Wl x Wι~»Z is (the natural generalization of) the "μ"-function of [23].

5. Cohomology of $>\. Let μeX+ and write μ = μ0 + lμl with μ0

e^V By the

tensor product theorem for <gq ([31; (9.4.1)] and [27; Thm. 7.4]), Lq(μ}^Lq(μQ)®

\ The module £(μι)(1)|^j is a direct sum of 1 -dimensional objects of the form
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L\(lζ) = lζ with ζeX. The multiplicity of Iζ is the multiplicity of weight ζ in L(μ1), which
in turn equals

m ,,(0= Σ (-ιY(w)$>(w μι-ζ).
veW

We obtain the following result. (Recall that if λ = λ0 + lλ1 with λ0eXh then

=£%yk®« ι.)
(5.1) LEMMA. Let λ = λ0 + lλίeX and μ = μ0 + lμγ e X+ with λθ9 μ0 e Xt. Then

Now we can prove the following theorem.

(5.2) THEOREM. Let λ = λ0 + lλl9 μ = μ0 + lμ1 eX with λθ9μ0eXh and V be a

q- object. Then

(1) dimExt^AW, K) = Σ mζμι)dimEx4ς(L«(A0 + /0, V) .
ζsA +

(2) dim Ext^(A W, £?(μ)) = Σ "ί̂ i - Mi) dim Ext^(L"(A0 + Iζ),

PROOF. (1) As in the proof of (4.2), let 0-»F-»7" be the minimal ^-injective
resolution of F, which is also the minimal ̂ -injective resolution of F, by Lemma (4.1).
Then

ΐ)

= Σ mζ
ζeX +

as required. Note that in the last two steps Lemma (5.1) is used.
(2) Clearly, Ext^(Lj(/l), L?(μ))^Ext^ι(£iμ + /τ), L\(μ + h)) for any τeJT. In

particular, we have

Then we use (1) to deduce (2). Π

Theorem (5.2) has some important consequences. One of them is the following
"even-odd vanishing behavior" of the extension groups between irreducible ^-objects.

(5.3) THEOREM. Assume that l>h and that the character formula (3.4) is valid for all

regular dominant weights. Let λeCtnX+9 and w9 wf e Wv IfExt^ί(L\(w λ\ L\(w' λ))^Q9

then t(w) - S(w') ΞΞ i (mod 2).
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PROOF. By using a translation in ,̂ we may assume that w' λ is dominant. In
this case L\(w' λ) is a ^-direct summand of Lq(w' λ). Therefore,

/I), £j(w' * λ)) 7^ 0 => Ext^ι(£l(w /I), L«(w

By Theorem 5.2, this implies that Extίsq(Lq(w λ + lζ), Lq(w' λ))=£θ and mζ + μ ι(//1)/0 for
some C, where w Λ, = μ0 + /μ1 with μ0

e^ This, in particular, implies that ζeg. Since,
by our assumption and Theorem 3.5, (6q has a Kazhdan-Lusztig thoery, it follows that
£(tlζw)-£(w') = i (mod 2). It is well-known that in Wl a translation has even length.

Thus, /(w) - /(w') = / (mod 2). D

(5.4) REMARK. The same argument shows that, under the same hypothesis as in

(5.3), for any w, wΈWl with w' λeX+, Ext^ι(£?(w λ), Aq(w' λ))^Q implies that

(5.5) THEOREM. Assume that l>h and that the character formula (3.4) is valid for
all regular dominant weights. Let C and C' be a pair of adjacent l-alcoves, and let
λ e C, μ £ C' be Wrconjugate. Then

PROOF. As in the proof of (5.3), after applying a translation in ̂  one of these
alcoves, say C', can be assumed to be /-restricted, and the other one to be dominant.
Thus, L\(μ) = Lq(μ) |^ι, and λ = λ0 + lλί with λ0 G Xl and λl e X+ . Then, by Theorem (5.3),

dim Ext Jj(£l (λ\ L\(μ)) = Σ mfa) dim Ext^q(Lq(λ0 + /O, Lq(μ)) .

Because of the assumption that <&q has a Kazhdan-Lusztig theory, the right hand side
of the equality has at least a non-zero term — the term with ζ = λ^by [8; (5.3) and (5.8)].
This proves the theorem. Π

We conclude this section with the following easy result.

(5.6) PROPOSITION. Suppose that l>h. For Wt-conjugate weights λ, μ in adjacent
l-alcoves,

dimExti.(£?(λ),£ϊ(μ))<;l.

In particular, if the character formula (3.4) is valid for all regular dominant weights, then

PROOF. We can assume that μ t λ. Since

Hom^Aμ), A\(μ)IL\(μ)) = 0 ,

the long exact sequence of cohomology yields an injection

f (A), L\(μ)) ^ Ext&(£l(λ), A\(μ)) .
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On the other hand, the standard arguments involving Jantzen translation operators (see
[19; pp. 334-335]) apply to the category ,̂ so that the right hand side of the above
expression is 1-dimensional. This proves the first assertion of the proposition. The
second assertion follows from Theorem (5.5). Π

Appendix. Cohomology of comodules

In this appendix, A is a coalgebra over a field k with comultiplication A : A-+A ® A
and counit ε: A-^k. It is also assumed that A is unitary in the sense that there is a
coalgebra homomorphism K : k-+A, viewing k as the trivial fc-coalgebra. By abuse of
notation, denote κ(l) also by 1. We will give a brief discussion of the cohomology of
A -comodules.

A.I. Cofixed points and cohomology. Since A is unitary, we can define the cofixed
point functor 2FA, which is left exact, from the category of ^4-comodules to the category
of &-vector spaces: For a (right) ^-comodule V with structure map τ : V-*V®A, put

^(K) = {ι?eK|φ) = ι > ® l } ,

the cofixed points of V. Clearly, the restriction of a comodule homomorphism V-* V
gives a /c-linear map ̂ A(V)-^^A(V'}, which completes the defmiton of the functor !FA.

(A. 1.1) LEMMA. (1) The A-comodule A with comodule structure map A (and any

direct summandofa direct sum of copies of A) is ίnjectίve in the category of A-comodules\

(2) For an A-comodule V, its structure map τ : V^> V® A is an injective A-comodule
homomorphism, viewing V®A as an A-comodule via structure map Ίάv®Δ.

PROOF. It is easy to verify that the functor V±-*V®A from the category of
k-vector spaces to the category of yl-comodules (the comodule structure map of V® A
is iάv (x) A) is a right adjoint to the forgetful functor from the category of ^4-comodules
to the category of fc-vector spaces. Thus, a standard categorical argument proves (1).
For (2), one of the axioms for defining v4-comodules shows that τ is a comodule
homomorphism, and the other axiom, (idv (x) ε) ° τ = idF, ensures the injectivity of τ.

D

Now the following corollary is immediate.

(A. 1.2) COROLLARY. The category of A-comodules has enough ίnjectives.

Because of Corollary (A. 1.2), one can form the j'-th right derived functor
//'(?, A) = Rl^A(l) for z>0. For an ^-comodule V, we call H\V, A) the i-th comodule
cohomology of A with coefficients in V.

A.2. Hochschild complex. It is desirable to construct a standard complex to
compute H\V, A) for an ^-comodule V with structure map τ. For n>0, let
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Γv=V®Al®An

2® "®An

n®An

n+l with A1 = A for i= 1, 2, . . . , n+ I ,

viewed as an ^-comodule via the structure map

τn = iάy ® idAn (x) (x) idAn (x) A .

By (A. 1.1), Iγ is an injective ^4-comodule for n>0. Define a map dn\ 7^->/^+1 by

where

(A. 2.1) THEOREM. The above-defined (Iv, d'} with augmentation map τ : F->/° =

is an injective resolution for V as an A-comodules.

PROOF. It is trivial that d" for i<n is an yί-comodule homomorphism. Thanks to
(A. 1.1 (2)), d"+1 is also an ^4-comodule homomorphism, and then so is dn. Also, it is
straightforward to check that dn°d"~1=Q for n>Q. Thus, (Iv,d') is an ,4-comodule
complex consisting of injective ^4-comodules.

To prove (Iv,d')-is exact in positive degree, we define for n>0 a linear map
σ": In

v->Fv-
1 by

Clearly, for n >0 and / <n, σn + 1 ° d" = - d"~ 1 ° σ". Also, σ" + 1 o dn

n+ 1 = id/?r, by the axioms
for coalgebras. Therefore,

( 7 f l + 1 o r f » + </»- 1o< 7 ' ' = id/» for /ι>0,

which proves the required exactness. Finally, it is easy to verify the exactness of

0 - >K-^/£ — IV.

The theorem thus has been proved. Π

Now we let C"(F, A) = &A(ΓV\ Obviously, &A(A) = k. Hence,

Cn(V,A)=V®Al®An

2® -®An

n with A? = A for /= 1, 2, . . . , n .

It is easy to see that the differential d" : Cn(F, A}^Cn + \V, A) is defined by

where
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3?= i

id^n® K

The complex (C"(F, A), d') is called the Hochschίld complex of Λt with coefficients
in K. By the construction, Hn(V, A) is the /7-th cohomology of the complex.

A.3. Cup product. The comodule cohomology of A with coefficients in the trivial

^-comodule k plays an important role in the cohomology theory of A. One reason for
this is that we can define a product on the vector space 3f(A)= @nH

n(k, A), making
it into a graded /r-algebra. To do this, we form the tensor product of the Hochschild

complex with itself. By definition, the tensor product of a complex (Xm , δ ' ) with itself

it the complex (Xm , δ') with

χ»= 0 J
s + t = n

and

Note that one can identify C s® C* with Cs+t canonically (where, and in the sequel, we
denote C"(k, A) simply by C"). Thus, we obtain a linear map0": C"-+C".

(A.3.1) LEMMA. The above θn's give a cochaίn map θ' : (C\ dm)-+(C°, d ' ) .

Thanks to the Kϋnneth theorem, there is a canonical isomorphism

H"(C'J )^ 0 H8(k9A)®Ht(k9A).
s + t = n

Therefore, the cochain map θ' induces a product 0: Hs(k, A)®H\k, A)-+Hs+t(k, A\
which is clearly associative. This product is called the cup product of JΊf(A), and the
cup product of xeHs(k, A) and yeH\k, A) is usually denoted by xuy.

Next, we will give a second interpretation of the cup product.
Consider two unitary coalgebras A and B and a unit-preserving coalgebra

homomorphism φ : A^B. Then an ^4-comodule Kcan be given a 5-comodule structure

via φ, and ^A(V)<^FB(V). Moreover, a standard homological algebra argument shows
that there is a natural homomorphism φ: Hn(V, A) -*Hn( V, B) induced by φ. Now
suppose that we have a unit-preserving coalgebra homomorphism φ : A ®A-+A. Then
we obtain a linear map Hn(k, A ® A)-+Hn(k, A). On the other hand, a standard homo-
logical argument using Kϋnneth theorem shows that

0 Hs(k,A)®Ht(k,A).
s + t = n

Therefore, φ induces a "product" φ : Hs(k, A)®H\k, A)-+Hs+t(k, A). Generally speak-
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ing, φ will vary when φ varies. However, if we strengthen the condition "φ preserves
the unit" to the condition

(A.3.2) φ(\®y)=y = φ(y®\) for all ye A,

then we have the following surprising result.

(A. 3. 3) THEOREM. Suppose that φ\A®A-*A is a coalgebra homomorphism
satisfying (A.3.2). Then the map φ : Hs(k, A)®H\k, A)-+Hs+t(k, A) induced by φ is the
cup product.

PROOF. We use the standard resolution /" =Γk given in Theorem (A. 2.1). De-
fine a linear map ιl/s't:Is®It^>Is+t by sending (xί ® ®xs®x)®(yι ® ®
yt®y)(x,Xi,y,yj€A) to

Xi® - ®χs®Σxd)yι® -
X

Here we use Sweedler's notation [32], i.e. let

for xεA and r> 1. Also, we denote φ(x®y) by xy for simplicity.
Clearly, in order to verify that ψStt is an ^4-comodule homomorphism, it is enough

to do this for the case s = Q. Let τ be the ^-comodule structure map on 7° ®I* induced
by φ, and σ the Λ-comodule structure map on I*. Then

®yt®y)

®yt®y) .

Thus, ^Sϊί is an ^4-comodule homomorphism.
Define a map i/f" : /"->•/" by ^r" /s@/t = ψ3'*. We claim that ^ " is a cochain map from

(/", d') to (/', d'). As above, we need only to consider elements in 7° ®/ί. We have

with

®yt+l ,
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which are elements in 71 (x) /', and

t+l

Y2= Σ Σ(-
ί=ι yi

which are elements in 7°(x)7ί+1. Note that

Thus we obtain that

Σ Σ (-1)
i = 1 x, )>i

Therefore, ψ' : Γ -+Γ is a cochain map. Clearly, ι/r " is an extension of the identity map

on the augmentation term k. Hence φ is induced by ψ ' .
Because of the condition (A.3.2), the restriction of ^s>ί on CS®C\ which is the

subspace of 7s (x) Γ spanned by vectors of the form xί ® (x) xs (x) 1 ® y1 (x) (x) yt (x) 1,
is exactly the canonical identification of Cs® O with Cs+t. Thus, the map φ gives the

cup product on J#* (A). Π

(A. 3.4) REMARK. If A is a bialgebra, the multiplication of A satisfies condition
(A. 3. 2). Thus, Theorem (A.3.3) in particular implies that if there are two different
bialgebra structures on a coalgebra A9 then the algebra structures on 3? (A) induced by

two different multiplications are the same.

Now we can prove the following result.

(A. 3. 5) THEOREM. Let A be a coalgebra with a coalgebra homomorphism μ:
A®A-+A satisfying condition (A. 3. 2) (e.g., A is a bialgebra). Then the cohomology
algebra (J^(A)9 u ) is skew-commutative in the sense that

xuy = (-l)styux, for xeHs(k,A), yeH'faA).

PROOF. Clearly, μop: A®A-+A, sending x®y to μ(y®x), is also a coalgebra
homomorphism satisfying (A. 3. 2). For an injective resolution 0 -»&—>/' of k as the
trivial y4-comodule, denote by 7^ (resp., J'μOP) the complex /' viewed as an ^4-comodule
complex via μ (resp., μop). Let Θ'μ: Jμ-*J° (resp., Θμ0^\ Jμ0ί>-+J') be a cochain map
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extending the identity map on k. It is well-known that there is an automorphism ξm :
7* ->/' given by

) , for xεJs, yef,

if we regard 7" only as a complex of linear spaces. It is clear that ξ' is an ,4-comodule

isomorphism from 7^ to 7^OP. Thus, we have two chain maps

extending the identity map on k. Since /* is an injective resolution of k and 0->/c-»7^
is exact, we see that θμ and θ'μOP ° ξ ' are homotopic. Now it is clear that the restrictions
θμ and #μOP °ξ' are homotopic cochain maps from ^A(J'} to J^(/'). Hence the induced

homomorphisms μ, μop°ξ: 3tf(A)®Jtf(A)-+3tf(A) are identical, where

for xeHs(k, A),

Thanks to Theorem (A.3.3), both μ and μop are the cup product. The theorem is there-

fore proved. Π

(A. 3. 6) REMARK. When A is a commutative bialgebra, the above theorem is
well-known. In particular, the result is well-known in the context of rational modules
for affine group schemes. For a discussion of the cup product in the dual situation of
the cohomology of an algebra A, see [30; Chap. VIII, §9]. It essentially follows from
the discussion given there that the cup product is induced by the comultiplication A of
any bialgebra structure on A. When A is cocommutative, a dual version of (A. 3. 5) is
proved in [4; Cor. 3.2.2].

A.4. Generalized cup product. In a homology theory, cup product is usually de-
fined in a more general context. This section is devoted to a discussion in this direction.

Suppose A is a bialgebra with product μ. Then the tensor product V® W of two
yl-comodules V and W, which is an A ® yl-comodule, is given an ^4-comodule structure
via μ. Thus, as in §A.3, there is a natural homomorphism

μ : Hn(V® W,A® A)-+Hn(V® W, A] .

On the other hand, we have, by Kύnneth theorem, Hn(V® W, A ® A)^ ®s+t=n HS(V, A) ®

H\W,A). Thus, we obtain a natural homomorphism μv^w\ HS(V, A)®H\W, A)-*

Hs+t(V®W,A), which is associative in the sense that βu®v,w°(βu,v®^w) =

μυ,v®w °(idv®P<v,w)' Clearly, the cup product μ defined in §A.3 is exactly μM. Thus,
μVfW is usually also called the cup product.

Let S be a subgroup of the multiplicative group of group-like elements in A, and
denote the 1 -dimensional ^-comodule corresponding to an element λeS still by λ, and
denote its basis element by \λ. Let
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Then the cup product μA,ζ : H
s(λ, A) ® //<(C, A)-+Hs+t(λζ, A) for λ,ζeS defines a graded

associative algebra structure on 3^(8, A).

As in the case of the algebra J^(A), we can also give a description of the cup

product on J^(S, A) in terms of Hochschild complexes. Recall from §A.2 that the

cohomology group Hn(λ, A] can be calculated by using the Hochschild complex

(C'(λ, A), d'\ where C"(λ, A) = λ®A®n, which will be identified with A®\ and

Σ (-1)'*!®^-!®^.)®^ + !® ®xn + (-l)n + 1x1® ' ®xn® 1 .

(A.4.1) PROPOSITION. Using the above notation and assumption, the cup product β

for group-like elements λ,ζ<=A is induced by the map φs't = ψs^ζ'- Cs(λ, A)®C\ζ9 A)-
Cs+ί(Aζ, A) given by

ij/Stt(x1® * ®*S®JΊ® ®yt) = χιζ® ' - ®χsζ®yι® ® yt

PROOF. We use the injective resolutions given in (A.2.1) and define

/!̂  by sending lλ®xί ® ®xs®x® lζ®JΊ® - ' ®yt+ι to

A calculation similar to that we carried out in the proof of Theorem (A. 3. 3) shows that

ψ5'* is an v4-comodule homomorphism, and we obtain a cochain map by putting all

these homomorphisms together. The details are left to the interested reader.
It is easy to see that if we identify λ ® A, ζ ® A and λζ φA with A canonically,

the restriction of \l/s'1 is exactly ψSίt. D

Let S be as before, and let 8 be the subspace of A spanned by S. Then S is a

subbialgebra (thus, a subcomodule) of A. Clearly, 3V(S, A) = H'(<5, A). The algebra S

is an example of ^4-comodule algebras. In general, an A-comodule algebra is an algebra

which is also an ^4-comodule, and these two structures are compatible in the sense that

the multiplication and the unit of the algebra are v4-comodule homomorphisms.

It 33 is an ^4-comodule algebra, the cup product /%?<B : #"(®5 A)®H'(^B9 A)-+
/Γ(23(x)23, A) can be combined with the homomorphism /Γ(93® 93, Λ)-»/Γ(93, A)

induced by the multiplication of 23 to obtain a multiplication on Jf(33, A) =

/Γ(93, A), making it into a graded algebra. (Thus, J^(S, A) is a special case of these.)

The product on Jf (93, A) can also be called the cup product.

If 93 and £ are ^1-comodule algebras, and θ: 33-»(£ is an ^4-comodule algebra

homomorphism (i.e., it is an ^-comodule homomorphism, and also an algebra

homomorphism), then clearly we have a natural algebra homomorphism θ : Jjf (93, A)^>

Jf (C, A).
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(A.4.2) EXAMPLE. In this example we use some results stated in [31; §§2.3-2.4].
Let A be a Hopf algebra, and V a finite dimensional ,4-comodule with structure map
τ. Then End(V) = V® V* is an y4-comodule algebra. To see this, let {vt} and {/J be a

pair of dual bases for Fand V*. Write Xij = vi®fp viewed as a left operator on V. Let
τ ( v j ) = Σivi®aij- Then the structure map τ* on F* is given by
Thus, the structure map σ of V® V* satisfies

<r(*si) = Σ
r,j

We have JTsί^Γ = δlVJrsΓ. Thus,

= δts' Σ xrf
r,j'

= σ(XsiXsΊ,).

The unit of the algebra V® V* is given by l^

(A.4.4) NOTATIONAL CONVENTION. A bialgebra A can be viewed as the coordinate
algebra fc[G] of a quantum semigroup G, and an ^4-comodule Fis regarded as a rational
G-module. In this context, the cohomology /Γ(F, A) is usually denoted by H'(G, F),
and is called the rational cohomology of G with coefficients in F.

(A.4.5) EXAMPLE. Let Gq = GLq(n) or SZ^/ί) as defined in §2. Let Bq be the Borel
subgroup of Gq defined by the ideal in fc[GJ generated by all Xtj with ί<j. Let
X=X(Bq)^X(Tq). Then we can form the cup product algebra H'(Bq, X). On the other
hand, consider the right ideal 7 of /c[£J generated by all Xu— 1. It is easy to verify
that / is a coideal. Thus, we obtain a quotient coalgebra fe[C/J^fc[jBJ//. (The usage
of the notation fc[(7J is to show some analogy with the corresponding situation of
algebraic groups: In the case q=l9 Uq is a closed subgroup — the unipotent radical of
Bq. However, ifq^l, /c[t/J is no longer an algebra. So, in fact, Uq does not, in general,
represent an object in QGrfc.) One can show, using the description of injective ^-modules

given in [31; §8.9], that the restriction of any indecomposable injective ^-module is
the unique indecomposable injective /c[£/J-comodule — the "regular" comodule /c[£/J.
Moreover, it then can be proved that the natural homomorphism

H (Bq,X)-+H (k9kίUq])

is an isomorphism of ^-algebras. If H'(Bq, λ) is given a Γ^-module structure via weight
A, then H'(Bq, X), and thus H'(k, fc[£/J), is a 7^-algebra. If q is not a root of 1, the
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above observation, together with the Borel-Weil-Bott Theorem for Gq ([2] and [25]), .

will give a T^-module isomorphism

H\k9k\υ^ Θ w O .
\veW

^(w) = i

If q is an /-th primitive root of 1 with / odd, the conclusion is completely different. For

example, one can check easily that — /α for any simple root α is a weight of Hl(k, fe[ί/J).

Furthermore, in the case in which q is a primitive /-th root of 1 with / odd, we

may consider (jB^Γand the quotient coalgebra fc[(C/€)ι] In this case we have a natural

isomorphism of λ -algebras:

REFERENCES

[ 1 ] H. ANDERSEN AND J. JANTZEN, Cohomology of induced representations for algebraic groups, Math.

Ann. 269 (1984), 487-525.

[ 2 ] H. ANDERSEN, P. POLO AND K. WEN, Representations of quantum algebras, Invent. Math. 104 (1991),

1-59.

[ 3 ] H. ANDERSEN, P. POLO AND K. WEN, Injective modules for quantum group, to appear, Amer. J. Math.
[ 4 ] D. J. BENSON, Representations and cohomology I, Cambridge studies in advanced mathematics 30,

Cambridge University Press, 1991.

[ 5 ] J. CHEN, Some results on representations of quantum linear groups, Master Thesis, East China Normal

University, 1991.

[ 6 ] E. CLINE, B. PARSHALL AND L. SCOTT, Finite dimensional algebras and highest weight categories, J.

Reine Angew. Math. 391 (1988), 85-99.

[ 7 ] E. CLINE, B. PARSHALL AND L. SCOTT, Duality in highest weight categories, Contemp. Math 82 (1989),

7-22.

[ 8 ] E. CLINE, B. PARSHALL AND L. SCOTT, Abstract Kazhdan-Lusztig theoreis, to appear.

[ 9 ] E. CLINE, B. PARSHALL AND L. SCOTT, Infinitesimal Kazhdan-Lusztig theories, to appear.

[10] E. CLINE, B. PARSHALL AND L. SCOTT, Simulating perverse sheaves in modular representation theory,

to appear.

[11] JIE Du AND L. SCOTT, Lusztig conjectures, old and new I, preprint.

[12] E. FRIEDLANDER AND B. PARSHALL, Cohomoiogy of Lie algebras and algebraic groups. Amer. J. Math.

108 (1986), 235-253.

[13] E. FRIEDLANDER AND B. PARSHALL, Geometry of>-unipotent Lie algebras, J. Algebra 109 (1987), 25^45.

[14] E. FRIEDLANDER AND B. PARSHALL, Support varieties for restricted Lie algebras, Invent. Math. 86

(1986), 553-562.

[15] E. FRIEDLANDER AND B. PARSHALL, Modular representations of Lie algebras, Amer. J. Math. 110

(1988), 1055-1094.

[16] W. H. HESSELINK, Characters of the nullcone, Math. Ann. 252 (1980), 179-182.

[17] J. HUMPHREYS, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics

9, Springer, 1972.

[18] N. IWAHORI AND M. MATSUMOTO, On some Bruhat decomposition and the structures of the Hecke

rings of p-adic Chevalley groups, Publ. Math. I.H.E.S. 25 (1965), 5-48.

[19] J. C. JANTZEN, Representations of algebraic groups, Academic Press, 1987.



INFINITESIMAL QUANTUM GROUPS 423

[20] M. JIMBO, A g-analogue of U(§l(N+ 1)), Hecke algebras, and Yang-Baxter equation, Lett. Math. Phys.
11 (1986), 247-252.

[21] S. I. KATO, Spherical functions and a ^-analogue of Kostant's weight multiplicity formula, Invent.
Math. 66 (1982), 461-468.

[22] S. I. KATO, On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. Math. 55 (1985), 103-130.
[23] D. KAZHDAN AND G. LUSZTIG, Representations of Coxeter groups and Hecke algebras, Invent. Math.

53 (1979), 165-184.
[24] D. KAZHDAN AND G. LUSZTIG, Affine Lie algebras and quantum groups, Internal. Math. Res. Notices

(Duke Math. J.) 2 (1991), 21-29.
[25] Z.-z. LIN, Rational representations of Hopf algebras and quantum groups, to appear.
[26] G. LUSZTIG, Some problems in the representation theory of finite Chevalley groups, Proc. Sympos.

Pure Math. 37 (1980), 313-317.
[27] G. LUSZTIG, Modular representations and quantum groups, Classical groups and related topics,

Contemp. Math. vol. 82, 1989, pp. 59-77.
[28] G. LUSZTIG, Finite dimensional algebras arising from quantized universal enveloping algebras, J. Amer.

Math. Soc. 3 (1990), 257-296.
[29] G. LUSZTIG, Singularities, character formulas, and a ^-analog of weight multiplicities, Analyse et

topologie sur les espaces singuliers, Asterisque 101-102, Soc. Math. France, 1982, pp. 208-229.
[30] S. MACLANE, Homology, Academic Press, 1963.
[31] B. PARSHALL AND J.-p. WANG, Quantum linear groups, Mem. Amer. Math. Soc. no. 439, 1991.
[32] M. SWEEDLER, Hopf algebras, Benjamin, 1969.
[33] M. TAKEUCHI, Some topics on GLq(n), preprint.
[34] J.-P. WANG, Partial orderings on affine Weyl groups, in Chinese, J. East China Normal University

(Natural sciences edition) no. 4 (1987), 15-25.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA 22903-3199
U.S.A.

DEPARTMENT OF MATHEMATICS
EAST CHINA NORMAL UNIVERSITY
SHANGHAI 200062
PEOPLE'S REPUBLIC OF CHINA






