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GENERATORS FOR THE IDEAL OF A PROJECTIVELY
EMBEDDED TORIC SURFACE
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Abstract. We show that the ideal of a projectively embedded toric surface is
generated by polynomials of degrees 2 and 3.

1. Introduction. Let X be a toric surface. It is well known (see [Da]) that X is

determined by a fan Δ in Z2. We will use the notation used in the book of Oda [Od]
and denote X= Γemb(Δ). An ample line bundle j£? on X is determined by a certain
integral convex polygon P and the cohomology group HQ(X, J£?) corresponds in a
natural way to P (see [Od, Paragraph 2.2]). Since we are in dimension 2, an ample line
bundle $£ is also a very ample line bundle (see [Ko, Lemma 1.6.3]), hence & gives an
embedding in some projective space.

It is an interesting problem to determine equations for this embedded surface.
Especially how many equations should one determine? The answer to this problem is
given in this article: one has to determine the equations of degrees 2 and 3. The basic
idea is that we will rewrite every monomial, which appears in a defining equation, in
some kind of standard monomial. This rewriting uses the equations of degrees 2 and 3.

In this article we start with an integral convex polygon P and we consider the toric
surface XP (see [Da, 5.8]). Let <£P be the line bundle on XP corresponding to P and
let ΔF be the fan such that XP= Γemb(ΔP).

2. The generators of the ideal. Let P be an integral convex polygon in R2 and
let X= Γemb(ΔP). Then JS?P gives an embedding φ: X-+Pn~\ where n = h°(X, &P). Let
{xί9..., xn} be a basis for H°(X9 &P)9 let la C[x l 5..., xj be the ideal of X and let
7d = /n C[xl9..., xjrf be the homogeneous part of / of degree d. Then, we have the
following exact sequence

0 >Id >Symd(H°(X, &P))-^H°(X, 3>P®
d) »0 .

DEFINITION 2.1. Let P be an integral convex polygon in R2. We define dP as the
convex polygon which we get by multiplying P by d.

The line bundle J£®d corresponds to the polygon dP. Let P contain the points

1991 Mathematics Subject Classification. Primary 14J25.



386 R. J. KOELMAN

m !,..., mn with m^Z2 for /=!, . . . ,« . A point mf corresponds to the section xf.

By abuse of notation we also use xt if we mean the point mt. A monomial
xd e Symd(H°(X, J£?P)) is a monomial in the variables xl9 . . . , xn.

DEFINITION 2.2. Let β e dP. A /?#£// of length d to Q is a set of d points < j^ , . . . , ydy

(not necessarily distinct) such that yt e P, with 1 < i < d and Yf. = 1yί = Q. Each yt is called

a

Let us remark that a path is just a set of steps, hence the order of the steps is not
determined. A monomial m of degree dis a path of length d to φd(m) e dP and conversely,
every path to an element of dP is a monomial of degree d in the variables {x1? . . . , xn}.

LEMMA 2.3. Leί P fe fλe triangle given by
QεdP. The there exists a unique path to Q.

PROOF.

= (Q, 0), jq^ = (1> 1)

5P

.Q

FIGURE 1.

Let Q = (a,b)edP. Take

C_ /γO — \Λ>

a-b d-a

Then 5 is a path to Q. This is a well defined path because d>a>b and QedP. It is

unique because {xl5 x2} ^s a basis for Z2. Π

DEFINITION 2.4 (height function). Let LaR2 be a line through zero such that
there exists a point R = (r0, rJeZ2 on L. Take β in such a way that r^O and
gcd(r0, r1)=l. If r± =0 then take r0= 1. Let h(x, L) = det(R, x), which is also called the
lattice distance from x to L.

The height function is additive, hence h(x + y, L) = h(x, L) + h(y, L) for all x, yeZ2.

DEFINITION 2.5. An n-triangulation Vn of a convex polygon P is a set of triangles
Va = {Pi} such that
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2. P=(JiPi.
3. P^Pj^dP

LEMMA 2.6. Let P be a convex polygon and QedP. Then there exists a path of
length dtoQ.

PROOF.

4P

FIGURE 2.

Let Vί = {Pi} be a 1-triangulation of P. Then Vά = {dP^ is a d-triangulation of dP.

Hence, QedPt for a certain /. Let vl9 v29 v3 be the vertices of Pf. Then, it follows from
Lemma 2.3 that there exist unique a,b,ceN such that a(v2 — vj 4- b(v 3 — t^) + c 0 = Q —

dvί with a + b + c = d. Hence, av24-to3-\-cvί = Q. ^ Π

From this lemma, it follows that 0d is surjective.

THEOREM 2.7. The ideal I is generated by polynomials of degrees 2 and 3.

The next lemmas will serve to prove this theorem. From the way that we look at
the problem, we see that Id is generated by polynomials of the form xd—yd such that
the monomials xd, yd e Symd(H°(X, J2?P)) are mapped by φd to the same image.

DEFINITION 2.8. Let P be a convex polygon. An operation of degree n on a path

S = <*!,..., xd > to Q e dP is the substitution of a subset S' = <^y1,..., yny c= S by a subset
S" = < M l 5 . . . , wπ>, HI e P, such that
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LEMMA 2.9. Let P be a convex polygon. Let vί9 ..., vn be its vertices arranged

clockwise in this order. Let v^^ =(0, 0), let Bt, i = 1, . . . , n — 2 be the triangle with vertices

vί9 υi+15 υi + 2 which we get by drawing the lines Li from (0, 0) to the vertices t;3,..., ι?Λ_ 1

(see Figure 3). Thus Bί9..., Bn_2 give a triangulation of P. Suppose that we have a path
S=(xl9..., xdy to QedP. Then, by operations of degree 2, we can change S into a path

S' = <χ' x,.. ., χ'd > to Q so that x'i e Bio for all i and a certain i0.

FIGURE 3.

PROOF. Let T=(xieS'\xieBl9xiφBjifj^iy. Denote A :=^jC6Γ/z(x, L t) which is

a nonnegative integer. We may suppose that there is a yeS and yφBί9 because if such

a y does not exist, then all xt belong to B^ and hence nothing is left to prove.

Choose and fix any xeT and denote R = y + x. Then Re2P, hence Re2Bj for

a certain j. Thus, by Lemma 2.6 there exist /, x'eBj such that R = / + x'. Now re-

place in S the steps x by x' and 3; by /. Then we get a new path S' to β. Let T =

<x'ieS/ x'iGB^x'iφBj i f y V l ) . We obtain the set T from the set Tin the following

way:
Case 1. y + xe2£1.

• If h(x', Lx) > 0, then replace in T the step x by x', or else remove x from T.

• If /*(/, Li)>0, add the step / to T.

Case 2. y + x^251. Then remove x from Γ.

Denote V :=ΣxeT'
h(x> Lι) In Case ^ we see that Λ(jc/,L1) + A(y/,L1) = Λ(x,L1) +

h(y, Lί)<h(x, Li) because /z(y, L1)<0. In Case 2, we removed a point c from T with

/ί(x, Lj!)>0. The conclusion is that h'<h. Therefore, if we continue this process, two

things are possible. Either h becomes 0 or all the points are in B±. If h becomes 0, then

we can start all over with B2, etc. We see that at the end, all steps are in one triangle.
The replacements in S are all operations of degree 2.

LEMMA 2.10. Let P be a triangle. Let Qe3P. Then there exists a path
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<jc1? x29 jc3> to Q, XI^P, such that one of the xt is a vertex.

PROOF.

FIGURE 4.

Let vί9 v2, v3 be the vertices of P. Without loss of generality, we may assume

v± =(0, 0). Let 2Pt : = Vi + 2P for ί= 1, 2, 3. Thus 2Pί (resp. 2P2, resp. 2P3) is a triangle

with vertices 0, 2v29 2v3 (resp. 3t>2, υ2, v2 + 2v3, resp. 3ι?3, ι?3, 2v2 + v3).
Let Lt be the edge of 2Pt that goes through v2 + v3. It is clear that every point

g e 3P is in 2Pίo for a certain ϊ'0. Hence, from Lemma 2.6, it follows that there is a path

(starting from vio) to Q of length 2. If we also use υio as a step, then we have a path

from 0 of length 3 to β. Π

LEMMA 2.11. Let P be a triangle. Let S=(xl9..., *d> be a path to QεdP. Then
by operations of degree 3, we can change S in such a way that at most two steps of S are

not vertices.

PROOF. Take any three steps. Change them by an operation of degree 3 into three
steps that contain a vertex. This is possible because of Lemma 2.10. Continue this
process until there are no three steps left which are not vertices. Π

LEMMA 2.12. Let P be a triangle with vertices vί9 v2, v3. Let

S = (vl9 . . . , t ? ι , υ2, ...,v2, ι?3, ...9v3,kl9k2y

a b c

be a path of length d>4 to a point Q. Then, there exists no other path of length d
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S" = <!?!, . . . , ϋ l 5 V2, . . , ^2> ^3> -

PROOF.

FIGURE 5.

Let the vertices of P be vί9ι>2, ^3 numbered as in Figure 5. Without loss of generality
we may assume that v2 = (0, 0). Let

S' = <ι>ι, ...9vl9v29 ...9υ29v39... 9 υ39 kfl9 kf2y

be any path of length d such that S" nS = 0. Let 5' be a path to Q'. Now we have to
prove that Q cannot be equal to Q.

Without loss of generality we may assume that (α, fo, c) = (d — 2,0,0) and
(a', V, c') = (0, fc, d — 2 — k) with Q<k<d-2-k. Then Q lies in the triangle 4, which has
vertices (d — 2)vί9 dvί9 (d — 2)vi-\-2v39 and Q' lies in the triangle Bk d which has vertices
2υ1+(ίi-2-fc)ι?3, (d-2-fe)ι;3, (d-fc)r3 (see Figure 5).

If d > 5 then the triangle Ad and the triangle Bk d have no points in common, hence
the lemma is true. If d = 4 then the two triangles have exactly one point in common
namely 2vί+(2 — k)v3. Hence Q and Q can only be equal if k'1=k'2 = v1. Hence S and
S' have a step in common. Π

PROOF OF THE THEOREM. Suppose that we have a relation x* = x2. Hence, we have

two different paths to 6 = Σ^=1^ι,/ = Σ^=1^2,/ If we triangulate P as in Lemma 2.9,
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we can change both paths into paths which contain only steps of a certain triangle, by

using only operations of degree 2. Hence, we get a relation Σ?=1xΊ,ί = Σ?=1*2,i with
x'1>f, x

f

2fίeBio. By using relations of degree 3, we can even get in the situation that x'ίti
(and also x'2>ί) are all vertices of Bio except two of them (Lemma 2.11).

Now we prove the theorem by induction. For d = 3, the theorem is true. Suppose

that d>3. From Lemma 2.12, it follows that SΊ = <Xι f ί > and S2 = <x2,i>
 nave a steP in

common. Hence, if we divide the relation by this variable, we get a relation of lower

degree. But, by induction, this relation was in the ideal generated by 72 and 73 and
therefore, the original relation was also in this ideal. Π

Lemma 2.12 proves that to QεdP there exists a kind of standard path consisting

of the vertices of the triangle B of the polygon, in which Q lies, and of two steps which

are allowed to be in the interior of B.
In higher dimension the natural generalization fails. This is shown in the following

example.

EXAMPLE 2.13. Let P be the convex hull of the points i^ =(0, 0, 0), v2 = (Q, 0, 3),
ι>3 = (l, 2,0), t?4 = (2, 1,0) (see Figure 6). With the criterion of Oda [Od, Theorem 2.13]
one can check that 5£P is a very ample line bundle on XP. Let xt be the variable
corresponding to vi9 i = 1,..., 4. Name the other points of P n Z3 as follows: x5 = (0, 0, 1),

x6 = (0,0,2), *7 = (1,1, 1) and χ8 = (l, 1,0).

Let Qe5P, 6 = (3, 3, 3). The natural generalization would be that a standard path
consists of two vertices and three internal points. However, if we take the paths S^ and
$2 to g, where Sί = (x39x49x59x59xsy and *S'2 = <Λ:1, Λ:2, x8, x8, x8>, then we notice
that SΊn S2 = 0.

FIGURE 6.
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Hence a better notion of standard path should be found for higher dimension.
Although this notion of standard path fails, it is still likely that relations up to the
degree n H- 1, where n H- 1 is the number of vertices of the standard simplex in dimension
«, will suffice.

In the above example we have the relations xίx2 = x5x6, x2

5 = xίx6 and x| = x1x3x4,
hence the polynomial xίx2xl — x3X4xl is in the ideal generated by the relations of
degrees 2, 3 and 4 because we have

) ~~ *3*4*5\*5 ~~ *l*β) ~l~ *l*3*4V*l*2 ~~ *5*β)

Therefore I will make the following:

CONJECTURE 2.14. Let P be an integral convex poly tope in R" such that XP is a
toric variety of dimension n and that <£P is a very ample line bundle on Xp. Then the

ideal / of X embedded in a projective space by Ĵ >, is generated by polynomials of
degrees at most n+ 1.

REFERENCES

[Da] V. I. DANILOV, The geometry of toric varieties, Russian Math. Surveys 33:2 (1978), 97-154; Uspekhi

Mat. Nauk 33:2 (1978), 85-134.

[Ke] G. KEMPF, F. KNUDSEN, D. MUMFORD AND B. SAINT-DONAT, Toroidal Embeddings I, Lecture Notes

in Mathematics 339, Springer- Verlag, Berlin, Heidelberg, New York, 1973.
[Ko] R. J. KOELMAN, The number of moduli of families of curves on toric surfaces, Thesis, Nijmegen, 1991 .
[Od] T.ODA, Convex Bodies and Algebraic Geometry, Springer- Verlag, Berlin, Heidelberg, New York,

1988.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GRONINGEN

P. O. Box 800, 9700 AV GRONINGEN

THE NETHERLANDS




