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Abstract. We treat second order differential equations which have admissible
meromorphic solutions. With the aid of Nevanlinna theory, we obtain generalizations
of the celebrated theorem of Malmquist-Yosida.

1. Introduction. We will treat differential equations of second order

(1.1) w" = F(z,w,w'),

where F is a polynomial in w and wr with meromorphic coefficients.
There are famous theorems due to Painleve, Malmquist, Yosida and others for the

analytic theory of ordinary differential equations.
Painleve classified the equation (1.1) according to the nature of their singularities.

Fixed singularities can arise at the locations of singularities of the coefficients.
Singularities that are not fixed are said to be movable. Painleve and his collaborators
found six equations whose solutions do not have movable singularities except poles.
They are known as the Painleve transcendents and have a great variety of interesting
properties (see [13, pp. 294-298] or [24, pp. 375-377]).

On the other hand, Malmquist investigated equations which possess meromorphic
solutions. With the aid of Nevanlinna theory, Yosida [26] generalized the theorem of
Malmquist, which is the starting point in this field.

THEOREM A (Malmquist-Yosida). Let R(z, w) be a rational function in z and w.

If the differential equation

(1.2) (w')p = R(z,w)

possesses a transcendental meromorphic solution, then R(z, w) must be a polynomial in w

of degree at most 2p.

Then, several mathematicians treated the differential equations with the aid of
Nevanlinna theory, and many generalizations of this theorem have been obtained, for
example [7], [16]. In particular, equations of second order have been investigated in
[18], [21]-[23], [25]. Steinmetz [21] treated the equation

(1.3) w" = Q(z,w)v
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where β(z, w) and P(z, w) are polynomials in w with rational coefficients. He proved the
following theorem of Malmquist-Yosida type.

THEOREM B (Steinmetz [21]). If the equation (1.3) possesses a transcendental
meromorphίc solution w(z), then

(i) either w(z) satisfies an equation of Riccati type or
(ii) degvv[Q(z, w)] < 1 and degw[P(z, w)] < 3.
We note that, in the case (ii), the equation (1.3) takes the form

(1.4) w" = (qί(z)w + q0{z))w' + p3(z)w3 + p2(z)w2+p1(z)w + p0(z).

For binomial equation (1.2) of first order, possible types of the equations have
been settled completely by Steinmetz [19], Bank and Kaufmann [2] and He and Laine
[9]. As far as we know, there are few articles which determined the form of higher
order differential equations with meromorphic solutions.

In this note, we treat the differential equation (1.4) with meromorphic (maybe
transcendental) coefficients. We have two cases, according as p3(z)ψ0 or p3(z) = 0. An
example of the first case is the Painleve equation II: w" = 2w3+zw + C. As examples of
the second case, we know the Painleve equation I: w" = 6w2 + z and the equation
w" = 3w2 + cw + c1, which is derived from the KdV equation.

We use standard notation in Nevanlinna theory [8], [14], [17]. Let f(z) be a
meromorphic function. As usual, m(rj\ and N{rJ\ and T(rJ) denote the proximity
function, the counting function, and the characteristic function of/(z), respectively. For
c G Cu { oo }, ΛΓ(r, l/(/- c)) is written as N(r, c /). Sometimes we write N(r,f) as N(r, oo /).

DEFINITIONS, (i) A function φ(r\ 0 < r < oo, is said to be S(r,f) if there is a set
EaR+ of finite linear measure such that φ(r) = o(T(r,f)) as r-»oo, with rφE (see, e.g.,
[20, p. 40]).

(ii) A meromorphic function a(z) is small with respect to/(z), if T(r9 α) = S(r,/).
Below, M — {a(z)\ denotes a given finite collection of meromorphic functions.
(iii) A transcendental meromorphic function w(z) is admissible with respect to Jί,

if T(r, a) = S{r, w) for any a(z)eJί.
(iv) Let Ω(z, w, w',..., w(Λ)) be a differential polynomial in w with meromorphic

coefficients and let Ji be the collection of the coefficients of Ω. A meromorphic solution
w(z) of the equation

is an admissible solution if w(z) is admissible with respect to M.
(v) Let ceCu{oo},z0isa c-point of w(z) if w(z0) — c = 0. Suppose a transcendental

meromorphic function w(z) is admissible with respect to J(. A c-point z0 of w(z) is an
admissible c-point with respect to Jί, if φ o ) / 0 , oo for any a{z)eJί. Clearly, there are
admissible c-points of w(z), provided that N(r, c; w)^S(r, w).

(vi) Suppose N(r, c\w)Φ S(r, w), for a c e C u {oo }. Let C1 be a property. We denote
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by «ci(r> c ί w)> the number of c-points in | z | g r which admit the property Cl . Nξt{r9 c w)

is defined in the usual way. If

N(r, c w)- N&(r, c;w) = S(r, w),

then we say that almost all c-point admit the property Cl.

REMARK 1.1. Suppose a transcendental meromorphic function w(z) is admissible

with respect to Ji. Let η(z) be a rational function in members of M and their derivatives.

Then we have T(r, >7)<^ΣαveΛ*τ(r> av) + S(r, w), for some K>0. Thus η(z) is a small

function with respect to w(z). We denote by n *(r, c w), the number of c-points z0 of

w(z) in \z\^r such that τ/(zo) = 0. N*(r,c;w) is defined in the usual way. If

N*(r, c\w)ΦS(r, w), then η(z) = 0. Further for an admissible solution w(z), we may assume

that N{M(r, w) = S(r, w) for some M > 0 . If we suppose the contrary, then w(z) satisfies a

linear differential equation of first order (see [12, Lemma 3]).

Now we turn to the equation (1.4) and consider the case p3(z)φ0.

THEOREM 1.1. In the differential equation

(1.4) w" = (qt{z)w + qo(z))w' 4-p3(z)w3 + p2(z)w2 +px{z)w + po(z),

suppose that the coefficients qx{z\ qo(z)9 p3(z), p2(z), /?i(z) and po(z) are meromorphic and

p3(z)ψ0. Further, suppose that (1.4) possesses an admissible solution w(z).

When q^φO, we have the following two possibilities:

(i) either w(z) satisfies the equation of first order

(1.5) c{z)w'2 + £(z, w)w' + Λ(z, w) = 0 ,

where c(z) is a small (with respect to w(z)) function and B(z, w), A(z9 w) are poly-

nomials of w with small (with respect to w(z)) coefficients such that degw[J5(z, w)] < 2,

degj>l(z,w)]<4,
(ii) or, by putting w = λ1(z)u + λ0(z), with small functions λj{z), 7 = 0,1, we can

transform (1.4) into one of the equations of the following two types: either

(1.6) u" + 3uu' + u3=p1(z)u + p0(z), or

(1.7) u" + uu' - u3 = p(zχW

2 + 3u') + H(z)u + S(z),

in which the coefficients p(z\ H(z\ S(z) satisfy the following relation:

(1.7) Λ(z): = 2H(z)p(z)-H'(z) + 4p(z)3 - 6p(z)p'(z) + p"(z)- S(z) = 0 .

When qx(z) = 0, we have the following three possibilities:

(ϊ) either w(z) satisfies an equation of the type (1.5),

(in) or, by putting w = A1(z)u-fλ0(z) with small functions λj{z\ j = 0, 1, we can

transform (1.4) into

(1.8) u" = qo(z)u' + p3(z)u3 + p1(z)u + C ,
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where C is a non-zero constant, and the coefficients satisfy the following relations (1.9)

and (1.10).

(1.9) | |

6 V P3(z) / \3p3(z) 2 V P3(
z) I ) \ P

40 / p'3(z) Y ft'(z) 245 / ft(z) Y pT>(Z) 3p3(Z)p3"(z) _

9 Vp3(2)/ P3(z) 108Vp 3(z)/ 3p~3(z) 2p3(z)2

(iv) or, by putting λ1(z)w'lw + λo(z) = u with small functions λj(z), j = 0,l, (and

reiterating the transformation, if necessary) we obtain (1.8) with (1.9) and (1.10), or u(z)

satisfies an equation of the form (1.5).

Theorem 1.1 follows from Lemmas 3.1 and 3.2 below.

The equation (1.5) was investigated by Steinmetz [20] when coefficients are poly-

nomials and C(z) = l. He showed that if (1.5) possesses an admissible solution w(z),

then by a suitable transformation y = (α(z)w + b(z))/(c(z)w 4- d(z)) with rational coefficients,

(1.5) is transformed into either

(yf)2 = a{z)(y-e1){y-e2){y-e3),

or

(y' + S(z)y)2 = ά(z)y(l+c(z)y)2,

where ά(z), B(z), c(z) are rational functions and el9 e2, e3 are constants.

For the equations (1.6), (1.7) and (1.8), we give the following remarks, (see [11,

pp. 317-355]).

REMARK 1.2. w(z) = ecosz — z is a solution of the equation

w"'-α(z)w'-b(z)w = 0,

where b(z) = (sin z + 3 cos z sin z — sin3 z)/(l + z sin z) and α(z) = — zb(z).

u(z) = w'(z)/w(z) = (— l—ecoszsinz)/(ecosz —z) is an admissible solution of the equa-

tion

= α(z)u + b(z).

REMARK 1.3. Put p(z) = 0, H(z) = - 12q(z), and S(z) = \2q\z), with q(z) = l/(z + cf

(c constant) in (1.7'). Then Δ(z) = 0 and q(z) is a solution of the following differential

equation

(1.11) / " = 6/ 2 .

The Weierstrass p{z) function which is a solution of w'2=4w3 + C(C nonzero constant)
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satisfies the equation (1.11). U(z): = (p'(z) — q'(z))/(p(z) — q(z)) satisfies an equation of the

type (1.7)

(1.12) u" + uu'-u3=-12q(z)u+12qf(z).

Since we have T(r,q) = S(r,U), the equation (1.12) possesses an admissible

solution U(z).

REMARK 1.4. If qo(z) = 0 in (1.8), then by (1.9) and (1.10), p3(z) is constant and

p^z) is linear. Thus by a suitable transformation w = au and z = α1ί + α0, (1.8) is

transformed into the Painleve equation II, where a, al9 a0 are constants.

Secondly we consider the case p3(z) = 0 in (1.4).

THEOREM 1.2. Suppose p3(z) = 0 in (1.4) and that the differential equation (1.4)

possesses an admissible solution w(z). Then we have the following three possibilities'.

(i) either w(z) satisfies the first order differential equation (1.5),

(ii) or, u(z) = λ1(z)w(z) + λ0(z), with small functions λj(z)J = 091, satisfies the follow-

ing type of equation

(1.13) u" = q(z)u' + 6u2+p(z),

where the coefficients satisfy the following relations (1.14) and (1.15)

(1.14) r + ?(z)Γ=0, Γ ( z ) # 0 ,

(1.15) T\z) = 15000p(z)q(z) - 18750p'(z) + 36q(z)5 - 900q(zfqf(z) + 2000g(z)V'(z)

+ 2500q(z)q'(z)2- \8Ί5q(z)q'"(z)-3125q'(z)q"{ «X

(Hi) or, M(z) = f/(z)w/ + ry2(z)w2 + f/1(z)w + f/0(z), with η(z\ η2(z), ηx{z\ ηo(z) are small

(with respect to w(z)) functions, satisfies a first order linear equation.

Theorem 1.2 follows from Lemmas 3.3 and 3.4 below.

REMARK 1.5. In (1.13), suppose q(z) is entire and there exists a positive number

K such that

(1.16) T\r,p)^KT\r,q) + S{r,q).

Then both of the conditions (1.14) and (1.15) do not hold. Hence the inequality (1.16)

does not hold for the case (ii) when q(z) is entire.

If q(z) = 0 in (1.13), then by (1.14) 1\z) is constant. By (1.15) p\z) is also constant,

which implies that (1.13) is the Painleve equation I.

2. Dominant behavior. To investigate the dominant behavior of an admissible

solution in a sufficiently small neighbourhood of the pole, we use the basic Test-Power

test (see [10, pp. 87-96]). This is very effective in the case of movable singularities but

can be used also for fixed singularities, at least for the purpose of orientation. The
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simple idea is that, if the differential equation, for example (1.4), has an admissible
solution w(z) which has an admissible pole z0, and at z0

_ ^

then for special values of μ, two or more terms in (1.4) may balance (the number of
the balancing terms depends on the values of μ and Rμ). The balancing terms are called
leading terms (see [1, pp. 717-718]).

We look for the next highest order term in the Laurent series of an admissible
solution. From the given differential equation, the coefficients of the Laurent series in
a neighbourhood of an admissible pole z0 may not be represented by small functions.
In some cases, the Laurent series contains arbitrary coefficients called resonances. The
series containing resonances are called resonant series (see [1, pp. 718-720] or [15,
pp. 334-340]). For example, the expansion of the transcendent of the Painleve equation
II: w" = 2w3 + zw + α

^ ( Z Z o ) ( Z Z o

z-z0 6 4

at an admissible pole z0 has an arbitrary constant h.
Theorem 1.1 follows from the ideas contained in the following Lemma C. This

kind of ideas is used in many papers, for example [6].

LEMMA C (cf. [21], [22]). Let w = w(z) be a transcendental meromorphic function
such that m(r, w) + N1(r, w) = S(r, w). Suppose that for almost all poles z0, there exist small
{with respect to w(z)) functions R(z) and α(z) such that w(z) is written near z0 as

w(z) = 3^L + α ( Z o) + o(z - z0).
z-z0

Then w(z) satisfies an equation of Riccati type

w' = a(z)w2 + b(z)w + φ ) , a{z)φθ ,

where a(z\ b(z) and c(z) are small functions with respect to w(z).

Before stating our lemmas, we fix notation and recall some propositions. Let/(z)
be a transcendental meromorphic function and let R(z) and α(z) be small functions with
respect to/(z). Let z0 be a simple pole of/(z). We say that z0 is representable in the
first sense by R(z) and α(z), if

z-z0

in a neighbourhood of z0. For the sake of simplicity, we call such a simple pole an
S\-pole. Lemma C means that if almost all poles of w(z) are SI-poles and m(r, w) = S(r, w),
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then w(z) satisfies an equation of Riccati type.

For the definition of S2-pole, we introduce the following further material. Let λl9 λ0

be complex constants and let L be a set of linear transformations of a quantity R,

(2.1) { u 0 ) \ ^ ^

We define an equivalence relation ~ in L by

L = (a1R + a

if

PROPOSITION D. (i) If L^{a1R-\-a2)l{a3R-{ aA)eL, then L~L* = A1

where

_ -02^3 + 0^4 _ λoa1a3 - λ1a2a3 + α 2 α 4

(ii) If L = aίR + a2~M=b1R + b2, then ai=bί anda2 — b2.

By Proposition D, we can take, for each equivalent class in L, a unique representative

which is an entire linear transformation. We denote by L* = L*(λ1, λ0) the set of all

such representatives. We define aL + bM and LM as follows: For a,beC, L = aίR + a2,

(2.3) aL + bλf=(aaί+bbί

(2.4)

Let L = aιR + a2, M—bxR-\-b2 be two elements of L*. We say that L and M are

independent, if a1b2 — a2b1^0.

We can easily obtain the following propositions:

PROPOSITION E. Let L and M be elements of L*. If L and M are independent,

then for any NeL*, there exist τ l 5 τ 2 such that N=τίL + τ2M.

PROPOSITION F. Let L and M be elements ofL*.IfL and M are independent, then

for any N=aR + beL* with λoa
2 — λtab + b2ΦO, NL and NM are also independent.

Let/(z) be a transcendental meromorphic function. Let all functions OLX(Z\ . . . , α4(z),

βiiz),..., /?4(z), yι(z),..., 74(2), λ^z), λo(z) be small functions with respect to/(z) satisfying



312 K. ISHIZAKI

Λ(z): = λ1(z)2-4λo(z)φ09

Φ ) : = α4(z)2 - A1(z)α3(z)α4(z) + λ0(z)oc3(z)2 φ 0 ,

β(z): = j34(z)2 -λ^β^β^z) + i o ( ^ 3 ( z ) 2 φ 0 ,

: = y4(z)2 - λγ(z)Ίz(z)U(z) + Λ0(z)y3(z)2 # 0 .

Let z 0 be a simple pole of/(z). We say that z 0 is representable in the second sense by

α^z),.. ., α4(z), βx(z)9..., jβ4(z), y^z),..., y4(z), λx(z) and λo(z), if

(2.6) /(z) = ^ ^ + α + jS(z - z0) + 7(z - z 0 ) 2 + δ(z - z 0 ) 3 + O(z - z 0 ) 4

in a neighbourhood of z0, and

(2.7) tf2 + 2 1 ( z o ) / m o ( z o ) = 0, >l(z o )#0,

( ) Λ + (z0) ' j83(z0)^-f j54(z0) ' 7 ( ) ^ + ( )

For the sake of brevity, we call such a simple pole an S2-pole.

In addition to the condition (2.5), let <5t(z),..., £4(z) be small functions with respect

to w(z) so that

(2.9) δ(z): = <54(z)2 -λx(z}δ3(z}δA(z) + λo(z)δ3(z)2 φ 0 .

Let z 0 be a simple pole of/(z). We say that z 0 is strongly representable in the second

sense by α^z),. . . , α4(z), β^z),..., 04(z), yx(z),..., y4(z), (^(z), . . . , <54(z), λγ{z) and λo(z), if

/(z) is written as in (2.6), R satisfies (2.7), and α, /?, y, are represented as in (2.8), and

(2.10) δ = -

For the sake of brevity, we call such a simple pole an SS2-pole.

Let z 0 be a pole of /(z) such that Λ(z o )#0. We denote by L(zo) the set of linear

transformations of R as in (2.1):

(2 V) Liz ) = L (z )

small for/(z), with / 4 ( z 0 ) 2 - l 1

Let /?! and Λ2 t>e t n e roots of (2.7) for a fixed z0. Since yl(z o)#0, we have RίφR2.

By simple calculation, L = (α1(z0)Λ + α2(z0))/(α3(z0)Λ + α4(z0)), M=(Z)1(z0)Λ + Z»2(z0))/

(ί)3(z0)Λ+Z)4(z0))eL(z0), satisfying L\R=Rj = M\R=R.J=l, 2 if and only if
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(22')

Hence, the following (A) and (B) are equivalent to each other:

(A) L,MeL(zo),L~M,

(B) L, MeL(z0), L = M under the condition (2.7).

The conditions in (2.5) imply α, β, γeL(z0), while (2.9) implies δeL(z0). In other

words, the conditions (2.5) and (2.9) are the criteria for α, /?, γ and δ to be resonances

or not.

By Proposition D, for any LeL(z0), we have a unique entire form L*eL*(z0) such

that L\R=Rj = LfR=Rj, 7=1,2. From now on, under the condition (2.7), we write

L = (a1(z0)R + a2(z0))/(a3(z0)R + a4(z0))9 in the form A1(z0)R + A2(z0), where Ax(z) and

A2(z) are defined as in Proposition D, (i).

We can ascertain that the operations (2.3) and (2.4) in L*(z0) are well defined

under the condition (2.7). Hence Propositions E and F hold for the elements of L*(z0).

Let [K] be a root of (2.7) for a fixed z0, where > 1 1 ( Z O ) 2 - 4 / I O ( Z O ) ^ 0 . We denote by

[L]*(z0) the set of values of the elements of L*(z0) for /? = [/£].

The following lemma will be proved in Section 4.

LEMMA 2.1. Let w(z) be a transcendental meromorphic function and let αx(z),...,

α4(z), β1{z\...,β4r{z\ y^z), ...,y4(z), <5i(z), ...,(54(z), λ^z) and λo(z) be small functions

with respect to w(z). We denote by n<S2>(r, w) and n<SS2>(r, w) the numbers of the S2-poles

ofw(z) and the SS2-poles in \z\^r, respectively. N<S2y(r, w) and N<SS2>(r, w) are defined

in terms ofn<S2>(r, w) and n<SS2>(r, w) in the usual way, respectively. If

(2.11) m(r, w) + (N(r9 w)-N<S2>(r9 w)) = S(r, w),

then either w(z) satisfies an equation of the form (1.4), or w(z) satisfies an equation of the

form (1.5).

Further if

(2.12) m(r, w) + (N(r, w) - N<ss2>(r, w)) = S(r, w),

then w(z) satisfies an equation of the form (1.5).

3. Some lemmas. We make use of the following results. Lemma G, due to

Clunie, and Lemma H are applicable to the estimation of the proximity function of

differential polynomials.

LEMMA G (cf. [3], [8]). Let Q(zJ) and Q*(zJ) be differential polynomials of a

transcendental meromorphic function f(z)9 having coefficients aj(z) and a%(z). Suppose that

m(r, aj) = S(rJ) and m(r, af) = S(rJ). If d e g / [β(z,/)] < n andfn(z)Q*(zJ(z)) = β(z,/(z)),
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then

m(r,Q*) = S(rJ),

where Q*(z) = Q*(zJ(z)).

LEMMA H (cf. [4]). Let w(z) be a transcendental meromorphic function and

Ω(z, w, w',. . . , wiι)) be a differential polynomial with small {with respect to w(z))

meromorphic coefficients. Then

m(r, β ) < d e g w > w V _ w ( i ) [ β ( z , w, w',.. ., w(0)]m(r, w) + S(r, w),

where Ω(z) = Ω(z, φ\ w\z\ . . . , w(i)(z)).

Eremenko proved the following result that is a generalization of the Malmquist-

Yosida theorem for a first order algebraic differential equation.

LEMMA I (cf. [5]). Suppose the following differential equation possesses an ad-

missible solution w(z)

(3.1) Qk(z, w)wfk + Qk.1(z, w)wfk~1+ + β o ( z , w) = 0, fc^l ,

(};(z> w),7 = 0, 1, . . . , k are polynomials in w with meromorphic coefficients. IfQΛ)

is an irreducible polynomial in w and wf, then

(3.2) de g v v[β k(z,w)] = 0 and deg^β/z, w)] < 2(fc -j), ; = 0, 1, . . . , * - 1 .

For the case /?3(z)^0 in (1.4), we show the following Lemmas 3.1 and 3.2.

LEMMA 3.1. Suppose p3(z)ψ0 in (1.4) and that the equation (1.4) possesses an

admissible solution w(z). Suppose further that

(3.3) 9/>3(z) + <h(z)2#0 and p3(z)-qi(z)2ψ0.

O, then w(z) satisfies an equation of the form (1.5).

ΈΞO, then either:

(i) 6y α suitable transformation w = λι(z)u + λ0(z\ (1.4) w transformed into the

equation (1.8) w//Λ (1.9), (1.10), or

(ii) Z?j a suitable transformation A1(Z)W7W-I-A0(Z) = M, (α«rf repetition if necessary)

(1.4) w transformed into the equation (1.8) vwϊ/z (1.9), (1.10), or M(Z) satisfies an equation

of the form (1.5).

LEMMA 3.2. Suppose p3(z)φ0 in (1.4) and that the equation (1.4) possesses an

admissible solution w(z). Suppose further that

(3.4) 9p3(z) + qi(z)2^0 or p3(z)

Then by a suitable transformation w = λ1(z)u + λ0(z\ u(z) satisfies a Riccati equation or

(1.4) is transformed into the equation (1.6) or (1.7), respectively.
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Lemmas 3.1 and 3.2 together imply Theorem 1.1. For the case/?3(z) = 0 in (1.4), we

show the following Lemmas 3.3 and 3.4.

LEMMA 3.3. Suppose p3(z) = 0, qί(z)φ0 in (1.4) and the equation (I A) possesses an

admissible solution w(z). Then by u = η(z)w'+ η2(z)w2 + ηi(z)w + η0(z\ (1.4) is transformed

into a linear equation of first order.

LEMMA 3.4. Suppose p3(z) = 0, q^{z) = 0 in (1.4) and the equation (1.4) possesses an

admissible solution w(z). Then by w = λί(z)u + λo(z), (1.4) is transformed into the equations

(1.13) with (1.14), (1.15), or u(z) satisfies an equation of the form (1.5).

Lemmas 3.3 and 3.4 together imply Theorem 1.2.

4. Proof of Lemma 2.1. Let z 0 be an admissible pole of w(z) and write w(z) in

a neighbourhood of z0 as

(4.1) ^

z-z0

If z 0 is an S2-pole of w(z), then by definition, we may suppose that α, β, ye [£]*(z 0).

Thus by simple calculation under the operations (2.3) and (2.4), the coefficients of the

principle parts of the Laurent expansions of the functions w{z)2, w(z)3, w(z)4, W{z\

w'(z)2, w'(z)w(z), w(z)2w'(z) and W\z) belong to [L]*(z0).

Further if z 0 is an SS2-pole of w(z), then in addition to the above functions w(z)2

etc., the coefficients of the principal parts of the Laurent expansions near z 0 of the

functions w(z)5, w(z)3w'(z), and w(z)w'(z)2 also belong to [L]*(z0).

If λo(z) = 0, then R = -λ^z^ by (2.7). Thus from (2.8), α is written in terms of

small functions. Hence by (2.11) (or (2.12)) and Lemma C, w(z) satisfies a Riccati equa-

tion. Therefore we may suppose that λo(z)ψQ and λo(zo)Φ0. Thus R2 ( = — λ(zo)R —

λo(zo)) and R are independent. Hence by Proposition F, Rn+1 and Rn (n= 1, 2, 3,...)

are independent.

First we treat the case where w(z) satisfies the condition (2.11). Let F{z) be a

meromorphic function which satisfies the following two conditions:

(4.2) m(r9 F) + (N(r, F) - N(r, w)) = S(r9 w),

and in a neighbourhood of an admissible pole z 0 of w(z\

(4.3) F(z)= L* L s 2 ^+ +
(z-zoy (z-zoy z-z0

By Proposition E, there exist small functions nx(z) and η2(z) with respect to w(z),

so that

D21{z9 w(z\ W{z))= L l 1 + - ^ + 0(1) , L 2 1 , L2ίί

(z-zoy z-z0
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where

(4.4) £>2i(z> w, w') = F(z) + ηι(z)w

Put 2)22(z, w, W9 w") = w3-λ1(z)ww' + (λo(z)/2)W. Then

Z)22(z, w(z),w'(z))= 22 + — £ ^ - + 0 ( 1 ) , L 2 2 , Z

By Proposition E, there exist vn(z), v12(z), v21(z) and v22(z), which are small functions

with respect to w(z) such that

T

Dίl(z,w(z),wf(z)) = -
z-z0

where

(4.5) Z>n(z, w, w') = /)21(z, w, w ' ) + v11(z)w/ + v12(z)w2 ,

and

D12(z, φ\ w'(z), w"(z)) = -^+O(l), L12e[L]*(z0),

where

Z>12(Z, W, Wr, W/r) = /)22(^ W> W ^ ^ Ί + ^ l f Φ ' + ^ z t φ 2

By Proposition E, there exist K^Z), K2(Z) and κ3(z\ with | κt \ +1 κ 2 | # 0 , which are

small functions with respect to w(z), so that if we put

Φ(z, w, wr, w") = ιc1(z)Z)11(z, w, wf) + κ2(z)D12(z, w, w7, w") + κ:3(z)w ,

then Φ(z) = Φ(z,w(z),w'(z),w"(z)) is regular at z0. Thus by (2.11) and (4.2), we have

N(r, Φ) = S(r, w). By (2.11), (4.2) and Lemma H, we have m(r, Φ) = S(r, w). Hence Φ(z) is

a small function with respect to w(z).

PutF^z, w, w/) = w4-A1(z)w/w2-hA0(z)w/2. ThenF1(z) = F1(z, w(z), w'(z)) satisfies the

conditions (4.2) and (4.3), which imply that w(z) satisfies a differential equation of "the

form

(4.6) μ(z)w" = c(z)w'2 + B(z9 w)wf + A(z, w),

where B(z, w) and Λ(z9 w) are polynomials in w, and their coefficients and c(z\ μ(z) are

small functions with respect to w(z).

Put F2(z, w, w') = 2w'2-w"w. Then F2(z) = F2(z, w(z), w'(z)) also satisfies the

conditions (4.2) and (4.3), which imply that w(z) satisfies a differential equation of the

form

(4.7) (σ(z)w + τ(z))xv" = σ(z)w'2 + 5(z, w)w' + λ(z9 w),
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where B(z, w) and A(z, w) are polynomials in w, and their coefficients and σ(z), τ(z) are

small functions with respect to w(z).

From (4.6) and (4.7), if <τ(z)0O, then w(z) satisfies a first order differential equation

of the form

(4.8) P2(z, w)wr2 + P1(z, w)w' + P0(z, w) = 0 ,

where Pj(z, w)J= 1, 2, 3, are polynomials in w, and their coefficients are small functions

with respect to w(z). Thus by Lemma I, w(z) satisfies a differential equation of the form

(1.5).

If σ(z) = 0, then from (4.7), w(z) satisfies an equation of the form (1.4).

Secondly we treat the case where w(z) satisfies the condition (2.12). Put G^z, w, w') =

w5-λ1(z)w'w3-hλ0(z)wf2w(z). Then

G4(z, φ\ wXz)) = - A ^ _ ^ ^ ^ J ^
zor (z-zoy (z-zoy z-z0

4,L43, L 4 2 , L41 G [L

By Proposition E, there exist pγ(z) and/?2(z), which are small functions with respect

to w(z), such that

G3(z, φ\ w'(z))= L \ 3 + L 3 2 + J ^ J - + Q ( l ) , £ 3 , L3 2, L 3 1 e[L]*(z0),

(z-z 0 ) 3 (2-z 0 ) 2 z - z 0

where

G3(z, w, w') = G4(z, w, w') + p1(z)w2wf + p2(z)w4 .

Since G3(z, w(z), w\z)) satisfies the condition (4.2) and (4.3), put F(z) =

G3(z, w(z\ w'(z)) in (4.4) and (4.5). Then

βlt(z9 w(z), iv'(z)) = ^
z-z0

where

Dn(z, w, w') = G3(z, w, w/) + ̂ 2i(2)

Put F(z) = Fί(z, φ\w\z)) in (4.4) and (4.5). Then

Dn(z, w(z), w'(z)) = - ^ - + O(l), LX1 e

where

By Proposition E, there exist /c^z), /c2(z) and κ3(z), with | κx \ +1 κ2 \ # 0 , which are
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small functions with respect to w(z)9 such that if we put

Φ(z, w,w') = K^Z)/?!Λz, w,w') + κ2{z)Dιi(z, w, w') + /c3(z)w ,

then Φ(z) = Φ(z, w{z\ w'(z)) is regular at z0. Thus by (4.2) and (2.12), we have N(r, Φ) =
S(r, w). By (4.2), (2.12) and Lemma H, we have m(r, Φ) = S(r9 w). Hence Φ(z) is a small
function with respect to w(z). Hence w(z) satisfies an equation of first order of the
form (4.8). Thus by Lemma I, w(z) satisfies a differential equation of the form (1.5).

5. Proof of Lemma 3.1. Without loss of generality, we may assume that p2(z) = 0
and po(z) is constant in (1.4) (if necessary put W = V1(Z)M + V0(Z), where v o= —p2βp3,
Vi = - Vo + (̂ iVo + ^oK+P3Vo+P2Vo+^iVo+^o) Since/?3(z)#0, by Lemma G, we have
m(r,w) = S(r,w). Hence there exist infinitely many admissible poles. For a meromor-
phic function g(z), we define ω(z0, g) as follows: if z0 is a pole of order μ (> 1) for g(z),
then ω(z0, g) — μ\ if g(zo)φ co, then ω(z0, g) = 0. We look at the leading terms of (1.4)
using the Test-Power test. Let z0 be an admissible pole and put ω(z0, w) = μ. Then

ω(z 0, w") = μ + 2, ω(z0, ww') = 2μ+l, and ω(z0, w
3) = 3μ. If μ>2, then μ + 2 < 2 μ + l <

3μ, hence no terms balance for μ^2. When μ = l , we have μ + 2 = 2μ+1 =3μ. Thus
every admissible pole must be a simple pole and the leading terms are w", ww' and w3.
Hence we get

(5.1) w(r,

Write w(z) near an admissible pole z0 as

(5.2) w(z) = + α + β(z - z0) + γ(z - z0)
2 + δ(z - z 0) 3 + O(z - z0)4 , R Φ 0 .

z-z0

We investigate whether α, β, y and (5 are written in terms of linear transformations of
R with small (with respect to w(z)) functions as coefficients, that is, whether almost all
admissible poles are S2-poles or SS2-poles. From (1.4) and (5.2),

(5.3) p3(z0)R2-q1(z0)R-2 = 0,

(5.4) (3p3(z0)R-q1(z0))oi = P1(R; z0) ,

(5.5) 6p3(z0)Rβ = P2(R,a;z0),

(5.6) 6(3p3(z0)R2 + qi(z0)R-2)y = P3(R, α, β; z 0 ),

(5.7) (3p3(z0)R2-2q1(z0)R-6)δ = P^R, α, β, y; z0),

where Pj( ', z0) (j= 1, 2, 3, 4) are polynomials in the corresponding arguments and the
coefficients are values at z0 of small (with respect to w(z)) functions.

If Λ(z): = (qi(z)/p3(z))2 + S/p3(z) = 0, then <h(z)#0 and R= -4/qi(z0) by (5.3). Thus
with (5.4), z0 is an Sl-pole of w(z). Thus by (5.1) and Lemma C, w(z) satisfies a Riccati
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equation.

Hence, we have to consider merely the case Λ(z)φO. Since A(z) is a small function

with respect to w(z), we may suppose that Λ(z o)#0.

We show that for almost all admissible poles z 0 of w(z), αe[Z,]*(z0) under the

condition (5.3), (5.4) and 9p3(z) + q1(z)2φ0. We denote by n*(r,f) the number of the

admissible simple poles z1 of w(z) in \z\^r each counted only once, so that

N*(r9 w) is defined in terms of «*(r, w) in the usual way. We have N*(r, w) = S(r, w), which

is shown as follows: Put φΐ(z) = 9p3{z) + qί{z)2 ( # 0 ) . If 3p3(z1)Rz=Zι-q1(z1) = 0, then

by (5.3) φ1(z1) = 9p3(zί) + qί(z1)
2 = 0. Thus

ΛT (r, w)^ JV(r, 0, φ x ) ^ Γ(r, Φi) + S(r, w)g S(r, w).

Hence for almost all admissible poles z 0 of w(z), by (5.4), (5.3), Remark 1.1 and

Proposition D,

where Aj(z\j= 1, 2, are small functions with respect to w(z).

Since i ? ^ 0 and /?3(z0)#0, from (5.3)—(5.5), β is written by means of linear

transformation of R with small (with respect to w(z)) functions as coefficients. Hence,

for almost all admissible poles z 0 of w(z\ β = B1(z0)R + B2(z0)e[L~]*(z0), where Bj(z\

j= 1, 2, are small functions with respect to w(z).

Similarly to the proof of αe [L]*(z0), for almost all admissible poles z 0 of w(z), we

have y = C1{z0)R + C2(z0)e[_L]*(z0) by the conditions (5.3), (5.6) a n d / ^ z ) - ^ ) 2 ^ ,

where Cj(z\j= 1, 2, are small functions with respect to w(z).

By (5.3), the left-hand side of (5.7) is 3q1(z0)δ. Thus if qx{z)ψ 0, then from (5.3)-(5.7),

almost all poles of w(z) are SS2-poles, hence

(5.8) N(r9 w)-7V<SS2>(r, w) = 5(r, w).

Thus by (5.1), (5.8) and Lemma 2.1, w(z) satisfies an equation of the form (1.5).

It remains to consider the case ^1(z) = 0. From (5.7), we have P^(R, α, β,y; zo) = 0

for almost all admissible poles z0. From (5.3)-(5.7), eliminating α, β, y, and Rn ( n ^

we obtain

(5.9) δ1(

where δ^z) and (50(z) are small functions with respect to w(z). In fact,

(5.10) δ,{z) = - 2Ίpop3(z)\2p3(z)qo(z) +p3(z)).

We denote by nf^r,/) the number of admissible poles z 0 of w(z) in | z | ̂  r each counted

only once so that z 0 satisfies ^1(z0) = 0. N^(r9f) is defined in the usual way.

I. When N£ί(r,w) = S(r,w\ by Remark 1.1 for all admissible poles z0,Rz=2o is
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written in terms of small (with respect to w(z)) functions directly, and by (5.4), α is also
written in terms of small (with respect to w(z)) functions directly. Hence almost all
admissible poles of w(z) are SI-poles. Thus by Lemma C, w(z) satisfies a Riccati equation.

II. When ΛΓ,*(r, w)#S(r, w), we have δ^^O by Remark 1.1. Thus by (5.9)
<50(zo) = 0 for almost all admissible pole z0. Hence, by Remark 1.1 <5O(Z)Ξ0.

(i) First we treat the casep o^0 in (1.4). From (5.10) we obtain (1.9).
From (5.3)-(5 7), we can calculate <50(z) as

(5.11) δo(z) = 36/>1(z)/>3(z)4<?0(z)2 - 36 Pl(z)p3(z)*q'0(z) + Ί2Pϊ{z)p3(z)3p'3(z)q0{z)

- 36Pl(z)p3(z)3p'3'(z) + Ί2Pl(z)p3(z)2p3(z)2 - 90/>'1(z)/>3(z)4<70(z)

- 90/>'1(z)/;3(z)y3(z) + 54/>ϊ(z)p3(z)4 + 8/>3(z)4<70(z)4

- 60p3{zfqo{z)2q'o{z) + SAp^fq^q'^z) + 16p3(zfq'0{z)2

-lBp3(zrq'^z)+ί4p3(zγP'3(z)q0(z)3-5Ίp3(zγp'3(z)q0(z)q'0(z)

+ Πp3(z)3p'3(z)q'ά(z) + 3p3(z)3p'i(z)q0(z)2 -18/>3(z) 3p3"(z)q0(z)

+ 9p3(z)Y3

4\z) - 6p3(z)2p'3(z)2q'0(z) + 7Sp3(z)2p'3(z)p'i(z)q0(z)

- 54p3(z)2p'3(z)p'3"(z) - 36p3(z)2p'i(z)2 - 64/73(z)/>'3(z)3

ί?0(z)

+ 192/>3(z)/>'3(z)y3'(z)- 112^'3(z)5 .

From (1.9) and <50(z)=0, and by elementary but tedious calculation, we obtain (1.10).
(ii) Secondly we treat the case po=0 in (1.4).

(5.12) w" = qo(z)w'+p3(z)w3 + Pi(z)w.

By a suitable transformation u = a(z)w'/w + b(z) in (5.12) we have

(5.13) u" = q(z)u' + 2u3+p{z)u + pt{z),

where a(z), b{z), q(z), p(z) and p*{z) are small functions with respect to w(z).
If p*(z) φ 0, then this case reduces to the case (i). Here we assume that p*{z) = 0 in

(5.13). Put Ul=u'/u-q(z)β in (5.13). Then

(5.14) ti' = # ; +2v3 + P1(z)v1

where

P1(z) = q'(z)~jq(z)2-2p{z),

(5-15) χ

D1(z) (9q(z)

Put q{z)= -3/(z)/2 in (5.15). Then

(5.16) £>1(z)=/"(z) + 3/

When D^z)^ 0, the case reduces to the case (i). When D^z) = 0, putting v2 = v'1/υ1 — q(z)β
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in (1.14) we have

(5.17) υ'ί = q(z)υ'2 + 2υ\ + P2(z)v2 + D2(z),

where

(5.18) D2(z) = 2f"(z) +12f'(z)f(z) + 5/(z)3 + 2p(z)/(z) + 2p'(z) -.

If D2(z)φ0, then the case reduces to the case (i). Otherwise we iterate the transformation

v3 = v'2/v2-q(z)/3.

(5.19) υ'i = q(z)v'3 + 2υ\ + P 3 ( Φ 3 + ^aW ,

where

(5.20) D3(z) =/"(z) + ^/'(z)/(z) + y/(z) 3 + 2p(z)/(z) + 2p'(z).

If Z>3(z)#0, then it reduces to the case (i). Thus we have to treat the case

D1(z) = D2(z) = D3(z) = 0. From (5.16), (5.18) and (5.20), we have/'(z)+/(z)2/2 = 0. Thus

/(z) = 0 or f(z) = 2/(z — c), where c is a constant. If/(z) = 0, then ^(z) = 0 and p'(z) = 0.

Thus (5.13) reduces to the Painleve equation II. If f(z) = 2/(z — c), then by (5.16)

p(z) = d/(z — c)2 with d constant. Hence (5.13) is of the form

(5.21) w// = -^ 3 -w r + 2w3 + — d — ~ u .

z — c {z — c)

Put u = u/(z-c), z = c + e\ U(t) = u(c + et) in (5.21). Then

(5.22) U" = 2U3 + (l+d)U.

Thus, integrating the equation (5.22), we see that U(z) satisfies and equation of the form

(1.5). •

6. Proof of Lemma 3.2. First we consider the case 9p3(z) + qί(z)2 = 0 in (1.4).

Put w= - 3 M / ^ 1 ( Z ) - 2 ^ /

1 ( Z ) / ^ 1 ( Z ) 2 - ^ 0 ( Z ) / ^ 1 ( Z ) . Then

(6.1)

(6.2) i

where p2{z\ Pι{z\po(z) are rational functions in the coefficients of (1.4) and their

derivatives.

Let z0 be an admissible pole of u(z). Write it in a neighbourhood of z0 as

u{z) = + α + 0 ( z - z o ) .

From (6.2) we get
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(6.3) R2-3R + 2 = 0, hence i ? = l o r 2 .

(6.4) 3(R-\)oc=p2(z0)R.

We denote by «α(r, u) the number of poles zγ of u(z) each counted only once such that

Rz=Zl — U a n d ^«( r ' w) i s defined in the usual way.

If Na(r, u)φS(r, M), then by Remark 1.1, we have/?2(
z) — 0, which implies that (6.2)

is of the form (1.6).

If NJr, u) = S(r, u), then by (6.3), (6.4) and Remark 1.1, R = 2 and a = 2p2(z0)/3, for

almost all admissible poles z0, which implies that almost all admissible poles are SI-poles.

Thus by (6.1) and Lemma C, u(z) satisfies a Riccati equation.

Secondly we treat the case ^ - ^ ( z f ^ O in (1.4). Put w=—qί(z)v — (5qf

ί(z) +

p2(z))/6qι(z)2 - 3qo(z)/2qί(z). Then

(6.5)

(6.6) v" + v'

where p(z), H(z\ S(z) are rational functions in the coefficients of (1.4) and their deriva-

tives.

Let z 0 be an admissible pole of v(z). Write it in a neighbourhood of z 0 as

n

v(z) =
z-z0

From (6.6)

(6.7) R2 + R-2 = 0, hence # = l o r - 2 ,

(6.8) (3R+ l )α= -p(zo)R + 3p(zo),

(6.9) 6Rβ = - 6α2 - 6a#z 0 ) - 2H(z0) - 3p'(zo)R - 4p(z0),

(6.10) 6(3R2-R-2)γ = P5(R, *9β;z0),

where P5(R, α, β z0) is a polynomial in R, α, j? with small coefficients. We denote by

ny(r, v) the number of poles zx of v(z) each counted only once such that Rz=Zί = 1 and

Ny(r, u) is defined in the usual way. If R= 1 at z = z l 9 then from (6.7)-(6.10) eliminating

/?, α and β successively, we have zl(z1) = 0, where Δ{z) is defined as in Theorem 1.1

which is a small function with respect to v(z).

When 7Vy(r, u) Φ S(r, w), by Remark 1.1 Δ(z) = 0, which implies that (6.6) is of the type

(1.7).

When Nγ(r,u) = S(r,u\ by (6.7), (6.8) and Remark 1.1, for almost all admissible

poles z0, R= —2 and α = —p(z0), which implies that almost all admissible poles are

SI-poles. Thus by (6.1) and Lemma C, v(z) satisfies a Riccati equation. •
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7. Proof of Lemma 3.3. In (1.4) put w = 2υ/q1{z) + (2/q1(z))f-qo(z)/q1(z). Then

(7.1) v" = 2v

where p2(z\ p^z) and po(z) are rational functions in the coefficients of (1.4) and their

derivatives. Put 2v'+p2(z)v = φ(z). Then by Lemma G, m(r, φ) = S(r, v).

If N(r9 v) = S(r, v), then we have T\r9 φ) = S(r, v). Thus, φ(z) is a small (with respect

to v(z)) function, which implies that υ(z) satisfies a linear equation of first order.

We treat the case N(r9 v) Φ S(r, v). We may assume that there exists an admissible

pole z 0 oft; by Remark 1.1. Put ω(z0, v) = μ. The leading terms of (7.1) are v" and 2vvr

9

and μ = 1. Hence we may write v(z) near z0 as
n

(7.2) v(z) =
o

z-z0

From (7.1) and (7.2)

(7.3) R + 1 = 0 , 2α -p2(z0)R = 0 , 2α^2(z0) +p'2(z0)R +p1(z0) = 0 .

Thus, from (7.3), ^ 2 ( z o) 2 +P2( z o)-^i( z o) = 0. By Remark 1.1, we have

(7.4) P2(z)2+P2(z)-Pi(z) = 0.

Put in (7.1) u = (v-p2{z)/2)'-(v-p2(z)/2)2. Then by (7.4)

which implies that u(z) satisfies a linear equation of first order. •

8. Proof of Lemma 3.4. Since qx(z) = 0, ifp2(z) = 0, then (1.4) is a linear differential

equation. Thus we may assume that p2(z)φ0. Put in (1.4) w = 6u/p2(z) + {(l/p2(z))"—

qcm/PiW-PiWPiiz)}- Then

(8.1) u" = q(z)u' + 6u2 + p(z),

where q(z) and p(z) are rational functions in the coefficients of (1.4) and their derivatives.

By Lemma G, m(r, u) = S(r, u). Thus by Remark 1.1 u(z) has infinitely many admissible

poles. Let z 0 be an admissible pole and put ω(z0, u) = μ. In (8.1), the leading terms are

u" and 6M2, and μ = 2. Hence we write u(z) near z 0 as

(8.2) u(z)= /

 R l + - ^+
(z-z0)

2 z-z0

By the Test-Power test of (8.1), the series (8.2) is a resonant series. In fact, α 4 is an

arbitrary constant, if the following condition holds:
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(8.3) 1440α
o
α

2
 + 720α? + όOα^'^o) + 240α

2
?'(z

0
) + 360α

3
?(z

0
)

1 + 60/7"(z0) - 5? w ^ ) * ! - 2<7(5)(z0)*2 = 0 .

On the other hand, Rί9 R2, α0, α l 5 α2 and α 3 are written directly in terms of small (with

respect to u(z)) functions. Thus there are small (with respect to u(z)) functions σ6(z),

σ5(z), σ4(z), cτ3(z) and σ2(z) such that if we put

(8.4) D(z, u, u') = u'2 + σ6(z)u3 + σ5(z)u'u + σ4(z)u2 + σ3(z)ur + σ2(z)u ,

then D(z) = D(z, u{z\ u'(z)) has at most a simple pole at z 0 and the residue is written in

terms of small (with respect to u(z)) function as

(8.5) D
z-z0

where κ(z) is a small function with respect to u(z).

If κ(z) = 0, then D(z) is regular at z0, which implies N(r9 D) = S(r, u). By Lemma H,

m(r, D) ^ 3m(r, M) ̂  5(r, u). Hence D(z) is a small function with respect to w(z). Therefore

u(z) satisfies a differential equation of the form (1.5).

We consider the case κ(z)φθ. We write R2, Rl9 α0, α l 5 α2, α 3 in terms of small

(with respect to u(z)) functions successively. Hence σ6(z), σ5(z), σ4(z), σ3(z), σ2(z) are also

written in terms of small (with respect to u(z)) functions successively. Thus by elementary

but tedious calculation we obtain

κ(z) = -(\5000p(z)q(z) -18750/7 '(z) + 36?(z)5 - 900q(z)3q'(z) + 2000q(z)2q"(z)

tf'"(z)- 3 1 2 5 ? W ( z ) + 625?(4)(z))/9375 .

Further elimination R2, Rί9 α0, α 1 ? α2 and α 3 in (8.3), we obtain F(zo) = 0, where

V(z) is a differential polynomials in p(z) and ?(z). Thus V(z) is a small function with

respect to M(Z), which implies V(z) = 0 by Remark 1.1. By elementary but tedious

calculations, putting T(z)= — 9375κ(z), in the differential equation for p(z) and q(z)

(V(z) = 0), we obtain a linear differential equation for T(z)

T' + q{z)T=0,

REFERENCES

[ 1 ] M. J. ABLOWITZ, A. RAMANI AND H. SEGUR, A connection between nonlinear evolution equations and

ordinary differential equations of P-type, I, J. Math. Phys. 21 (1980), 715-721.

[ 2 ] S. BANK AND R. KAUFMAN, On the growth of meromorphic solutions of the differential equation

(γ')m = R(z,y\ Acta. Math. 144 (1980), 223-248.

[ 3 ] S. BANK AND I. LAINE, On the growth of meromorphic solutions of linear and algebraic differential

equations, Math. Scand. 40 (1977), 119-126.

[ 4 ] W. DOERINGER, Exceptional values of differential polynomials, Pacific J. Math. 98 (1982), 55-62.



SECOND ORDER DIFFERENTIAL EQUATIONS 325

[ 5 ] A. E. EREMENKO, Meromorphic solutions of algebraic differential equations, Russian Math. Surveys

37 (1982), 61-95.

[ 6 ] G. G. GUNDERSEN, Meromorphic functions that share four values, Trans. Amer. Math. Soc. 277 (1983),

545-567.
[ 7 ] F. GACKSTATTER AND I. LAINE, Zur Theorie der gewόhnlichen Differentialgleichungen im Komplexen,

Ann. Polon. Math. 38 (1980), 259-287.

[ 8 ] W. K. HAYMAN, Meromorphic functions (1964), Oxford Univ. Press.

[ 9 ] Y. Z. HE AND I. LAINE, The Hayman-Miles theorem and the differential equation (y')n = R(z, y),

Analysis 10 (1990), 387-396.

[10] E. HILLE, Ordinary differential equations in the complex domain (1976), John Wiley and Sons, New

York-London-Sydney-Toronto.

[11] E. L. INCE, Ordinary Differential Equations (1956), Dover, New York.

[12] K. ISHIZAKI, Admissible solutions of second order differential equations II, Technical Reports,

Math. Sciences, Chiba University 6 (1990).

[13] E. A. JACKSON, Perspectives of nonlinear dynamics 2 (1990), Cambridge Univ. Press.

[14] G. JANK AND L. VOLKMANN, Meromorphe Functionen und Differentialgleichungen (1985), Birkhauser

Verlag, Basel-Boston-Stuttgart.

[15] M. D. KRUSKAL, A. RAMANI AND B. GRAMMATICOS, Singularity analysis and its relation to complete

partial and non-integrability, Partially Integrable Evolutional Equations in Physics (R. Conte and

N. Boccara, eds.) (1990), 321-372, Kluwer Academic Publ., Dordrecht-Boston-London.

[16] I. LAINE, On the behavior of the solution of some first order differential equations, Ann. Acad. Sci.

Fenn. Ser. A. I, 497 (1971).

[17] R. NEVANLINNA, Analytic Functions (1970), Springer Verlag, Berlin-Heidelberg-New York.

[18] J. v. RIETH, Untersuchungen Gewisser Klassen gewόhnlicher Differentialgleichungen erster und zweiter

Ordnung im Komplexen, Doctoral Dissertation, Technische Hochschule, Aachen (1986).

[19] N. STEINMETZ, Eigenschaften eindeutiger Losungen gewόhnlicher Differentialgleichungen im

Komplexen, Doctoral Dissertaion, Karlsruhe (1978).

[20] N. STEINMETZ, Ein Malmquistscher Satz fur algebrasche Differentialgleichungen erster Ordnung, J.

Reine Angew. Math. 316 (1980), 44-53.

[21] N. STEINMETZ, Uber eine Klasse von Painleveschen Differentialgleichungen, Arch. Math. 4 (1983),

261-266.

[22] N. STEINMETZ, Ein Malmquitscher Satz fur algebraische Differentialgleichungen zweiter Ordnung,

Results in Math. 10 (1986), 152-167.

[23] N. STEINMETZ, Meromorphe Losungen der Differentialgleichungen Q(z, w)(d2w/dz2)2 = P(z, w)(dw/dz)2

y

Complex Variables 10 (1988), 3 1 ^ 1 .

[24] J. WEISS, Backlund transformations and the Painleve property, Partially Integrable Evolutional

Equations in Physics (R. Conte and N. Boccara, eds.) (1990), 375^111, Kluwer Academic Publ.,

Dordrecht-Boston-London.

[25] H. WITTICH, Eindeutige Losungen der Differentialgleichungen H>" = P(Z, w), Math. Ann. 125 (1953),

355-365.

[26] K. YOSIDA, A generalization of Malmquist's theorem, Japanese J. Math. 9 (1932), 253-256.

DEPARTMENT OF MATHEMATICS

TOKYO NATIONAL COLLEGE OF TECHNOLOGY

1220-2 KUNUGIDA-CHO HACHIOJI

TOKYO 193

JAPAN






