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Abstract. A study is made of the asymptotic behaviour for the ground state
eigenvalue concerning certain semi-linear elliptic operators under singular variation of
domains.

1. Introduction. Let M be a bounded domain in R* with smooth boundary M.
Let w be a fixed point in M. We remove from M an open ball B(g; w) of radius ¢ with
the center w and write M, =M \ B(g; w).

In the present note, we consider the minimizing problem:

(1.1), A(e):inff | Vu|2dx

XE
where X,={u; ue Hy(M,), |ullpo+14r,=1, >0}, and investigate the asymptotic be-
haviour of A(g) when ¢—0.
It is easy to see that when pe(l, 5) there exists at least one positive solution u,
which attains (1.1), and which satisfies
(1.2) —Au, = Me)u? in M,,
u,=0 on O0M,.

Let A denote the operator v+— Av from H*(M,)n H§(M,) to L*(M,) associated with
the boundary condition (1.2).

Along with (1.1),, we consider the minimizing problem:

(1.3) /1(0)=infj | Vu|2dx ,
X

M
where X={u; ue Hy(M), u)opy =0, |[ull o+ 1ry=1, u>0}.

THEOREM. Assume that the positive solution of — Ati=1P” in M under the Dirichlet
condition on 0M is unique. Assume also that for any small 0<e«<1 the ground state
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solutionu, of (1.1), is unique and Ker(A + A(e)puf ~*)={0}. Here u, is the positive minimizer
of (1.1),. Then,

(1.4 A(e) — A(0) = dmeu(w)? + o(e)

holds for pe(1,5). Here u is the minimizer of (1.3).

REMARK. The domain (such that the positive solution of —Ay=y”? in M under
the Dirichlet condition on M is unique) is given by Gidas-Ni-Nirenberg [4] and Dancer

[3].

The author expresses his gratitude to the referee for valuable advice.

2. Preliminary lemmas. In the following we assume dim M =3.

LEMMA 2.1. Assume that u satisfies

2.1 Au(x)=0 xe M\ B(g; w)

2.2) u(x)=0 xedM

(2.3) ux)=L®)  x=w+ed, 0=(0,,0,, 0,)eS?.
Then,

J‘ <<ﬁ> (x)) : & 2d0 S C(max L(g) 2 + W) )
s2 \\ Ov |as. o

W=(max L(6)*)"" " (| Ll s + | LIIE1 +or(s2) /" T

where

for ¢'>0>0. Here B,= B(c; w).

PROOF. Let —Ag. be the Laplace-Beltrami operator on S with canonical metric.
It has the eigenvalue series O=po<p; <p,<.... Let {px)};Z, be a complete
orthonormal basis of L%(S?) consisting of the eigenfunctions of Ag.. It is well known
that u;~ Cj for j—co. Let

02 2 0 1
A= or? * r or +r2 As2

be the Laplacian on R*\ {0}. We put A(r%¢;(0))=0. Then, (g;(g;— 1)+ qu—;zj)r"f'2 =0.
When p;=0, then ¢;=0, —1. When y;%0, then ¢;= —(1/2) — (1; + (1/4))"/* is a candidate
so that r%—0 when r— o, and behaves like g;~ —c’j*/* as j— 0.

We put S,={xeR3;|x|=r}, Yy C*(R?), Y5, =¥(e8), 6 S>. Note that S, =52
In terms of {¢;}32, we have the following expansion:

W)= 3. b0,00).
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CLAIM. The solution of the boundary value problem

AU(X)=0  xeR*\(B,

U5, =y(eb)
lim U(x)=0
| %] o0
is given by
(2.4) U(x)= Zo bi(e/r)"¢;(0)
i=
with go= —1. And
(2.5) Ul L23r) < CR)IW Il L23,
ou
(2.6) ‘ - SC(BIY L,
D 275
hold.

PrOOF OF CLAIM. It is known that the eigenvalue of the n-th spherical harmonic
function is n(n+1). Thus, ¢;< —2 for u;x0. We therefore get (2.5), (2.6). q.ed.

CONTINUATION OF THE PROOF OF LEMMA 2.1.  Assume that w={0} and choose R
so that {xe R?;e<|x|< R} <= M. By the Green formula for AU-u—Au-U we get

@7 J il

as.=J,+J,,
5, Or|s.

N

where

3. r |8,
0 ~
J,= J‘ ( M a_U) Sy
Sr or or |sR
We here have
(2.8) lull Loerry < | Ll oo 5,
Ou ,
(2.9) — SC”“”LZ(M)SC |lL||L®(§1)
6?‘ LZ(ER)

by the maximum principle and elliptic estimates.
Therefore,

(2.10) [J2 | SCIL| Loo(sp1¥ Nl 23, -
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On the other hand,

ou ~
J1=J dse=J L(B)a—U(O) r=c62d0
|
3, 5 or

or |3,
=I < Z aj(oj(e))(" Z quj(pj(e)>8d0
S1\j=0 j=0
= —¢ .ZO alquj .
j=
Therefore,
0 1/2 o 1/2
el ) ()
j=0 j=0
Since
e? Z i= ”'//”LZ(SE) )
j=0
we get

0 1/2
|Jlls< > q?a?) Wl L2, -

j=0
By (2.7) we have
Oou

@.11) l‘aT

Lz(S,:) ”‘l’ 1 LZ(S,;) 1

© 12
< C’<”L"L°B(S’l)+< ‘Zo qf“f) ) .
i=

Since g;~ —¢j'/ 2 as j— o0, we see that the second term on the right hand side of (2.11)

does not exceed
© 1/(1+0) s} o/(1+a)
2:1+ 2
C’( Y. a}j ") ( Y a? .
j=o j=0

f L(0)*d0=ca+C' Y. a?<C"max L(0)*.
SZ

j=1

Clearly,

Thus, (2.11) is estimated by

Cmax L(O)? + (| Ll s o520+ max L)1+
0 0



SEMILINEAR ELLIPTIC EQUATION 363

0 1/2
(a% - 'Zl afj{)
j=

is equivalent to the norm || L|| gz sz, H*(S?) denoting the L2-Sobolev space of fractional
order.

Now it is well known that H%(S?) 5 f has the following equivalent norm for 1 <£<2
(see Adams [17]):

Here we used the fact that

1/2
(IImesz)+ > J j | D*f(x)—D*fW) | x—yI|~ ”dxdy> .

al=1

Hence, “L“H‘ +o(S2) < "L"HI(sz) + ”L“CI +a'(S2) fOr ' >0>0. Thus, we get Lenlma 2.1.
q.e.d.

Let G,(x, y) be the Green function of —A in M, under the Dirichlet condition on
0M,, that is, it satisfies —A,G(x, y)=3(x—y), x, ye M, and G,(x, y)=0 for xe 0M,. Let
G(x, y) be the Green function of —A in M under the Dirichlet condition on dM. We
introduce the following kernel function p,(x, y):

ps(x’ Y) = G(X, y) - 47"'8G(xs W)G(W, y) .
Let G,, P,, G be the operators given by

G.f(x)=] G.x,y)f(y)dy

M,

Pf(x)=1| pdx, »)f(y)dy

M.
Gg(x)=f G(x, y)g(y)dy .

As for the regularity of operator G, we refer the reader to the literature (for instance

(2], [5D.

LEMMA 2.2. There exist constants h, C>0 such that

a 2
j (6_(P .—G)f )I e2do< Ce*| f | Lacars)
s2\ Ov 2B,

holds for feLi(M,) with q>3.

ProoF. Let f denote the extension of f to M, defined as 0 outside M,. Let
(P,—G,) f =v,. Then,

Av,(x)=0 XeEM,
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v, (x)=0 xedM

0:(X)\08, = GF (x) — Gf (w) —4meS(x, WIGF (W) ,
where S(x, y)=G(x, y)—(@n) " | x—y|"t.
Therefore, v,(x),s5, = L(0) satisfies

(2.12) max | L(6) |< Ce* |G llcsan + O()| GF (W) |

< Ce"|| fll Lam)

with t>0, provided ¢>3/2.
Furthermore,

(2.13) ILI A1esay+ ILIE: + ooy
< CIGF & sy + IGF 112 +orany + O@) | GF (W) %)
< Cl”f"l%r(Me)

for r> 3 if we take sufficiently small 6’ > 0. Therefore, by Lemma 2.1 we get Lemma 2.2.
q.e.d.

LEMMA 2.3. Let pe(1,5) and let u, be the solution of (1.1),. Then, we have

sup sup |u(x)|<C<o0.
0<g<eg xeM,
PrOOF. We continue u, into M by setting 0 outside M, and denote by &, the
function thus extended. It is clear that {#,}¢<,<,, forms a bounded set in Hy(M), so
that by Sobolev lemma we first obtain

(2.14) SUp | &,|| Loy < C -

0<e<egg
On the other hand, from u, = A(¢)G,u? and from the monotonicity of the Green function,
it follows that

(2.15) (0=<)u, < A(eo)Ga7 ,

where we used the fact that A(g) < A(gy) for <.

Suppose now pe(1, 4). Then, in view of (2.14) we get Supg <, <, 177 ]| Laary < C With
g>3/2. Thus, the Lemma follows from (2.15) and the regularity of G.

Consider next the case where p €[4, 5). Using again the regularity of G, we see that
there exists a constant C’' >0, independent of ¢ (<¢,), such that for ¢<g,

”ﬁs”Lq(M) < '1(30)||Gag”u(M) <C’,

where g=6/(p—4) if pe(4, 5), and ¢>1 may be any positive number when p=4. We
thus obtain a better estimate than (2.14), from which we started.
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Proceeding in this manner step by step, the proof is completed. q.e.d.

The following Lemma is crucial for our study. Let 2 be a bounded domain in RY
(N=2) with smooth boundary 0. Let p be a smooth function on 0Q. We denote by
v(x) the exterior unit normal vector at xedQ. If ¢ is small enough, we have a new
domain Q, bounded by 0Q, = {x+ep(x)v(x) ; x € dQ}. Let p be a fixed number satisfying
l<p<oo for N=2, 1<p<(N+2)/(N-2) for N>3.

We consider the minimizing problem

(2.16), p(e)=inf f | Vu|?dx
Ye Q.

where Y,={u;ue HY(RQ,), llullLs+1q,=1, 4, >0}.
We have the following.

LEMMA 2.4 (cf. Osawa [7]). Assume that the positive solution ¥ which minimizes
(2.16), is unique. Assume also that Ker(T+ u(0)pu®~')={0}, where T denotes the
operator v+ Av from H*(Q)n H}(Q) to L*(Q). Then, we have

lim &~ (u(e) — p(0)) = — J (@u/ov,)?p(x)do
e—0 00

where 0/0v, denotes the differentiation along the exterior normal.
LEMMA 2.5. A(e) converges to A0) as e—O0.

Proor. From the monotonicity of the eigenvalues A(g), it follows that as ¢—0,
Me)—>A* > A(0). Since {#}o<,<,, is bounded in Hj(M), we may extract a subsequence
{#,,} which converges to u* weakly in Hy(M) and strongly in L4 M) for any ge(l, 6).
It is not difficult to verify here that supp(—Au*—A*u*P)e{w} and —Au*—
A*u*Pe H™ (M) + L*(M). Therefore, — Au* = 1*u*? in M. Suppose now A* % 1(0). Then,
we shall have two positive solutions of —Au=u? in M, namely A*1/P~Dy* 3(0)1/(P~ 1)y,
This contradicts the assumption of the Theorem, and so the proof is complete. q.e.d.

3. Proof of the Theorem. Applying Lemma 2.4 to our situation, we obtain
@)= J (Ou,/ov)?| o8, 12d0
52
so that
3.1 A(e)—l(0)=rl’(t)dt.
0

Let 1'(1)=A()%(K, + K, + K3),
where
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K, =J (OPuP/ov,)*t%do
s2
K,=2 J (OPu?|0v,)(O(P,— G, )uf|ov,)t*db
S2

K =J (O(P,— G )uf[0v,)*t*do
sZ
with x=w+10, e S2.
If we prove that
(.2) K, <C,
then by Lemma 2.2 and 2.3 we get K, =0(t"'?), K;=0(t") for some v>0.
To this effect, write A(¢)2K, =L, + L,+ L3, where

L, =A1)? J (0GP 3v,)*12d0
S2

L,= —8ntl(t)2J ( g Gﬁ,"(x))( 0 G(x, w)Gﬁ{’(w))tde
s2\ 0v, dv,

Ly=16n%1%A(1)? j < 6(3 G(x, w)>2 (GitP(w))*t%df .
S2 x

By Lemma 2.3 we then have L, =0(t?), L, =0(t) and

2
Ly=167212A(1)? j (aav 741;|x—w|‘1> (GaP(w))212d0+ O(t*)
S2 x

=0(1).

We thus have proved (3.2). »
Using now the estimates for K; (i=1, 2, 3), we obtain A(g) — 1(0) = O(¢), together with
A1)’ K, =4nA(0)*GiaP(w)+ O(t) .
Further, from Lemma 2.3 and the proof of Lemma 2.5, it is easy to show that as t—0,
#? actually converges to u? in LY(M) with ¢g>3/2, so that Gi#P(w)=Gu"(w)+ o(1).
Combining the estimate obtained above and noting that u=A(0)Gu” in M, we
finally obtain

A(t) = 4nu(w)* +o(1)

and the proof of the Theorem is complete.
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4. Comment. For related topics, the reader may be referred to Osawa [7],
Osawa-Ozawa [8], Ozawa [9], Dancer [3], Lin [6]. The result of this paper was
announced in Ozawa [10].
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Addendum (Received February 10, 1993). After this paper was accepted, it turned
out, thanks to a recent result of S. Roppongi: “The Hadamard variation of the ground
state value of some quasi-linear elliptic equations (preprint)”, that the assumption
Ker(A4 + A(e)pu?~')={0} for ¢>0 is unnecessary to obtain the formula

6 2
A'(e)=j ( "“) £2d0 .
s2 aV |0B,;

Thus, the conclusion of the Theorem holds as it stands without the assumption above
mentioned.

Moreover, it was pointed out by Professor E. N. Dancer that his results in Math.
Z. 206 (1991), 551-562, imply that if the positive solution of —A#i=Ai? in M under
the Dirichlet condition on dM is unique, the ground state solution u, is then unique
for 0<e« 1, provided that Ker(4 + Api#i®~')={0}, 1 being the ground state value.

As the uniqueness of the positive solution of —A#=4? is actually equivalent to
the uniqueness of the positive solution of —A#=A#?, the proof of the Theorem might
be further simplified.

The author expresses his gratitude to Professor E. N. Dancer for his valuable
suggestion.
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