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Abstract. A study is made of the asymptotic behaviour for the ground state
eigenvalue concerning certain semi-linear elliptic operators under singular variation of
domains.

1. Introduction. Let M be a bounded domain in R3 with smooth boundary dM.

Let w be a fixed point in M. We remove from M an open ball B(ε; w) of radius ε with

the center w and write Mε = M\B(ε; w).

In the present note, we consider the minimizing problem:

(1.1), A(ε) = inf | \Vu\2dx,

where Xε = {u; ueHι

Q{Mε), I M | L P + i ( M e ) = l , w>0}, and investigate the asymptotic be-

haviour of λ(ε) when ε->0.

It is easy to see that when pe(l, 5) there exists at least one positive solution uε

which attains ( l . l) ε and which satisfies

(1.2) -Auε = λ(ε)uξ in Me9

uε = 0 on dMg.

Let A denote the operator v\->Av from H2(Mε) n HQ(ME) to L2{Mε) associated with

the boundary condition (1.2).

Along with (l.l) ε, we consider the minimizing problem:

(1.3) λ(0) = inf \Vu\2dx,= inf |Vw|
x
 JM

where X={u;ueH£(M), u m = 0, \\u\\LP + HM)=\,u>0}.

THEOREM. Assume that the positive solution of — ΔM = MP in M under the Dirichlet

condition on dM is unique. Assume also that for any small 0 < ε « l the ground state
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solution uε of (I. \)ε is unique andKer(A + λ(ε)puε

p~ί) = {0}. Here uε is the positive minίmizer

o/(l. l) ε . Then,

(1.4) λ(ε) - λ(0) = 4πεu(w)2 + o(ε)

holds for p e (1, 5). Here u is the minimizer of (13).

REMARK. The domain (such that the positive solution of -Δu = up in M under

the Dirichlet condition on dM is unique) is given by Gidas-Ni-Nirenberg [4] and Dancer

[3]

The author expresses his gratitude to the referee for valuable advice.

2. Preliminary lemmas. In the following we assume d i m M = 3 .

LEMMA 2.1. Assume that u satisfies

(2.1)

(2.2)

(2.3)

Then,

where

Au(x) = O

u(x) = O

u(x) = L(θ)

ί ((D
^=(maxL(0)

xeM\B(ε; w)

xedM

x = w + εθ, θ = (θ1,θ2,θ3)eS2 .

V / \
x) 1 ε2dθ<C[ max L(θ)2+ W\,

2\σ/(l+σ)/|i τ ιι 2 __•_ ιι r ιι 2 \l/(l+σ)

) vII ̂ I I H ^ S 2 ) ' II ^ I I c 1 + σ'(s2))
for σ' > σ > 0 . Here Bε = B(ε; w).

PROOF. Let — Δ s 2 be the Laplace-Beltrami operator on S2 with canonical metric.

It has the eigenvalue series 0 = μ o < μ 1 < μ 2 < Let {(Pj(x)}JL0 be a complete

orthonormal basis of L2(S2) consisting of the eigenfunctions of Δ s 2 . It is well known

that μ ; ^ Cj for j - • oo. Let

Λ
 d 2 2 d 1 Λ

5r z r dr rλ

be the Laplacian on i? 3 \{0}. We put A(rqjφj(θ)) = θ. Then, (qfa-1) + 2 ^ — μ ^ r ^ " 2 = 0.

When μ, = 0, then qs = 0, - 1 . When μ3 ^ 0, then ^ = - (1/2) - (μ, + (1/4))1/2 is a candidate

so that rqj^>0 when r ^ o o , and behaves like q}~ —c'j1'2 asy'->oo.

We put 5Γ = {xG/?3;|x|=r}, φeC(X)(R3), ψιSε = φ(εθ), θeS2. Note that S^S2.
In terms of {φ7 }j°=0 we have the following expansion:

φ(εθ)=Σ
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CLAIM. The solution of the boundary value problem

AU(x) = 0 xeR3\Bε

is given by

(2.4)

with qo= — 1. And

(2.5)

(2.6)

hold.

lim t/(x) = O
χ\-*ao

U(x)= Σ t>j(ε/r)-^φj(θ)
j=o

\\U\\LHSR)<C(R)\\Φ\\LHSC)

δU

δr
^ <C'(i?) | |^ | | t 2 ( S

PROOF OF CLAIM. It is known that the eigenvalue of the n-th spherical harmonic
function is n(n+ 1). Thus, q}< -2 for μ^O. We therefore get (2.5), (2.6). q.e.d.

CONTINUATION OF THE PROOF OF LEMMA 2.1. Assume that vv = {0} and choose R
so that {xeR3 ;ε<\x\<R}c:M. By the Green formula for ΔU'u — AwU we get

(2.7)

where

I Φ
δu

Ji = , — 1 dSr

JsR\ dr

δU
dSR.

We here have

(2.8)

(2.9)
δu

δr L2(SR)

by the maximum principle and elliptic estimates.
Therefore,

(2.10) \Ji\<C\\L\\L^sJφ\\LHgε).
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On the other hand,
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sε sι

= f ( Σ ajΦj(fl))(- Σ bjqjφj(θ))εdθ

oo

aPfl> •
j=o

Therefore,

Since

we get

By (2.7) we have

(2.11)

l / 2 l / 2

j=o

oo \ l / 2

)

du
= sup ί ̂ - i d§.

/2(
q ^ + Σ I]"*

\ \j=o

Since q^~ —cj1/2 asy'->oo, we see that the second term on the right hand side of (2.11)

does not exceed

C'ί Σ a)Γ'

Clearly,

I L(θ)2dθ =

oo \σ/(l+(τ)

a2<C"max

Thus, (2.11) is estimated by

CmaxL(θ)2 )maxL(θ)2σ/il +σ
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Here we used the fact that

l/2

is equivalent to the norm ||L||H ί ( S 2 ), H
ξ(S2) denoting the ZΛSobolev space of fractional

order.

Now it is well known that Hξ(S2) sf has the following equivalent norm for 1 < ξ < 2
(see Adams [1]):

(\\f\\2HHs>)+ Σ ί ί \DΛAx)-D*f(y)\\x-y\-2*dxdy)1/2 .

Hence, \\L\\Hi + <*(s2)^ II^IIHI(S2)+ ll^llc^'os2) f°Γ σ '>σ>0. Thus, we get Lemma 2.1.
q.e.d.

Let Gε(x, y) be the Green function of — Δ in Mε under the Dirichlet condition on
dMε, that is, it satisfies - ΔxGε(x, y) = δ(x—y), x,yeMε and Gε(x, y) = 0 for Λ: e dλfε. Let
G(x, y) be the Green function of — Δ in M under the Dirichlet condition on dM. We
introduce the following kernel function pε(x, y):

Λ(x, y) = G(x, y) - 4πεG(x, w)G(w, y).

Let Gε, Pε, G be the operators given by

Glx,y)f{y)dy
ME

=\

J
Gg(x)=\ G(x,y)g(y)dy.

J M

As for the regularity of operator G, we refer the reader to the literature (for instance

[2], [5]).

LEMMA 2.2. There exist constants h,C>0 such that

ε2dθ<Cε"\\f\\Lq(Mc)ίίJ S 2 \ ( 7 V /\dBε

holds for feLq(Mε) with q>3.

PROOF. Let / denote the extension of / to Mε defined as 0 outside Mε. Let

xeMε
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vε(x) = Q xedM

vε(x)\dBε = Gf(x) - Gf(w) - 4πεS(x, w)Gf(w)

where S(x,y) = G(x9y)-(4π)~1\x-y\~1 .

Therefore, vε(x)\dBε = L(θ) satisfies

(2.12) max|

ι ι L β ( M β )

with τ>0, provided q>3/2.

Furthermore,

(2.13)

<CΊI/IILV)
for r>3 if we take sufficiently small σ '>0. Therefore, by Lemma 2.1 we get Lemma 2.2.

q.e.d.

LEMMA 2.3. Let pe(l, 5) and let uε be the solution o/(l. l) ε . Then, we have

sup sup I uε(x) I < C < oo .
O<ε<εo xeΛfε

PROOF. We continue uε into M by setting 0 outside Mε and denote by ύε the

function thus extended. It is clear that {wjo < ε< ε o forms a bounded set in HQ(M), SO

that by Sobolev lemma we first obtain

(2.14) sup | |wJ L 6 ( M ) <C.
0 < ε < ε 0

On the other hand, from uε = λ(έ)Gεuξ and from the monotonicity of the Green function,

it follows that

(2.15) (0<)uε<λ(εo)Guξ,

where we used the fact that λ(ε)<λ(ε0) for ε < ε 0 .

Suppose now/?e(l, 4). Then, in view of (2.14) we get sup o < ε < ε o \\ύξ\\Lq{M)<C with

q>3/2. Thus, the Lemma follows from (2.15) and the regularity of G.

Consider next the case where p e [4, 5). Using again the regularity of <7, we see that

there exists a constant C > 0, independent of ε ( < ε0), such that for ε < ε0

where q = 6/(p — 4) if pe(4, 5), and q>\ may be any positive number when p = 4. We

thus obtain a better estimate than (2.14), from which we started.
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Proceeding in this manner step by step, the proof is completed. q.e.d.

The following Lemma is crucial for our study. Let Ω be a bounded domain in RN

(N>2) with smooth boundary dΩ. Let p be a smooth function on dΩ. We denote by

V(JC) the exterior unit normal vector at xedΩ. If ε is small enough, we have a new

domain Ωε bounded by dΩε = {x + εp(x)v(x) xedΩ}. Let p be a fixed number satisfying

\<p<oo for N=2, l<p<(N+2)/(N-2)forN>3.
We consider the minimizing problem

(2.16), μ(ε) = inf | \Vu\2dx,= inf |

where Yε = {u\ueHι

0(Ωε\ ||w||Lp + i ( β ε ) = l , wε>0}.

We have the following.

LEMMA 2.4 (cf. Osawa [7]). Assume that the positive solution u which minimizes

(2.16)O is unique. Assume also that Keτ(T+μ(0)pup~1) = {0}, where T denotes the

operator v\-*Δv from H2(Ω)ΠHQ(Ω) to L2(Ω). Then, we have

= - ί (du/
JdΩ

\imε-\μ(ε)-μ(0))= - ί (du/dvx)
2p(x)dσx ,

ε^° JdΩ

where d/dvx denotes the differentiation along the exterior normal.

LEMMA 2.5. λ(ε) converges to λ(0) as ε-»0.

PROOF. From the monotonicity of the eigenvalues λ(ε), it follows that as ε-»0,

λ(ε)-+λ*>λ(0). Since {Mε}0<ε<ε0 ^
s bounded in HQ(M), we may extract a subsequence

{uεn} which converges to w* weakly in HQ(M) and strongly in Lq(M) for any qe(l, 6).

It is not difficult to verify here that supp(-Δu* — λ*u*p)e{w} and — Δw* —

λ*u*p E H~ \M) + L\M). Therefore, -Au* = λ*u*p in M. Suppose now λ* *λ(0). Then,
we shall have two positive solutions of —Δu = up in M, namely A * 1 / ( P " 1 } M * , A(0) 1 / ( P ~ 1 } M.

This contradicts the assumption of the Theorem, and so the proof is complete, q.e.d.

3. Proof of the Theorem. Applying Lemma 2.4 to our situation, we obtain

so that

(3.1) λ(ε)-λ(0)= λ'(t)dt
Jo

Let λ'(t) =
where
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K1=\ (dPtu
p/dvx)

2t2dθ

K2 = 2 j (dPtuf/dvx)(d(Pt-Gt)utηdvx)t2dθ

* 3 = f (d(Pt-Gt)ut

p/dvx)
2t2dθ

J

If we prove that

(3.2)

then by Lemma 2.2 and 2.3 we get K2 = O(tv/2\ K3 = O(tv) for some v>0.
To this effect, write λ(t)2Kί=Lΐ-i-L2-\-L3, where

(dGup/dvx)
2t2dθ

ί
dvx

3 = l6π2t2λ(t)2 I ( — G(JC,W)) (Guf(w))2t2dθ .
JΛdv /

By Lemma 2.3 we then have L1 = O(t2), L2 = O(t) and

ί ί-5—X-\x-w\
JS2\dvx4π

We thus have proved (3.2).

Using now the estimates for kt (/= 1, 2, 3), we obtain λ(έ) — λ(0) = O(έ), together with

λ(t)2K, = 4πλ(0)2Gu?(w) + 0(0 .

Further, from Lemma 2.3 and the proof of Lemma 2.5, it is easy to show that as ί->0,
uf actually converges to up in Lq(M) with #>3/2, so that GύP(w) = Gup(w) + o(l).

Combining the estimate obtained above and noting that u = λ(0)Gup in M, we
finally obtain

and the proof of the Theorem is complete.
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4. Comment. For related topics, the reader may be referred to Osawa [7],
Osawa-Ozawa [8], Ozawa [9], Dancer [3], Lin [6]. The result of this paper was
announced in Ozawa [10].
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Addendum (Received February 10,1993). After this paper was accepted, it turned
out, thanks to a recent result of S. Roppongi: "The Hadamard variation of the ground
state value of some quasi-linear elliptic equations (preprint)", that the assumption

(έ)puP~1) = {0} for ε>0 is unnecessary to obtain the formula

'•LS2\ δv J\dBE

Thus, the conclusion of the Theorem holds as it stands without the assumption above
mentioned.

Moreover, it was pointed out by Professor E. N. Dancer that his results in Math.
Z. 206 (1991), 551-562, imply that if the positive solution of -M=λύp in M under
the Dirichlet condition on dM is unique, the ground state solution uε is then unique
for 0 < ε « l , provided that K.eτ(A + λpβp~1) = {0}, λ being the ground state value.

As the uniqueness of the positive solution of — Au = ύp is actually equivalent to
the uniqueness of the positive solution of — A3=λύp, the proof of the Theorem might
be further simplified.

The author expresses his gratitude to Professor E. N. Dancer for his valuable
suggestion.
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