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Abstract. This paper is devoted to the study of ergodic properties of strongly and
weakly continuous semigroups of operators on Banach spaces. Some new equivalent
conditions are given for strong and weak ergodic properties in the locally integrable
case. Such conditions are applied to the study of the quasi-weakly y-integrable
semigroups.

1. Introduction. In this paper, we examine the strong and weak Abel-ergodic

properties of a general pseudo-resolvent and apply the results to two kinds of semi-

groups. In a forthcoming paper, we shall apply some new criteria obtained in this

paper to the solvability problem of the equation AC— CB=Q, where A and B are

generators of certain kinds of semigroups, Q is a bounded linear operator and C is

unknown.

For a complex Banach space X, let L(X) denote the Banach algebra of bounded

linear operators from X into X. For TeL(X), we denote by Jί(T), 9{T) and 0t(T) the

null space, the domain and the range, respectively. R( ) is pseudo-resolvent on X, i.e.

an L(Z)-valued function, denned on an open subset Ω of the complex plane C, satisfying

the first resolvent equation

(1) R(λ)-R(μ) = (μ-λ)R(λ)R(μ).

R( ) has a unique maximal extension satisfying (1) (e.g. [3, pp. 188-9]), which we

invariantly denote by R( ) with its domain Ω. The subspaces jV{λR{λ) — I) and

0l(λR{X) — I) are known to be independent of the choice of λeΩ (e.g. [9, p. 215]).

Let R(-) be a pseudo-resolvent defined on a domain Ω. If OeΩ, define

(2) Psx = s-limμR(μ)χ;
O

(3) Pwx = w- lim μR(μ)x ,
μ-K>

whenever the limits on the right hand sides exist in X. Clearly, both Ps and Pw are

projections.

Moreover, the following equalities hold:
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(4) jV(λR(λ) -1) = Λ(/y = Λ(PW) .

Indeed, if xeJ^(λR(λ) — /), the latter being independent of the choice ofieΩ, one
has μR(μ)x = x for all μe£2, hence Psx = x and

Next, suppose x€$(Pw). Then

= w-lim λμR(λ)R(μ)x = w-lim — ^ - [iί(μ) - i?(i)]x = Pwx = x .
μ->0 μ-»0 A — jU

Hence 0t(P^) <= ̂ Γ(λΛ(A) — /). This, combined with the opposite inclusion, proved above,
and with the evident fact @(Ps)c:&(Pw\ gives (4).

Moreover, if x e J^(PW), then

and hence

(5)

χ = w-lim [x — μR

Jf(P)ajV(P

(μ)x]e(Λ(λΛ(λ)-/))

)c(β(λR(λ)-I))- .

2. Abel-ergodic properties of pseudo-resolvents. To simplify writing, we shall use
z for s or w, in the sense that Pz will express Ps or Pw, z-lim will stand for .y-lim or
w-lim, and z-dense will mean s-dense or w-dense. When we have to distinguish between
s and w, we shall do so.

THEOREM 1. Given a pseudo-resolvent R( ), if OeΏ, then the following are
equivalent:

( i ) Jί{Pz) = (@(λ0R(λ0) - / ) ) " , where λoeΩ,λo=£0 is fixed;

(ii) for each xeX,

(6) z-lim λ2R(λ)x = 0

λ->0

and there exist a neighborhood δofO and a constant M>0, such that

(7) \\λR(λ)y\\<M\\y\\

for all y e 3t{λ0R{λ0) -1) and all λeδnΩ;
(iii) (7) holds and @([λ0R(λ0) - /]2) is s-dense in m(λ0R(λ0) -1).
PROOF, (i) => (ii): Let xeX and let y = [λ0R(λ0) — I~\x. In view of the definition of

y and the condition (i), one has

(8) z-lim λR(λ)y = 0.
λ-0
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The computation

λ2 λλ
(9) λR(λ)y = R(λ)x - — ° - R(λo)x

AQ A ΛQ A

and the relation (8), combined with the evident fact

(10) s-lim i ^
Λ0λ-*o λo — λ

imply

; 2

R(λ)x = O.
λ->0 A o —

Thus, (6) follows.

Further, (i) implies (8) for all ye(^(λ0R(λ0) - / ) ) " . The latter being closed, (7)

follows from the uniform boundedness principle.

(ii) => (iii): It suffices to verify the second statement of (iii). Since the strong

convergence implies the weak one, we may assume that the limit in (6) holds in the

weak topology i.e., z — w. Let x e l a n d y = [λ0R(λ0) — /]Λ\ Relations (9), (10) together

with (6) for z = w, assert that w-\imλ_>0 λR(λ)y = 0 and hence

(11) w-lim \_λR(λ)~I~]y = -y .
λ->0

Since [λR(λ)-I]yeβ([λ0R(λ0)-l¥) by the definition of y, (11) implies the w-density

and hence the ̂ -density of ^ ( [ V ? ( A O ) - 7 ] 2 ) in @(λ0R(λ0)-I).

(iii) => (i): Let y e ^([A O ,K(A O ) - / ] 2 ) , so y = λ0R(λ0)x - x9 for some x e @(λ0R(λ0) -

I). Clearly, (9) holds for such a pair of x and y. Now (7) applied to x, under consideration,

asserts the boundedness of {λR(λ)x} as λ->0. Hence the right hand side of (9) strongly

converges to zero and so does the left hand side as A-»0. Consequently, the conditions

(iii) infer that (8) holds for z = s and y e (@(λ0R(λ0) - / ) ) " . Therefore, {M{λ0R{λ0) - / ) ) " c

Λ%P5) This, together with (5) gives (i). D

COROLLARY 2. If one of (i), (ii) and (iii) in Theorem 1 holds, then Ps = Pw and

(12) @(Ps) = g)(Pw) = JΓ(λR{λ)-I) 0 (0t(λR{λ)-I)y .

PROOF. We may assume that (i) holds. Then

and this combined with (4) gives PS = PW and (12). Here we use the fact that Ps and Pw

are projections. •

Since the direct sum in (12) may not be closed, Ps and hence Pw may not be

bounded. The following corollary gives a sufficient condition for Ps (and Pw) to be
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bounded. With this we provide an affirmative answer to a question raised by Freeman

[1] in a similar context.

COROLLARY 3. Let R{ ) be as in Theorem 1. If there exist a neighborhood δofO

and a constant M>0 such that

(13)

for all λGδnΩ, then Ps = Pw are bounded with @(PS) closed and the direct sum (12) holds.

PROOF. Condition (13) implies (ii) of Theorem 1, hence PS = PW and (12) holds.

Further, (13) implies that Ps ( = PW) is bounded and @(PS) ( = @(PW)) is closed. •

We say that the pseudo-resolvent R( ) as in Theorem 1 has the strong (weak)

Abel-ergodic property, if for each xeX, the limit

psx = s-lim λR(λ)x (Pwx = w-lim λR(λ)x)

exists.

The following corollary gives an equivalent condition for the strong (weak)

Abel-ergodic property of R( ) , different from those given in [3, XVIII, §2].

COROLLARY 4. Let R(') be as in Theorem 1. The following are equivalent:

( i ) R( ) has the strong Abel-ergodic property;

(ii) R(-) has the weak Abel-ergodic property;

(iii) The conditions (6), (7) are satisfied and, for each xeX, there exists a sequence

{λn}c:Ω converging to zero as n->co such that

(14) w-lim λnR(λn)x
n-*co

exists.

PROOF. Implications (i) => (ii), (ii) => (iii) are clear,

(iii) => (i): Let xeX and set

xλ = w- l i m λnR(λn)x , x2 = x — x1.

Let λ G Ω. Since, by the first resolvent equation,

λR(λ)x1 = w- lim λλnR(λ)R(λn)x = xx ,
w->oo

one has

w- lim λnR(λn)x2 = w- lim λnR(λn)x - xx = 0 .
«-*oo n-*ao

Consequently, xx e Jf(λ0R(λ0) — I) and
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= w-lim lx2-
n->oo

Thus x has a representation

x = Xί + χ2 9 with xx e ̂ r(λ0Λ(λ0) - / ) , x2 e (^(Λ0Λ(λ0) -/))

This together with (6), (7) and Corollary 2, gives rise to

D

COROLLARY 5. Let R(') be as in Theorem 1. If X is reflexive, then the following
are equivalent:

(i) R(m) has the strong {or equivalently the weak) Abel-ergodic property,
(ii) There exist a neighborhood δofO and a constant M>0 such that

\\μR(μ)\\<M for all μeδnΩ.

PROOF. X being reflexive, (14) of Corollary 4 is automatically satisfied. •

3. Strong and weak ergodic properties for semigroups. As applications of Theo-
rem 1 and its corollaries, we shall study ergodic properties of strongly and weakly con-
tinuous semigroups of operators on Banach spaces. In [6], uniform ergodic properties
were considered for locally integrable semigroups. So far, the corresponding strong and
weak ergodic properties for the same kind of semigroups seem to be unknown, except
for the classical works in [3, XVIII, §2] for more restricted semigroups. In the first
part of this section, we shall provide some equivalent conditions for strong and weak
ergodic properties other than those given in [3, XVIII, §2] for the locally integrable
semigroups. In the second part, we shall focus our attention on the quasi-weakly
Y-ίntegrable semigroups, whose definition will be given later after Corollary 8.

Let {T(t): />0} be a locally integrable semigroup, i.e. T(-) is a semigroup and for
each xeX, the function T{ )x is Bochner integrable with respect to the Lebesgue measure
over every finite subinterval of (0, oo). Γ( ) is known to be strongly continuous on
(0, oo). The type of Γ( ) is the number

Now, we assume that Γ( ) is a locally integrable semigroup. For every complex λ
with Reλ>ω0 and every xeX, the Bochner integral

-Γ
Jo

(15) R(λ)x= e~λtT(t)xdt
Jo

exists and defines a bounded linear operator R(λ) on Zfor Re/l>ω0. R(λ) satisfies the
first resolvent equation (1) and hence it is a pseudo-resolvent on {λeC: ReA>ω0},
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referred to as the pseudo-resolvent of Γ( ).

One may define the Laplace transform of Γ( ) in a weaker sense:

Rs(λ)x= lim Γ e-λsT(s)xds , xeX.
'-*00 J o

It has been proved in [2, Proposition 1.1] that if Rs(λ0) exists for some λ0, then Rs(λ)

exists for all λ with ReA>Re/l0. This leads us to define

σ = inf{μe(— oo, oo): Rs(λ) exists for all λ with Reλ>μ\

= inf{μe(— oo, oo): Rs(μ) exists}

σα = inf{μe(— oo, oo): Rs(λ) is analytic for all λ with Reλ>μ] .

Clearly, σ<σa<ω0 and Rs(λ) = R(λ) for all λ with ReA>ω 0. Therefore, we may write

R(λ) for Rs(λ), whenever Re λ > σa. An example in [6] shows that it may happen that

— oo = σ α < 0 < ω o . Consequently, the well-known results given in [3] and elsewhere do

not apply universally.

In view of the above definitions and comments, it follows easily from (15) and the

uniqueness of the Laplace transform that

(16) (IJΓ{T(t)-I) = JΓ(λR(λ)-I), λ>σa.
ί>0

For the locally integrable semigroup Γ( ), the operator S(t) defined by

S(t)x= I T(s)xds
Jo

is bounded in X.

Let

Qsx = sΛim Γ1S(t)x;
t->oo

Qwx = w-limr1S(t)x,
ί->00

whenever the limits on the right hand sides exist in X.

As in §2, we shall use z for s or w, in the sense that Qz will stand for Qs or Qw, etc.

For x e @(QS) and / > 0, we have

T(t)Qzx=T(t)\ z-lim u~1S(u)x =z-lim u'1

|_ u->ao _j M-+oo

This shows that Qz is a projection and

(17)
ί > 0



ABEL-ERGODIC PROPERTIES OF PSEUDO-RESOLVENTS 545

Since each x in f]t>0^(T(t)-I) is fixed by T(t) with />0, it is also fixed by S(t) and

so is by Qz. Therefore,

t>0

This, together with (16), (17) and the evident inclusion &(QS)<=@(QW), gives rise to

(18) <%{QS) = ®{QW) = J^(λR(λ) -I), λ>σa.

As for Jf(Qy^, we note that for i s l a n d yeX*, we have

(19) \(μR(μ)x,yy\ = Γμe-»XT(t)x,y)dt < Γ μ
Jo Jo

2e->"\<S(t)x, y}\dt

<M\ I
Jo

where M > 0 is a constant satisfying the inequality \\S(t)\\ <M forίe[0, N~\ΛΐxeJί{Qw),

i.e., lim^,, Γ \S(t)x, y} = 0 for all y in X*, then (19) implies that l i m ^ 0 <μR(μ)x, y> = 0

and hence

x = w-lim [x - μi*O)x] G (̂ (Aî (A) - / ) ) " .
μ^O

Here we assume that σa<0. Consequently,

(20)

The following lemma, which will be used for the proof of the forthcoming Theorem

7, is a generalized version of [7, Theorem 3.3]. Since the generator of a locally integrable

semigroup may not always exist, the lemma takes this fact in consideration. We continue

to assume that σa<0.

LEMMA 6. Let T( ) be a locally integrable semigroup. Assume that there exists a

constant M>0 such that for sufficiently large t>0,

(21) Γ

Then the following are equivalent:

( i ) for each xeX and u>0

(22) z-limr1 T(t)S(u)x = 0

(ϋ)

(iii) for each x e l ,

z-lim/-1Γ(O^(l)x = 0.
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PROOF. We confine the proof to the strong case, that of the weak one being similar.

(i)=>(ii): In view of (20), it suffices to show that JT(QS) ID (@(λR(λ) - / ) ) " . For

xeX, t>0 and fixed A>max{ω0, 0},

iί'A)
It follows from (21) that for given ε>0, there exists a constant N>0 such that

f °°
(23) ^~λu | |r15((0llll^(w)-/||||x||ί/w<ε||jc|| .

JN

To evaluate the integral over [0, iV], we use the following equality

from [5, Lemma 2.3]. Then, for ue[0, ΛΓ],

ί-lim r 15(0[Γ(M)-/]x=ί-lim Γ 1[,T(t)-QS(u)x=0

t-KX) ί->ΌO

and

||/-17X05(«)|| = rM|S(/ + i/)-S r(0ll^r 1(ί + M)M+Λf^3Λ/, for t>N.

Consequently, the Lebesgue's dominated convergence theorem is applicable and it

gives

lim
t^™ Jo

3 tC

j-lim r 1 5 ' ( 0 [ ^ ( A ) - / ] J C = (

(24) lim I λe-λu\\Γ1S(t)lT(u)-nx\\du = (
ί^00 Jo

Relations (23) and (24) give rise to

and hence

This, together with (20), gives (ii).

(ii) => (iii): Since, by [6, Lemma 3],

(25) (T(ί)-I)R(l) = S(ί)(R(l)-I),

for each xeX, one has

s-lim ΓίT(t)R(l)x = s-\im Γ
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(iii) => (i) is a straightforward consequence of (25) and the inclusion

Λ{S(μ)) = Λ(R0)S(u) -R(l)ίT(u) -/])

D

We say that T( ) has the strong (weak) Cesaro-ergodic property if

s-lim Γ1S(t)x ( resp. w-lim t~xS(t)x

exists for every xeX, i.e. if @(QS) = X (resp. 9{QW) = X).

Moreover, we say that Γ( ) has the strong (weak) Abel-ergodic property if its

pseudo-resolvent /?(•) is strongly (weakly) Abel-ergodic.

THEOREM 7. Let T(m) be a locally integrable semigroup. Ifσa<0, then the following

are equivalent:

( i ) T( ) is strongly Cesaro-ergodic;

(ii) T( ) is strongly Abel-ergodic, for each xeX,

(26) s-lim f
ί-» 00

exists a constant M>0 such that

(27) lir

for all xe@(R(\)-I) and t>0 sufficiently large;

(iii) For each xeX, there exists a sequence {λn} converging to zero as /2->oo such

that w-lim,,^ λnR(λn)x exists, (26) and (27) hold.

PROOF, (i) => (ii): The fact that (i) implies (27) and (26) follows from the uniform

boundedness principle and Lemma 6, respectively. Now, we claim that (i) implies the

strong Abel-ergodicity of Γ( ).

For each x e X and λ > 0, we have

: = λ2e-λuS(u)
Jo

(28) λR(λ)x =\ λ2e~λuS(u)xdu .

Thus, we obtain

(29) | | λK(Λ)x-ρ s x | |<α 2 I e-λu(\\S(u)\\+u\\Qs\\)du\\x\\

e~λuu\\u~ι

JN
+ λ2 e-λuu\\u~γS(μ)x-Qsx\\du

< s u p | ( ) | β J
\0<u<N / u>N
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Since l im^^ \\u~1S(u)x-Qsx\\ = 0, it follows from (29) that

lim \\λR(λ)x-Qsx\\=0.

Consequently, Γ( ) is strongly Abel-ergodic.
(ii) => (iii): clear,
(iii) => (i): The assumption on i?( ) implies the following decomposition

(30)

by the argument (iii) => (i) in Corollary 4. It follows from (25) and (26) that

s-lim Γ

Thus, the inequality (27) asserts that

*-lim ΓxS(t)x = 0 for each xe(<%(R(l)-I)y .

Consequently,

(31)

Thus, it follows that

This, together with (18) and (30) asserts that @(QS) = X, thus proving that T( ) is strong-
ly Cesaro-ergodic. •

The weak versions of Abel and Cesaro ergodic properties have a similar proof.

COROLLARY 8. Let Γ( ) be a locally integrable semigroup. If σα<0, then the
following are equivalent.

( i ) Γ( ) is weakly Cesaro-ergodic;
(ii) T{ ) is weakly Abel-ergodίc, for each xeX;

(26') w-limr 1

i-*oo

and there exists a constant M>0 such that

(27) || t~
for all xeM(R(l)-I) and t>0 sufficiently large;

(iii) for each xeX, there exists a sequence {λn} converging to zero as n-^co such
that w - l i m ^ ^ ^ ^ x exists, (26r) and (27) hold.

Assume that Y is a closed subspace of the dual space X* such that X and Y are
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reciprocal, i.e., ||JC|| =sup{<x,y}/\\y\\: yeY,yφϋ}. Then {T(/):/>0} is a weakly

Y-integrable semigroup of operators on X (cf. [8]), if Γ( ) satisfies the following

conditions:

(Wl) Y is invariant under Γ(0* for each t>0;

(W2) T(-)x is σ(X, Y)-continuous on (0, oo) for each xeX;

(W3) (a) for each xeX and ye Y, the function <Γ(ί)x, y} of / is L-integrable on

[0, 1],

(b) the integral J* (T(t)x, y}dt is σ( Y, ^-continuous with respect to ye Y9 for each

xeX;

(W4) Xo = U {^(T(η)):η>0} is σ(Jf, Y)-dense in X, and f) {.̂ (TTfo)): η>0} =

{0}.

If Γ( ) satisfies the conditions (Wl), (W2) and (W3) only, we say that Γ( ) is

quasi-weakly Y-integrable.

A special case of a weakly Y-integrable semigroup is a locally 7-integrable semi-

group with an additional condition. These concepts were introduced by S. Y. Shaw in

[5], in terms of the following definition.

A semigroup {T(ί):t>0} is called locally Γ-integrable if it satisfies conditions

(A1)-(A4) below.

(Al) X and Y are reciprocal, i.e.

(A2) Y is invariant under 1\t)* for all />0;

(A3) For each xeX, T(-)x is σ(X, F)-continuous on (0, oo).

It follows from (Al) and (A3) that ||Γ( )II is bounded in-every closed interval

[M, ί]<=(0, oo). Therefore, for each xeX, the Riemann integral §*u(T(s)x,y}ds (ye Y)

defines an element xuteX, by the argument of [8, Lemma 3.1]. In [5], the existence

of xua is an assumption and T( )x is called F-Riemann integrable under this assumption.

(A4) For each xeX, T( )x is 7-Riemann integrable on every [w, ί] cz(0, oo), and

for each t > 0, the Y-improper Riemann integral

-
Jo

T(s)xds= Y- lim i Y- T(s)xds

"^0+ I Ju
exists in X. This means that there exists xteX such that

xt=Y~ \ T(s)xds.
Jo

The additional condition is

(A5) Y- lim T(t)x = x for all xeX.
t->0 +

If the locally Γ-integrable semigroup Γ( ) satisfies (A5), then the existence of xt is
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a consequence of [8, Proposition 3.4].
It has been shown in [8] that the semigroup Γ( ), [7\t)x](s)=:χ(s + t)9 defined on

X=LCO(— oo, oo) is not strongly continuous but weakly Y-integrable with Y=
L(— oo, oo). For completeness, we give the proof of this fact.

For each xeX, ye Y, it is known that

= x(t + s)y(s)ds -*
J -oo Jo< T(t)x, y} = x(t + s)y(s)ds -* x(s)y(s)ds = <x, y}
J -oo Jo

and hence (W2) follows. (Wl), (W3, a) and (W4) are evident. To verify (W3, b), it
suffices to note that (T(t)x, y>, as a function of /, is continuous on [0, 1]. The applica-
tion of Lebesgue's dominated convergence theorem asserts that JJ<Γ(ί)x, y}dt is.
σ(Γ, X)-continuous with respect to ye F, for each xsX. To show that T( ) is not
strongly.continuous, let

l , if s<0;

0, if s>0.

Then \\T(t)x0 — *oll = 1 for ί>0. Therefore, T(t)x0 does not converge to x0 in the norm
topology.

Two more important examples are shown in the following.

EXAMPLE 1 (cf. [5], [8]). Let G( ) and H(') be semigroups of class Co on X.
Then the family {T(t) :t>0} defined by T(t)C'=H(t)CG(t) is a semigroup on the Banach
space L(X) of bounded operators. (7T( ) is called the tensor product of G( ) and //(•))•
For xeX, x*eX*, define the linear functional on L(X), by <C, fXtX*} = (Cx, x*>. Let
Y be the closed linear span of all such /XJC*. It was shown in [5] that Γ( ) is weakly
Γ-integrable. T(u) need not be strongly continuous. For instance (cf. [8]), let G(t) = I9

the identity on X, and let H{*) be a C0-semigroup which is not uniformly continuous.
We have T(t)I=H(t), (ί>0). If Γ( ) is strongly continuous, then one is led to the
contradiction that H(') is uniformly continuous.

EXAMPLE 2. Let α be fixed with 0 < α < 1 and let X be the space of Lip α functions
over [0, 1] vanishing at 1. ^endowed with the norm

XL =

is a nonseparable Banach space. The family {T(t): t>0} defined by

[s + t).
9
 if 0<s<\, 0<s + t<\ ;

.0, if 0<s<\, \<s + t

is not a strongly continuous semigroup. In fact, let xo(s) = (l —s)". Then xoe X and for
/>0 sufficiently small,
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where the supremum is taken over sr, s"e[0, 1], s'φs". Let s' = 1 — t, 0<t< 1, s" = 1.
Then

Here we agree on xo(s) = 0 for s > 1. Thus we have

But Γ( ) is weakly F-integrable with Y suitably chosen. To this end, for each xeX, let

x(s')-x(s")
if s'Φs"\ j',j"e[0, 1];

\s'-s"\Λ

0, if *' = *"; s',s"e [0,1].

Then, the mapping Φ: x( )-»z( , •) is an isometry from X onto a closed subspace of
Z=L°°([0, 1] x [0, 1]). With the help of the mapping Φ, we may identify Zwith a closed
subspace of Z. Let Y=L([0, 1] x [0, 1]). Then Zand Fare reciprocal with the duality

(32) <x,y> = Γ F ^p-**? y(s',s"Wds".
Jo Jo Is ~s I

In fact, (32) is the restriction of the duality between Z and Y to the pair X, Y. X being
nonseparable and Y separable, it follows that Y is a proper subspace of X*. Finally,
the σ(X, Y)-continuity of Γ( ) is an easy consequence of the σ(Z, Γ)-continuity of the
right translation. Now it is easy to verify that the conditions (W1)-(W4) hold for Γ( ).

It is easily seen that the above examples are all locally 7-integrable semigroups
satisfying (A5). It is however easy to construct an example of a weakly 7-integrable
semigroup that does not satisfy (A5), (cf. [8, Example 4.4]).

Let {T(t): t>0} be a quasi-weakly Y-integrable semigroup. Then

ώ0=inf{/-1log||7TC/)||: />0}

satisfies — oo<ώo<oo. By [8, Theorem 3.6],

Γ 0 0

)x,y>= e~λt

Jo
(R(X)x,y}=\ e-λ\T(t)x,y}dt, (xeX,yeY)

Jo

defines a bounded linear operator R(λ) on X, for each λ with Re λ > ώ0. R(λ) also verifies
the first resolvent equation and hence it is a pseudo-resolvent on {λeC:RQλ>ώ0}
(cf. [8]).

One may also define the Laplace transform Rγ( ) of Γ( ) in a weaker sense. Set
Rγ(λ, t) to be the operator defined by
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(33) <Rγ(λ, t)x, y} = e-λ\T(u)x9 y>du .
JJo

It follows from [8, Proposition 3.3] that Rγ(λ, t) is a bounded linear operator on X,

for each t>Q and λeC. We shall consider those λ's for which limί_>oo<i?y(/l, t)x,y}

exists for all x e X, y e Y and for which there exists a bounded linear operator Rγ(λ) on

X which satisfies the condition

P
(Rγ(λ, t)x, y} = lim <

'-*00 J o

<Rγ(λ)x,y) = lim (Rγ(λ, t)x,y) = lim \ e-
λ%T(u)x,y)du .

The following is an extension of [2, Proposition 1.1].

PROPOSITION 9. If for a number Λ,o, Rγ(λ0) is a bounded linear operator on X, then

for each λ with Reλ>Reλ0, Rγ(λ) exists and is a bounded linear operator on X.

PROOF. Let xeX, j e F b e fixed and assume that ReΛ>Re/l0. Use integration

by parts to obtain

rt rt

e~λχT(u)x,y)du = e~{λ~λo)ΐ e~λ°χT(s)x, y}ds
Jo Jo

+ (λ-λ0) (V<*-W Γe-λ^T(s)x,y}dS)du.
Jo \Jo /

Since \imu^oo^
u

0e'~λ0XT(s)x,yyds exists so does l i m ^ ^ Jί

0^~λw<77(w)x, y}du. Hence

going to the limit, we obtain

Γ 0 0 , Γ 0 0

 /a ,,
(34) e~xXT(u)x, y}du = (λ-λ0) e~{λ-λo)XRγ(λ0, u)x, y}du .

Jo Jo

Let {ya} be a bounded net converging to ye Yin the σ(7, ^-topology. Since Rγ(λ0, u)

is continuous in the uniform operator topology for we(0, oo), it is bounded in a

neighborhood of u = 0 (see its definition (33)). Moreover, the limit

lim (Rγ(λ0, u)x, y} = <Rγ(λ0)x, y)
M->00

exists for all x e X and yeY. Lebesgue's dominated convergence theorem is applicable

to the second integral of (34)

Λoo Γoo

lim e~λu(T(u)x, ya}du = (λ-λo)\im e~{λ~λo)u(Rγ(λo, u)x, ya}du
α Jo α Jo



ABEL-ERGODIC PROPERTIES OF PSEUDO-RESOLVENTS 553

-f
JoIt follows that the integral on the left hand side of (34) is bounded and σ(Y, X)-

continuous with respect to y έ Y for each fixed xeX. Then, there exists an element

xλ e X such that

)o

X and Y being reciprocal, xλ is uniquely determined. Set Rγ(λ)x = xλ. Then Rγ(λ) is

linear and it is a routine work to verify that Rγ(-) is bounded. •

We may also define σ, σa for i?F( ) To do this it suffices to replace Rs( ) by Rγ( ) .

To distinguish these two cases: Rs(
m) and Rγ(-), we shall use the notation σ,σa for

i?y( ), instead of σ, σα. Moreover, we also write R(λ) for Rγ(λ), whenever Reλ>σa.

For the quasi-weakly F-integrable semigroup Γ( ), the operator S(t), defined by

(S(t)x,y>=[\τ(u)x,y>du
Jo

is also bounded on X by [7, Theorem 2.3]. The Cesaro-ergodicity and Abel-

ergodicity for the present Γ( ), are defined in the same way as for locally integrable

semigroups.

The following analogue of Theorem 7 is true.

THEOREM 10. Let Γ( ) be a quasi-weakly Y-integrable semigroup. If σa<0, then

(i), (ii) and (iii) of Theorem 1 are equivalent for the present T( ) .

PROOF. We only sketch the proof, (i) => (ii): We have the following analogue

of (28):

(280 <λR(λ)x9y>=\ λ2e-λχS(u)x,y}du, xeX, yeY, λ>0.
Jo

With the help of (28r), one obtains an analogue of (29):

( 2 9 0 U R ( λ ) x - Q s x \ \ < ( s u p l l S i u n .

\0<u<N ) u>N

Now the relation lim,,^ \\u~xS(u)x-Qsx\\ =0 combined with (29') infers that T(-) is

strongly Abel-ergodic.

(ii) => (iii): clear.

(iii) => (i): identical to that of Theorem 7. •

As an application of Theorem 10, consider the semigroup T( ) in Example 2. Since
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I<1 for all t>0, (26) and (27) are automatically satisfied. On the other hand,
T(t) = 0 for t> 1. Thus, for λ>0, xsX, ye Y, one has

(35) <i?(A)x,y> =

where X and Y are the spaces in Example 2. The relation (35) asserts that R(λ) is
bounded as /ί-»0. Therefore,

s-lim λR{λ)x = 0 for all XGX
λ->0

and hence Γ( ) is strongly Cesaro-ergodic by Theorem 10.
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