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Abstract. In this paper, we prove two main results. The first establishes that
Lusztig's conjecture for the characters of the irreducible representations of a semisimple
algebraic group in positive characteristic is equivalent to a simple assertion that certain
pairs of irreducible modules have non-split extensions. The pairs of irreducible modules
in question are those with regular dominant weights which are mirror images of each
other in adjacent alcoves (in the Jantzen region). Secondly, we establish that the validity
of the Lusztig conjecture yields a complete calculation of all Yoneda Ext groups between
irreducible modules having regular dominant weights in the Jantzen region. These results
arise from a general theory involving so-called Kazhdan-Lusztig theories in an abstract
highest weight category. Accordingly, our results are applicable to a number of other
situations, including the Bernstein-Gelfand-Gelfand category for a complex Lie algebra
and the category of modules for a quantum group at a root of unity.

A major unsolved problem in finite group theory centers on determining the
characters and degrees of the irreducible modular representations of finite groups of
Lie type in the defining characteristic. Lusztig took a significant step toward a solution
in 1979 by formulating his celebrated conjecture [LI] for the characters of simple
modules for semisimple algebraic groups. Since that time, mathematicians have devoted
considerable effort to establishing this conjecture, which would completely solve the
above problem as long as the characteristic is not too small relative to the root system.
A similar conjecture, by Kazhdan and Lusztig [KL1], for the composition factor
multiplicities of Verma modules for semisimple complex Lie algebras, has already been
settled [BB], [BK]. For some time, we have worked to develop algebraic techniques
in positive characteristic capturing some of the geometric methods used in the
characteristic zero Lie algebra theory.

Let G be a semisimple, simply connected algebraic group defined over an
algebraically closed field k of positive characteristic p. For a dominant weight A, let
L(λ) be the corresponding irreducible rational (j-module of highest weight λ. This paper
contains two main results. The first, given in Theorem 5.3, establishes that the Lusztig
conjecture is equivalent to the simple assertion that Ext^(L(λ)9 L(λ')).^0 for /^-regular
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dominant weights λ and λ' which are mirror images of one another in adjacent p-alcoves
and which satisfy the Jantzen condition (5.0.2). (Using the translation principle, one
can assume that λ and λ' lie in the orbit of 0 under the "dot" action of the affine Weyl
group.) The possibility of such a reduction can be traced back to questions raised by
Vogan in a characteristic zero context; see (5.8) and the remarks above (5.3). Section
5 contains other equivalent forms of this reduction. We note especially (5.4a), an
assertion that certain explicit quotients of Weyl modules have just two composition

factors. Also, (5.4b) recasts the conjecture in terms of the vanishing of Ext1 between
Weyl modules and simple modules having the same "parity". In addition, (5.5) observes
that a very special case (involving a single filtration term) of the Jantzen conjecture for

Weyl module filtrations implies the Lusztig conjecture. (This improves on an earlier
reduction [A3; (6.13)] of Andersen.)

The second main result, given in Theorem 3.5, gives a new way of computing
Ext-groups in highest weight categories. As a corollary, the validity of the Lusztig
conjecture would give a complete determination of all groups Ext£(L(y), L(τ)) for
irreducible G-modules L(y) and L(τ) having /^-regular highest weights y, τ satisfying the
Jantzen condition; see (5.8).

These results emerge from a general theory. Related to the above, an Ext1 vanishing
condition is precisely what we need to establish a limited but purely algebraic
decomposition theory, somewhat analogous to, but much more elementary than,
Gabber's theory for perverse sheaves [BBD]. See Section 4. There are further analogies
with perverse sheaf theory (though our proofs require no geometric methods). Also,
the theory of derived categories, together with its interplay with the theory of highest
weight categories (as developed in [CPS1], [CPS2], [CPS3], [PS]), plays a central role
in this paper. Other key ideas, given in §§2, 3, involve the introduction of new concepts,
namely, that of enriched Grothendieck groups and "Kazhdan-Lusztig" theories for
abstract highest weight categories. These new Grothendieck groups may be viewed as
"^/-analogs" of the classical Grothendieck group associated to a highest weight category.

Our reduction of the Lusztig conjecture also holds for the Kazhdan-Lusztig
conjecture for the category Θ associated to a complex semisimple Lie algebra. That
conjecture has, of course, been proved, but our work settles an old question as to
whether "even-odd" vanishing of certain Extπ-groups formally implies the "Vogan
conjecture". See Remark 5.8. The calculation of Ext"-groups mentioned above also ap-
plies to the category 0 to yield a complete determination of the groups Ext£(L(/l), L(τ))
for all n and all integral weights λ, τ; cf. (3.8). We require, at least presently, the work
of Soergel [So] to obtain this computation in the case of singular weights. For regular
weights, our method is more elementary and provides a less involved proof of a result
of Beilinson-Ginzburg [BG].

Finally, similar remarks apply to quantum groups at a root of unity. For example,
our algebraic reduction of Lusztig's conjecture applies as well to his quantum group
conjecture [L3; (8.2)] (with some restrictions). See (5.8).
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1. Preliminaries. We begin by establishing some conventions used throughout
this paper. Let k be a fixed field, and let ̂  be a highest weight category over k with
weight poset A, required to be interval finite. We do not repeat the definition of a highest
weight category here, although several examples will be given in §§ 3, 5. We will generally
adhere to the notation and conventions of [CPS1; Defn. 3.1], supplemented by the
following two assumptions (1. !)-(!. 2):

(1.1) The abelian category # is finite (i.e., every object has finite length).
the corresponding simple object L(λ) satisfies the condition that End^(L(λ))^k.

(1.2) The opposite category ^op is a highest weight category with weight poset A.

This last condition implies that, in addition to "induced objects" A(λ), λeA, the
highest weight category # has "Weyl objects" F(/ί), λeA. (Thus, # satisfies both
conditions (A) and (V) of [CPS2]. Also, the category # has both enough projective
and injective objects.) When the weight poset A is finite, condition (1.2) is automatic.

From now on, unless otherwise explicitly mentioned, "highest weight category" will
always means a highest weight category satisfying the above conditions (!.!)-( 1.2).

Often # has a duality D : <€ -> #op in the sense of [CPS2]. Thus, D is a contravariant
functor fixing simple objects (up to isomorphism) and satisfying Z)2^id^. When ^ has
a duality Z), D(A(λ))^ V(λ) for all weights λ.

(1.3) Recall that an ideal Γ in a poset A is a subset such that λ<γεΓ implies
that λeΓ. (Similarly, a subset Ω is a coideal if λ>ωeΩ implies that λeΩ.)

Given an ideal Γ of the weight poset A of a highest weight category ,̂ let ̂ [Γ] c <&
be the full subcategory consisting of all objects having composition factors of the form
L(y) with γ e Γ. Then #[Γ] is a highest weight category having weight poset Γ (satisfying
conditions (1. !)-(!. 2)). The natural full embedding functor i+ : #[Γ]-># carries induced
objects A(γ) and Weyl objects V(γ) in [̂Γ] to the corresponding objects in <#. These
results are proved in [CPS1; (3.5)] when Γ is finitely generated. However, when # is
finite (as in this paper), the arguments given there readily apply to any Γ.

We often use the fact that if λ is a maximal weight in A, then A(λ) (resp., V(λ)) is
the injective hull (resp., projective cover) of L(λ). This result follows immediately from
the axioms for a highest weight category. In particular, if λ is a maximal element in an
ideal Γc=Λ, A(λ) is the injective hull of L(λ) in the category

(1 .4) Keeping the notation of (1 .3), let Ω c Γ be a finite coideal. Then the quotient
category ^(Ω)ΞΞ^[Γ]/^[Γ\ί2] is a highest weight category with weight poset Ω. The
quotient functor j* : #[Γ]-> #(Ω) sends induced and Weyl objects to the corresponding
induced and Weyl objects, respectively, in %>(Ω). For λeΩ, j* maps the simple object
L(λ) in <β to the corresponding simple object in #(Ω). If λφΩ, we havey*L(Λ,)^0. Thus,
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)^0, if λeΛ-Ω. For more details, see [CPS2; (1.4)] and [P; §1]. The
fact that these quotient categories provide new examples of highest weight categories
illustrates the versatility of the highest weight category notion. Our notion of a
Kazhdan-Lusztig theory in §3 will also be inherited by these quotients; see (3.10).

(1.5) Let Db(%>) be the bounded derived category associated to the highest weight
category #. We mention several facts often used implicitly. First, if Γ c= A is an ideal,

then ίj induces a full embedding i*:Db((g[Γ])-+Db((g) with strict image the relative
derived category £>|[Γ](#) (i.e., the full subcategory of Db(Φ) consisting of all complexes
with cohomology in #[Γ]). See [CPS1; (3.9), (1.3)]. Second, if ΩaΓ is a finite coideal,

7* induces an exact quotient functor 7* \D\^\ΓJ)^D\^(Ω}). Finally, a duality D on
# induces an equivalence D\Db(^)^>Db(^)op of triangulated categories. To see this,
observe that if y is a triangulated category, then the dual category ^op carries a natural
structure as a triangulated category: for XeOb(^~)y let X denote the corresponding
object in ̂ op, and adopt a similar notation for morphisms. The shift in ̂ op is now

defined by Jf[l] = X\_- 1]. A diagram X— > Ϋ -^>Z— > is a distinguished triangle in y**

if and only if Z-^> Y— > X - > is a distinguished triangle in y. (The verification that
^op becomes a triangulated category with these definitions is routine.) Now let D
be a duality on <g. Thus, Z):#-><^op is a (covariant) equivalence, and so induces
an equivalence D\<e)-+D\<έ°*). However, Db(<g°*) is naturally equivalent to Db(%)op

3n

by the functor taking a complex -> Xn — >Xn+1 -> in Db(V) to the complex

... _> y»_ίL>y»+ι_> • • - , where 7" = ̂ -" and </'" = (- 1)11^"""1.

2. Enriched Grothendieck groups. If # is an abelian category, there is a standard
procedure, first appearing in [SGA5; VIII.2] (see also [H; III.l]), for defining a
Grothendieck group ^0(/)b(^)) of the bounded derived category Db(Ή). One takes the
free abelian group generated by elements \_X~\, XeOb(Db(%>)), modulo the natural
additive relations [Ar] + [Z] = [F] associated to distinguished triangles X-+Y-+Z^>.
Then K0(Db(^)) is isomorphic to the usual Grothendieck group KQ(<#) of <&, since, in
addition to the relations defining the latter, one has for the former the relation

kΓ[l]]=-PG defined by the distinguished triangle JT->0->Jr[i]-> (obtained by

rotating the distinguished triangle X — >^->0->).

Unfortunately, the isomorphism K0(Db(^)^K0(^) means that all degree
information in K0(Db(^}) is lost. For a general abelian category # there seems to be
little hope to remedy this deficiency. However, for a highest weight category # with
a little additional structure, there are very natural "enriched" Grothendieck groups

which do keep track of degree information.
In this section, let ̂  be a fixed highest weight category with weight poset A (as in

§ 1). Let t = q 1/2 be an indeterminate and form the ring Z[ί, t ~ x] of Laurent polynomials.



ABSTRACT KAZHDAN-LUSZTIG THEORIES 5 1 5

By abuse of notation, we also use the symbol "/" to denote the exact functor

defined by putting t(X) = XI — 1] on objects X and t(f) =/[ - 1] on morphisms / : X-> Y
in D\<g). Thus, the indeterminate q = t2 defines an exact functor q : D\^}^Db(^) which
is just the "double upward" shift operator on the derived category.

We suppose that we are given a "length" function

defined on the weights of # . The function / can be quite arbitrary; we shall only use
the fact that it assigns to each weight λ a parity depending on whether /(/I) is even or
odd.

Define a full additive subcategory £L = £L(<g, f) of Db(Ή) recursively as follows.

Let S^c:Db(^) be the full additive subcategory whose objects are finite direct sums of
objects of the form K(Λ,)|Y| for λ e A and integers s = έ(λ) (mod 2). Having defined ^f,

let £i'+ί<=Db(<tf) be the full additive subcategory with objects X for which there exists
a distinguished triangle:

with Ei, E eθb(rff). Finally, <$L is defined by setting

Clearly, SL is invariant under all even translations X\-+X[2m]9 meZ. Also, $L is a
strict subcategory of Db(%>) in the sense that any object in Db(<β) isomorphic to an
object in $L already belongs to $L. (We remark that the objects X of $L are those that
may be written X=X± * — *XΛ9 using the *-operation of [BBD: §3], with each X{ of
the form V(λ^\k~\ foτ'k = ̂ (λt) (mod 2); intuitively, A'is filtered with sections Xt.)

Having defined <fL, let <fL[l] cz/>*(<ίf) denote the full subcategory with objects ATI],
XeOb(£L). Then define £L = £L 0 rfL[l], the full subcategory of Db(<$) having objects
of the form X® X', where JTeOb(^L) and JT eOb(<fL[l]).

Now define the "left" Grothendieck group K^, f) of <g with respect to the length
function t to be the free abelian group generated by symbols \X\ = [X]L, Xe Ob(/L),
subject to the relations [Ar] + [Z] = [Γ] provided there exists a distinguished triangle
X-^Y^Z-> in (TL or in #L[1]. Finally, for X=X' ® X"9 with X'eΛL and Jίr"eίL[l],'
we require that the relation [JΓ| = [X'~\ + \_X"] hold.

The dual notation of the "right" Grothendieck group Jζf (* , f) is defined by analogy
with KQ (<V, f) above, but using the objects A(λ)[s] for λ e A and integers s = t(X) (mod 2).
We denote the subcategories corresponding to SL and $L by SR and $R, respectively.

For an object X in $R we write [X~\ (or, more precisely, \_X~\^) for the corresponding
element in Kξ (*, f).
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Denote by /*->/ the automorphism of Z[f, ί"1] which sends t to t'1. The exact
functor t:Db((£)-+Db((β) above induces a natural action of the ring Z[ί, f"1] on

>, /) and on KR(^, £). In both cases, the action of t is given by

Clearly, a duality D on ̂  induces contravariant functors D\έL^SR and D\έR^SL

as well as additive isomorphisms D:K%(V9S)^>K$(<e9f) and D:Kξ(<β9S)-+Kf;(<e9S)9

semi-linear relative to the automorphism /ι->/ of Z[ί, ί"1] defined above.

(2.1) EXAMPLE. The category Vectλ of finite dimensional vector spaces over the
field A: is a highest weight category with a unique simple object (up to isomorphism).
Taking the length function to be identically equal to 0, every object in £>L = £>R is a
direct sum of objects of the form K[2ra], where V is a one-dimensional vector space.
It follows easily that

as Z[ί, ί~ ̂ -modules. In fact, Db(Vectk) = έL = £R. Given JΓ in Z)ft(Vectk), we have

(2.1.1) X^®H\X)\_-n],
n

and in the left and right Grothendieck groups an identification

(2.1.2) mL = mΛ = Σdimfc//MW/"6Z[ί, r1] .

Returning to the general case of the highest weight category #, the specialization
homomorphism Z[ί, ί-1]^Z given by t\-+—\ defines isomorphisms

(2. 1.3) K°(Db(V» s K^g) ^ K^, 0 ®Z[M- Ί Z^ Kξ(V9 ί) ®Z[t.->} Z .

Thus, both Kffi, f) and K^9 ΐ) can be viewed as "^-analogs" (actually "ί-analogs"!)
of the ordinary Grothendieck group K0(^).

We now show there is a natural pairing between these two Grothendieck groups
into Z[ί, ί"1]. This requires the following lemma, which is immediate from the proof
of [CPS1;(3.11)].

(2.2) LEMMA. Let %> be a highest weight category as above. For λ,veΛ and r, s e Z,
we have

dim, HomBt^)(F(A)[r], Λ(v)[>]) = δrsδλv .

(2.3) PROPOSITION. Let ^ be a highest weight category with poset A and length
function t \Λ-+Z. There is a natural non-degenerate sesquilinear pairing

< , > : KfrV, 0 x Kξ(V, /) -> Z[t, t~ ']
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given by setting

with the right-hand side computed in A^Vect^, 0) = #*(Vectfc, 0) (cf. Example 2.1).
If ^ has a duality D, then

<x,Z)j> = < y, Dxy MX, y e *£(«, () .

In general, K%(<e, f) is a free Z[ί, t~l~\-module with basis given by {[F(/l)] | λeΛ}y

while KQ(^, /) is free with corresponding dual basis given by {[A (Λ,)] | λeA}.

PROOF. First, we claim that Hom"(Jr, F) = 0 for JTeOb(<ίL), 7eOb(<T*) and all
sufficiently large \n\. From the definitions of <^L and <^Λ, it suffices to verify this assertion
in the special case when X= V(λ) and Y— A(y) for weights A, v. This follows from Lemma

2.2. Thus, by (2.1.1), we have the following identity in Aj(Vectk, 0)^Z[ί, f"1]:

(2.3.2) [ΛHom ,̂ 7)] = Σ dimk Homn

n

=Σ [Hom^w(AT, F)[-«]] e Z[ί, r J] .

To establish that < , > defines a sesquilinear pairing it suffices to define it on the

subgroups of K%(<e, f) and Kξ(<g, f) generated, respectively, by pr], XeOb(£L), and
by [7], reOb(^R). By (2.3.2), it suffices to consider the bifunctors HomJbW(-, -)
for each n separately.

If n is odd, the orthogonality relations (2.2) and an easy induction based on the
recursive definition of <^L yields, for JTeOb(<fL) and 7eOb(<ί*):

(2.3.3) Homπ(Jr, F) = 0.

For any neZ, any distinguished triangle X-+ Y-+Z-+ in <f L, and any fΓe Ob(^R), (2.3.3)
leads to an exact sequence:

(2.3.4) 0 -> Hom"(Z, W) -> HomM( 7, UK) -̂  Homw(JT, »0 -> 0 .

Let LK0 be the free abelian group with basis elements [X~\, AreOb(<fL). For each
YE Ob(<ί*), there is a natural map L^0^^0(Vectk) given by [ΛΓ] ι-> [Hom"(Ar, 7)] which,

by (2.3.4), factors through KQ(%>, /)• Thus, we obtain a well-defined homomorphism

[Hom"(-, F)] : KftV, /) ̂

of abelian groups for any object Y in $R. Similarly, we have a well-defined homo-
morphism

[Hom"(Jr, -)]:**(*,O->Z

for any object A" in ^L. Observe that for any such X, Y we have



518 E. CLINE, B. PARSHALL AND L. SCOTT

Let ΛA:O be the free abelian group with basis elements [F], FeOb(^Λ). It follows easily
that there is, for each neZ, a pairing < , >„ : LAT0 x RK0-+Z defined by

These pairings induce the desired pairing < , > = ΣΠ < , >πί
π on Grothendieck groups.

The adjoint formula (2.3.1) follows from the properties of D and the definition of
the pairing. The statement about dual bases is clear from Lemma 2.2 Π

The following "recognition" theorem gives a homological criterion for determining
when objects belong to $L (or, dually, to $R\

(2.4) THEOREM. Let ^bea highest weight category with weight poset A and length

function t\Λ-+Z. Let MeOb(Z) *(<?)). If M belongs to £L (resp., β*) then

(2.4. 1) Hom"(M, A(λ)) Φ 0 => n = ί(λ) (mod 2) MλεA

(resp.,

(2.4.2) Homn(V(λ), M)ϊQ=>n = t(λ) (mod 2) VλeΛ .)

Conversely, if A is finite and the above condition holds, then M belongs to SL (resp., $R\

PROOF. We will only give the argument for $L. A dual argument applies to $R.
Clearly, if M belongs to £L, (2.4.1) holds by Lemma 2.2.

Conversely, suppose MeOb(Db(^)) satisfies (2.4.1) and A is finite. Let ΓaA be
the ideal generated by the weights of the composition factors of the cohomology objects
//•(M). By (1.5), the full embedding Db(<g[Γ~])^>Db(<g) has as strict image the relative

derived category D^[Π(^). Thus, we can assume M belongs to Db(%>[Γ~]), i.e., we can
assume Γ = A in what follows.

Let ye A be maximal, and fix an integer r such that Hr(M} has a composition
factor L(y). Since A(γ) (resp., F(y)) is injective (resp., projective) in the category #

), A(y)) * HomDb(^(M, A(y)\_ - r]) .

Choose a morphism K(y)[ — r]— >Af which induces a surjection

(2.4.3) HomDW(M, Λ(y)[-r]) -> HomDW(F(7)[-r

and form the distinguished triangle K(y)[ — r] — >M^M'-^. The surjection (2.4.3) implies

that Hom"(M', A(λ)) embeds into Homw(M, A(λ)) for all n and all A e A. Thus ΛΓ satisfies
the condition: Homπ(Mr, A(λ)) / 0=>« = £ (λ) (mod 2)VλeA. Also, we have an inequality

of multiplicities, while [//"(AT) : L(y)] = [/ίπ(M) : L(y)] for « ̂  r. An evident induction
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argument on multiplicities and | Γ | now completes the proof. Π

3. Abstract Kazhdan-Lusztig polynomials. Fix a highest weight category ^ as in
§ 1 and a length function / : Λ-+Z on its weight poset. If XE Ob(Db(^)) and v 6 Λ, define
left and right Poincare "polynomials" p*;x, p*x e Z[t, ί"1] by the formulas:

(3.0. 1) rttX = £ dimk Homπ(^, A(v))f
n

and

(3.0.2) /£f, = ΣdimkHom"(K(v), X)tn .

To see that p^x and p^x are in Z[ί, ί"1] (i.e., there is a bounded range of nonzero
coefficients Homn(X, ^4(v)) and Homπ(F(v), XJ), we argue as follows. A truncation argu-
ment using the distinguished triangles τ<nX^>X^>τ>nX-+[BBΌ', §1.3] reduces to the
case in which XeObffi. From there, induction allows us to assume that X^L(λ) for
some weight λ. The desired conclusion then follows from [CPS1; (3.8b)] (and its dual
statement) which asserts that, for fixed λ and v, Ext%(L(λ), A(v)) and Ext^(F(v), L(λ))
vanish for sufficiently large integers n.

We record that, for XeOb(Db(<V)) and veΛ, the coefficients of Pv,χ,p*χ are all
non-negative. Also, if XeOb(^), then p^x and p*x belong to Z[t], i.e., they are
polynomials in t. This follows since Hom"(Z, fΓ^Ext^Z, JF) = 0 for all integers «<0
when both Z and W belong to (β. This fact will be often used without further comment.

We call the polynomials p^tλ =p^LW and p*λ =p*L(λ) the Poincare polynomials of
L(λ). Define the corresponding Kazhdan-Lusztig polynomials Pv λ by the formula

(3.0.3) P^P^t^-^p1;,,,

with/7^ λ as above (2.1). (Right Kazhdan-Lusztig polynomials will not be needed.) The
definition (3.0.3) is motivated by work of Vogan [VI; II, 3.4] on the Kazhdan-Lusztig
conjecture for the category Θ.

In the cases of interest, Pv λ is a polynomial in ί2, which can then be regarded as
a polynomial in q = t2. This is an often used convention which we shall not adhere to
in this paper. Also, our Kazhdan-Lusztig polynomials Pv λ (3.0.3) are indexed by pairs

of weights λ, v e Λ , while the classical Kazhdan-Lusztig polynomials Pxy [KL1] are
indexed by pairs of elements x, y in a Coxeter group.

An object X in Db(^) determines a row "vector" px = ( , p^tX9 ) and a column

"vector" px = (- ',p*,χ, )Γ with entries indexed by Λ. Unless Λ is finite, px and px

may have infinite support. However, if XeOb($L), then in Λ^C^, *0 there is a finite
expression

(3.0.4)
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and PX has finite support. In terms of the sesquilinear pairing of Proposition 2.3, we

have

(3.0.5) /*f

If, on the other hand, 7eOb(<fR), we have the finite expression

(3.0.6)

in KQ(%>, /), as well as the equation

Clearly, (3.0.5) (resp., (3.0.7)) implies that, for any fixed v,p^ x (resp.,/?fy) is additive

in X (resp., F) over distinguished triangles defining Λ^(#, /) (resp., Λ^(#, /)). Also,

for XeQb(έL\ X=Q if and only if [JΓ| =0 (or equivalently, if and only if /?£x = 0 for

all veΛ). Similar remarks apply to SR.
The following lemma is easily verified, using the above definitions and (2.3.1).

(3.1) LEMMA. IfΉ has a duality D, then p^ x —p^^xfor all weights v and all objects
XeOb(Db(%)). Hence, for any such X, we have p%x = (p%)τ.

For JTeObCtf), let ch(JΓ) be the image ofXm the Grothendieck group K0(V). The
following proposition is easily established using the definitions.

(3.2) PROPOSITION. Let XeOb(^)for a highest weight category <β. Then in the

Grothendieck group KQ(^) we have the following formula for the "character" of X:

ch(Af)= Σ KX(-l)ch F(v)= Σ XU(-l)chΛ(v) .
veΛ veΛ

The formula in (3.2) is an abstract version of Delorme's result for the category 0;
see [KL1]. However, if XεOb(έL), it follows from an actual formula in K%(&9 /), as

observed above. In this case, much more information can be obtained, suggesting (3.3)
and (3.4) below.

(3.3) DEFINITION. Let ̂  be a highest weight category having a length function

/ : Λ-+Z. An object XGDb(^) has a left parity if, for some integer ε,

Homπ(Z, 4(v)).^ 0 => n = /(v) + ε (mod 2) Vv e A .

If ε is even (resp., odd), we say A^has even (resp., odd) left parity. The notation of right

parity is defined dually. When X has both a left parity and a right parity and they both
agree, we say ^has a two-sided parity.

Finally, ̂  has a Kazhdan-Lusztig theory (with respect to /) if every simple object

has a two-sided parity.

The next result is immediate using Theorem 2.4 and the fact that there are nonzero
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morphisms L(λ)\_--ί(λ)~\-*A(λ)\_-t(λ)~\ and F(A)[-^(λ)]->L(λ)[-^(λ)]. When A is
finite (or even bounded below, i.e., when all finitely generated ideals are finite), the
result gives an alternative definition of a Kazhdan-Lusztig theory: L(/l)[ — *f(/l)]e
Ob(<ίL n SR) for all λ. This approach was taken in an earlier version of this paper,
though the 'even-odd vanishing' characterization (3.3) seems better suited in gen-

eral. We explore more sophisticated aspects of the infinite poset case in a future
paper.

(3.4) PROPOSITION. Let ̂  be a highest weight category with finite weight poset Λ
and length function /. For λeA,L(λ) has a left (resp., right) parity if and only if
L(λ)[_ -t(λ)~] eOb(<fL) (resp., Ob(<T*)). Also, L(λ) has a two-sided parity if and only if it
has both a left parity and a right parity.

Proposition 2.3 and the expressions (3.0.4) and (3.0.5) imply the next result.

(3.5) THEOREM. Assume %> is a highest weight category with a length function

t\Λ-*Z. For XeOb(£L) and 7eOb((f*), we have <[JΓ|, [Y]>=Px'P*- In particular, if
X, 7eOb(^), we obtain

An immediate consequence of the theorem is the following result.

(3.6) COROLLARY. Let ̂  be a highest weight category with finite weight poset A.
Suppose that %> has a Kazhdan-Lusztig theory relative to a length function /.

(a) Let P<g(t) denote the \A\x\A\ "Poincare" matrix whose (λ, v)-entry is the
polynomial £wdimkExt%L(/ί), L(v))Λ Then P^(t)=pL pR, where pL (resp., pR) is the
matrix whose rows (resp., columns) are the p^(λ) (resp., p*^.

(b) Defining μ(v, A) = dimfcExt1(L(l), A(v))for v<λ, we have an equality

μ(v, λ) = ύ&mkExtί(L(λ)9 L(v)) .

(c) Assume Ή has a duality. Given weights v<λ, we have

dim, Ext2(L(v), L(λj) > Σ μ(ω, v) μ(ω, λ) .
ω<\

PROOF. Theorem 3.5 implies (a) and the fact that dimfcExt^L^), L(v)) is the

coefficient of / in the polynomial Σt/^A/^v Also, p^λ (resp., p*v) has nonzero constant
term (equal to 1 by (1.1)) if and only if τ = λ (resp., τ = v). If τ = λ, the/>^v = 0 since the
inequality v<λ implies that Hom'(F(/l), L(v)) = 0 by (the dual of) [CPS1; (3.8b)].
Assertion (b) is now immediate. Finally, (c) follows from (a) and (b). Π

(3.7) REMARK. Suppose ^ has a Kazhdan-Lusztig theory with respect to /. Then

(3.6a) implies that, if A, vεA and neZ with Extn(L(λ), L(v))^0, then ί(λ)-ί(v) = n
(mod 2). In particular, if n= 1, L(λ) and L(v) have opposite parity. Using this, we see
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the relative parity of any two irreducibles in a single "block" of ̂  is uniquely determined.
Also, the groups KQ(%>, /), KQ(<&, /) are independent of £ (assuming only that / gives
rise to a Kazhdan-Lusztig theory).

We now give several examples of explicit calculations.

(3.8) EXAMPLE: Ext groups for the category Θ. Let g be complex semisimple Lie
algebra, with Cartan subalgebra ί) and Borel subalgebra b => ί). Let p e ί)* be the half-sum
of the positive roots defined by b. Fix >ίeϊ)* such that λ + p is an anti-dominant integral
weight. Let Wλ be the set of distinguished left coset representatives for the stabilizer

Wλ of λ in the Weyl group W (relative to the "dot" action). (Thus, we Wλ has the
minimal length among elements in the coset wW^.) The usual ordering on W induces

a poset structure on Γ(λ)= W λ = {w(λ + p) — p)\ we W] :y, y'eΓ(v) have unique re-
presentations γ = w λ and γ' = w' /ί, w, w'e Wλ, and we put y<y' ow<w'.

Consider the [BGG] category 0 (corresponding to g) and the highest weight
category Θλ = 0{Γ(λy\ defined as in (1.3). Here V(y λ) (resp., A(y λ)) is the Verma
(resp., dual Verma) module of highest weight y λ. We can establish the following result.

(3.8.1) THEOREM. The highest weight category Θλ has a Kazhdan-Lusztig theory
with respect to the length function ( defined by /(w /ί) = *f(w), we Wλ.

PROOF. By Theorem 2.4 and an evident duality argument, it suffices to show, for
υ, we W\ that Homn( V(v λ), L(w /l)[-/(w)])^0=>« = /(ι;) (mod 2).

If λ is regular, this follows from the truth of the Kazhdan-Lusztig conjecture,
Vogan's homological interpretation [VI; II, 3.4] of the Kazhdan-Lusztig polynomials,
and Proposition 3.2.

If λ is singular, we use SoergeΓs "nil-cohomology theorem" [So; p. 566], which,
in our notation, calculates dimcHomn(F(ι; A), L(w A)[ — /(w)]) as

(The translation between SoergeΓs notation and ours is as follows: M(v(λ + p))= V(v λ),
where M(θ) is, in SoergeΓs notation, the Verma module with highest weight θ — p. Also,
his L(λ) identifies with our L(λ-p\) Since φz) = φ) + /(z) for i e W\ ze Wλ, if the
above expression is non-zero, then n = £(v) (mod 2), as desired. Π

Continuing the discussion of Ext groups, we note Corollary 3.6 gives a calculation
of the groups Extπ(L(v), L(τ)), for v, τeΓ(A), once the Kazhdan-Lusztig polynomials
Pvτ in (3.0.5) are related to the Kazhdan-Lusztig polynomials Py w, y,wεW. (We regard
these as polynomials in t = q112.) However, using [So; p. 566], we verify that

(Thus, if λ is regular, we have Py.λtW.λ = PytW.) Applying (3.6), we obtain the following
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result. Recall Fa,b(ή = Pa,b(Γ1).

(3.8.2) COROLLARY. Let Γ(λ) be as above. For y,

In the special case of regular weights, the calculation (3.8.2) has also been obtained
by Beilinson-Ginzburg [BG], stated with only a sketch of a very sophisticated proof.
Also, in this case, Irving [II] gives a calculation for Ext1 between two simple modules.

(3.9) EXAMPLE: Ext groups for algebraic groups. We refer ahead to the context
and notation of §5. The following result is immediate from Theorems 3.5 and 5.3.

(3.9.1) THEOREM. Let G be a semίsίmple, simply connected algebraic group over
an algebraically closed field k of characteristic p>h. Let λeCz (i.e., λ is a dominant
weight in the bottom p-alcove). For dominant weights w λ, y λ (y, we Wp) satisfying the
Jantzen condition (5.0.2), we have

Σdim tExt G(L(;rA),I<w> A))/ = Σ /™+Λw)-*wJU.,»Λ»o.wwo
n z λ dominant, zeWp

(Here, Pab denotes the- Kazhdan-Lusz tig polynomial associated to a, beWp.)

We conclude this section with some ways to construct new examples from old ones.

(3.10) PROPOSITION. Let ̂  be a highest weight category having a Kazhdan-Lusz tig

theory relative to a length function t\A-*Z. Let ΓaΛ be an ideal, and let ΩaΓ be a
coideal. The highest weight category (6\Γ\ (resp., ^(Ω) ifΓ is finite) has a Kazhdan-Lusz tig
theory relative to £\Γ (resp., /|Ω). For λ,veΓ (resp., λ, veΩ) the Poincare polynomials
Pvλ and p*λ are the same whether computed in <g or [̂Γ] (resp., ^(Ω)\

PROOF. By (1.3) and (1.5), the inclusion functor i^ :#[Γ]-># maps the induced
and Weyl objects of [̂Γ] to the corresponding objects in #, and it induces a full
embedding ^ : D\<<e[Γ])'+D\<e). Therefore, #[Γ] has a Kazhdan-Lusztig theory, and
the Poincare polynomials for [̂Γ] can be computed in ̂ .

By (1.5), (3.4) and the definitions in §2, the quotient functor j* :Z)5(^[Γ])->
D\<g(Ω)) takes ^L(̂ [Γ]) and ^Λ( [̂Γ]) to ^L(^(Ω)) and ^R(^(Ω)\ respectively. For
λeΩ,j*L(λ) is the simple object corresponding to λ. If y eΓ\Ω, then7'*^(y)^y**F((y)^0.
Thus, ^(Ω) has a Kazhdan-Lusztig theory by (3.4). Also, j* induces homomorphisms

Ko(V[.n,S\r)->Ko(V(ty>S\a) and ^o(*[ΠX|r)-*^o(*(β)^|o) of Grothendieck
groups. Hence, the Poincare polynomials /?£λ for λ, v e Ω can be computed in either

(and thus %) or in *(β) by (3.0.1), (3.6.2). Π

The assumption that Γ is finite in proving that %?(Ω) has a Kazhdan-Lusztig theory
can be replaced by the assumption that Ω is a finite coideal, but we omit the details here.
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3. Appendix. Graded Grothendieck group. We sketch how some of the theory
works for graded highest weight categories. We define the latter here, at least for the
case of a finite weight poset, to mean a category ^gr of finite dimensional graded modules
for a graded quasi-hereditary algebra A; see [CPS3]. (Thus, the algebra A is positively
graded.) For a weight λ, we assume that the induced (resp., Weyl) module A(λ) (resp.,
V(λ)) is graded with socle (resp., head) L(λ) homogeneous of degree 0. Fix a length
function f : A—>Z.

If XεOb^p) and /eZ, let X(i) denote the upward shift in grade (or twist) of X
by i steps: X(i)n = Xn-t. This induces a similar functor X\-*X(i) on the bounded deriv-
ed category Db(<£sr). It will be convenient to write X{ί] for Ar[/](/) = Ar(/)[z], Xe
Ob(Dfc(#gr)). Define a graded version < ĝr of $L by replacing (in the definitions of

§2) V(λ)\_-ί(λ)~\ everywhere by V(λ){-t(λ)}. Let K%(<ev, t) be the associated left
Grothendieck group constructed using ( ĝr © <^gr{l}.

By construction, the evident forgetful functors induce a commutative diagram

W.nO^Wgr)

(3 A.I) y, i

KfrV, f) —-* K<j&)

of the various Grothendieck groups. Observe that each Grothendieck group in (3A.1)
is naturally a Z[ί, Γ ^-module: on K%(<ev, {) (resp., KL(<g, t\ K0(%gr), K0(^J) t acts
as the operator [X] h-> [_X{- 1}] (resp., [JΓ] H-» [jr[- 1]], [JIT] ι-> - [X(-1)], [JT] H->

— \_X~\). Clearly, the morphisms in (3A.I) are Z[ί, ί~1]-module homomorphisms, while
both the top horizontal morphism and the left vertical morphism are, in fact,

isomorphisms. (As usual, ^ = mod-^4).
Similarly, the category ̂  and the associated right Grothendieck group Λ^(^gr, £)

are defined using the A(λ){ — /(A)}. Also, there is a right analog (3A.1)' of (3A.1).
We say #gr has a graded Kazhdan-Lusztig theory if L(λ){ -<f(λ)} eOb(^τ n β*) for

each Λ,. If this condition holds, a left Poincare polynomial/?vλ e Z[ί, ί"1] is defined by

(3A.2) [^λ)]=Σpv.A[r(v)].
V

This right Poincare polynomial /?JA is similarly defined, and we put Pv,λ = t'(λ)~'(v)pv,λ

for the corresponding Kazhdan-Lusztig polynomial. These polynomials can also be
defined by analogy with (3.0.1) and (3.0.2). By (3A.1), PVtλ is also a Kazhdan-Lusztig
polynomial for the highest weight category <β.

Assume that ̂ gr has a graded Kazhdan-Lusztig theory. An expression (3A.2), valid

in any one of the three isomorphic Grothendieck groups A^o(^gr, t\ KQ^, /)> or ^o(^gr)
in (3A.I) leads to valid expressions in the other two Grothendieck groups. (Clearly,
our assumption implies that # has a Kazhdan-Lusztig theory.)

There are conceptual advantages to attaching different meanings to the (3A.2)
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equation for the simple module L(λ). As a simple application, consider the question of
"inverting" the Kazhdan-Lusztig polynomials theoretically. By (3 A.I), it suffices to
invert (3A.2) when read as an equation in K0(^gτ). Clearly, we can write [F(v)] =

Σλ'<v^v,Λ'[^(^0] m ^oC^grX where qv^λ, is a polynomial in — /, acting as (—1), with
positive coefficients. That is, qv λ, = £π ( — l)nant

n, an > 0. Substituting this expression into

the image of (3A.2) in K0(^gr) yields the identity ΣA'<v<A/?v,λ<7v,λ' = ̂ λ,A' Putting
Qv,λ = ( — f f ( v } ~ * ( λ l ) q V t λ > , we obtain the equivalent expression

(3A.3) Σ (-iY(λ}-'(v}Pv.&.λ = δλtλ .
A ' < v < λ

Observe (3A.3) implies that the Qv A, are polynomials in t2. These polynomials thus
have positive coefficients by their construction. Of course, for elementary reasons an
inverse to the matrix [PV>J must exist, but our discussion supplies an explicit
interpretation (as well as the positivity) of that inverse. Compare also [II], [L2] and
[A2].

Using an analog of Theorem 3.5, it can be shown, when ^gr has a graded
Kazhdan-Lusztig theory, that the graded quasi-hereditary algebra A is formal (Koszul)
in the sense of Beilinson-Ginzburg [BG]. It can further be shown that its homological
dual A] is also a graded quasi-hereditary algebra. The corresponding graded highest
weight category ^4!-mod (with weight poset Λop) has a graded Kazhdan-Lusztig theory
in which the Qvλ are the Kazhdan-Lusztig polynomials. Further details will appear
elsewhere.

4. A parity-based decomposition theorem. We begin with the following important
complete reducibility criterion. In a limited way, the result plays a role analogous to
Gabber's purity theorem [BBD; (5.3.8)]; see the remarks after (4.2) below.

(4.1) THEOREM. Suppose %> is a highest weight category with weight poset A, and
. For each λ,veA with Hom(X, A(λ))^O^Hom(X9 A(v)) assume

and dually, ι/ Hom(K(λ), ^)/O^Hom(F(v), X\ assume

Then X is completely reducible.

PROOF. Let λ e A be maximal with the property that L(λ) is a composition factor
of X. By (1.3), we can replace Λ by an ideal Γ and ̂  by the highest weight category
[̂Γ] to assume that the weight λ is maximal, and, thus, V(λ) is projective and A(λ) is

injective.
We claim that all composition factors of X isomorphic to L(λ) occur in the head

of X. If not, there is a subobject Y of raά(X) with L(λ) as a quotient. Since A(λ) is



526 E. CLINE, B. PARSHALL AND L. SCOTT

injective, the composite morphism Y-*L(λ)^A(λ) extends to a morphism X-+A(λ) with
image Q properly containing L(λ).

Let v be maximal among the weights of composition factors of Q/L(λ). Then there
is a nonzero map Q/L(λ)^>A(v), and thus a nonzero morphism ^- (̂v). By hypothesis,
Ext^FO), L(λ)) = Q. However, vϊλ, so Hom(K(v), A(λ)) = 0 by Lemma 2.2. Hence,
Hom(F(v), A(λ)/L(λ)) injects into E\t\V(v), L(λ)\ But Hom(F(v), A(λ)/L(λ)) contains
Hom(F(v), Q/L(λ)), which is nonzero. This contradiction establishes the claim.

Dually, all composition factors of X isomorphic to L(λ) occur in the socle of X.
This implies that X is the direct sum of an object X' and a nonzero number of copies
of L(λ). An evident induction on the length of X completes the proof. Q

In the presence of a Kazhdan-Lusztig theory in the sense of Definition 3.3, we
have the following consequence of the above theorem.

(4.2) COROLLARY. Let ̂  be a highest weight category having a Kazhdan-Lusztig
theory with respect to a length function t :Λ-+Z. Let X be an object in %> having a left
parity and a right parity. Then X is completely reducible.

PROOF. If λ, v e A satisfy

; A(v)) ,

then f(λ) = 0 and /(v) = 0 (mod 2) if X has an even left parity, while f(λ) = 1 and ί(μ) = 1
(mod 2) if X has an odd left parity. In either case, ^(λ) = ̂ (v) (mod 2). Therefore, since
<β has a Kazhdan-Lusztig theory, Extl(V(λ), L(v)) = 0.

By a dual argument, if Hom(F(/l), X} Φ 0 Φ Hom(F(v), X\ then Ext^OO, A(λ)} = 0.
By the theorem, we conclude X is completely reducible. Π

MacPherson's work in [Sp], which uses Gabber's decomposition theorem [BBD],

can instead by carried out with (4.2) and the fact, proved by Kazhdan-Lusztig [KL2],
that intersection cohomology complexes associated to Schubert varieties have co-
homology only in even degrees. Related parity considerations made in [Sp] helped
guide the definition of the enriched Grothendieck groups in §2. See also remarks
following (5.6) below.

Our original proof of a complete reducibility criterion, like that given in Corollary
4.2, was based on a variation of the following result, interesting in its own right.

(4.3) THEOREM. Let Ή be a highest weight category with finite weight poset A and
length function / : A^Z. Let XeOb(Db(^J) have a left parity, and let veA be such that
L(v) has a right parity. Then for each integer «, the natural map

(4.3. 1) Hom^A^, L(v))

is surjective. Dually, let XeOb(Db(^)) have a right parity, and let veA be such that L(v)
has a left parity. Then for each integer n, the natural map
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(4.3.2) Hom"(L(v), X) -> Hom"(K(v), X)

is surjective.

PROOF. It suffices to consider the first case (4.3.1), which is dual to (4.3.2).
We can clearly assume that AΊias even left parity, i.e., XeOb(ffL) by Theorem 2.4.

Certainly, the result holds if X has the form F(τ)[ — £(τ) + 2k~\. Thus, by induction and

the construction of <^L, there is a distinguished triangle Y — >X — »Z — > where Γ, Ze
Ob(^L) and (4.3.1) is surjective with X replaced by Y or Z. Consider the correspond-
ing commutative diagram:

0 - > Hom"(Z, L(v)) - > Horn"^, L(v)) - » Hom"(F, L(v)) - > 0

(4.3.3) I I I

0 - » Hom"(Z, Λ(v)) - > Hom"^, A(v)) - > Hom"(F, A(v)) - > 0 .

To show that (4.3.1) is surjective, we can assume that Homw(Ar, ^4(v))^0, so that, « = /(v)
(mod 2). Assuming L(v) has a left parity, it follows both horizontal rows in (4.3.3) are
exact. Now the surjectivity of (4.3.1) for 7, Z and the snake lemma imply that (4.3.1)
surjective for X. Π

5. Applications to the Lusztig conjecture. Early work of Vogan [VI] established
that the complete reducibility of certain modules implies the Kazhdan- Lusztig conjecture
for the category φt These and other observations of Vogan were subsequently adapted
by Andersen [A2] to the modular representation theory of reductive algebraic groups.
In this section, we begin by showing how the results of §4 yield, in the context of this
earlier work, a significant simplification of the Lusztig conjecture.

Let G be a semisimple, simply connected algebraic group over an algebraically
closed field k of positive characteristic p > h, the Coxeter number of G. We generally
adhere to the notation in [J]. Thus, T is a fixed maximal torus contained in a Borel
subgroup B. Regarding the opposite Borel subgroup as positive, let R+ (resp., S) be
the positive (resp., simple) roots for the root system R of T in G. Let X(T) (resp.,
X(T)+) be the set of weights (resp., dominant weights) on T. Let ρeX(T)+ be the
half-sum of the positive roots, and let <x0eR+ be the maximal short root.

The affine Weyl group Wp is generated by affine reflections sΛrp,aeR, reZ in
X(T)®ZR [J; §11.6.1], and, as a Coxeter group, Σ = {s^0\aeS} u {sΛo,p} is a set of
simple reflections. The "dot" action of Wp is defined by w λ for w(λ + p) — p for

For λ, μeX(T), write λ<μoμ — λeZ~°R+ . Also, put λ] v if there is a sequence
λ = λ0<λ1< - - <λt = v in X(T) such that, for 0</</, there exists a positive root α,

and a positive integer nt with sΛiιΛip λ~λi + ί. Both < and | induce partial orderings
on X(T). For A, μeX(T)+-p, if λ | μ, then λ t μ in the sense of [J; §11.6.4]. (The two
notions agree on X(T)+ — p by [Y], [W], although we will not use this fact).
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Let ^ be the category of finite dimensional rational G-modules. For λeX(T) + ,
L(λ) is the irreducible G-module of highest weight λ, and

(5.0.1) A(λ) = H°(λ) (resp., V(λ) = H\-wQλY)

is the induced module (resp., Weyl module) of highest weight λ [J; §11.5]. The following
observation will be used in the sequel.

Let Γ be a finite ideal in the poset (X(T) + , f). The full subcategory <β[Γ] of <g
consisting of G-modules with composition factors L(y), yeΓ, is a highest weight category
(satisfying (1.!)-(! .2)) with weight poset (Γ, ΐ). For λeΓ, the induced (resp., Weyl} module
A(λ) (resp., V(λ)) is defined by (5.0.1). Also, [̂Γ] has a natural duality D.

To see this, let f be the ideal in the poset (X(T) +, <) generated by Γ. Then #[f]
is a highest weight category with induced objects A(λ) and Weyl objects V(λ) as in
(5.0.1). (Let # be the category of all rational G-modules. It follows from [CPS1; 3.3d,
3.5] that the subcategory [̂Γ] consisting of rational G-modules having composition
factors L(λ) with λ e Γ is a highest weight category having the indicated induced and
Weyl objects. However, since Γ is finite, the injective objects in #[f] are finite

dimensional. It follows that [̂Γ] has enough injective objects and is a highest weight
category as described. See also [PS; §6].)

If τ e Γ, the composition factors L(v) of A(τ) and V(τ) satisfy v f τ, by strong linkage
[Al] (see also [J; §11.6.13]). For ΛeΓ, the injective envelope I(λ) of L(λ) in #[f] has
a filtration with sections A(σ) such that λ]σ by reciprocity [J; §11.4.18] and strong
linkage again. Thus, I(λ) is the injective hull of L(λ) in [̂Γ]. This proves [̂Γ] is a
highest weight category relative to (Γ, |). Also, the duality of [CPS2; (3.3)] induces a
duality D on ̂ [Γ]. This establishes the observation.

Let Cz = {λeX(T)\0<(λ + p, α v )<p, Vαe£ + } [J; §11.5.5]. Since p>h, Cz^0.
For λeCz, let O+

λ = Wp λr\X(T) + , and define a length function / on Ol by putting
£(w X) = £(w). Let Γ(λ) be the ideal of (O^, t) consisting of weights τ satisfying the
Jantzen condition

(5.0.2) (τ + ̂ α0

v)<p(/7-/z + 2).

Let s e Σ, and fix v e Cz lying on the face defined by s. Using the Jantzen translation
operators Γv

λ, ΓJ:^->^, define ΘS=T$°Tl\Ή^, an exact functor commuting with
duality, which is (left and right) adjoint to itself. (For details concerning these operators,
see [J; §11.7].) Thus, for Meθb(^), the adjunction morphisms associated to the adjoint
pairs (Γv

λ, JJ) and (7^, ΓV

A) define morphisms

(5.0.3)

As noted by Vogan [V2] (in a different context), for some M (e.g., L(τ), A(τ), or
V(τ), τεOχ), the diagram (5.0.3) is a complex. In this case, Vogan sets USM equal to
the homology of the complex. We will use this notation also, and, in addition, let βsM
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denote the complex itself concentrated in degrees —1,0, 1 (and viewed as an object in

Db(<g)). We will return to βs in (5.6), (5.7).
The following result quickly reveals the strength of Theorem 4.1. For τ = w λ and

seΣ, we write τs for ws λ.

(5.1) LEMMA. Let λeCz and let Γ(λ) be the ideal in ( O f , t) of weights satisfying

(5.0.2). Assume that ^[Γ(A)] has a Kazhdan-Lusztig theory relative to the length function
/ defined above. Let τ<τs be weights in Γ(λ). Then UsL(τ) is completely reducible.

PROOF. Let σeΓ(λ). We will show that UsL(τ) satisfies the condition

(5.1.1) Extί(UsL(τ\A(σ))^Q^i = ̂ (τs)-^(σ) (mod2).

If σeΓ(λ) is maximal, then (5.1.1) is automatic if i> 1 since A(σ) is injective in

Since all the composition factors L(y) of UsL(τ) satisfy γ^τsby [J; §11.7.8], the ι = 0
case of (5.1.1) is also clear for σ maximal (since only σ — τs need be considered).

Using [J; §11.7.13], we see that Θs induces an operator [<9S] on the Grothendieck

group #<,(<?) satisfying the identity [ΘJ2 = 2[βJ. Thus, [6>sL(τ)] = 2[L(τ)] + [C/sL(τ)],
so that ΘslIsL(τ) = Q. Hence,

(5. 1.2) 0 = Exi\ΘsUsL(τ\ A(σ)) * Exf(ί/sL(τ), ΘsA(σ)) , Vi .

Assume σ<σse X(T) + . The short exact sequence Q-*A(σ)->ΘsA(σ)-+A(σs)-*Q [J;
§11.7.19] applied to (5.1.2) thus yields

(5.1.3) Exiί(UsL(τ\A(σ))^Exii-\UsL(τ\A(σs)), Mi.

By the previous two paragraphs, we must show that (5.1.1) holds for σ>σs (with
σs possibly not dominant). Using the exact sequence [A2; (2.9)] (obtained from
decomposing (5.0.3) into two short exact sequences) and [A2; (2.6)] (an application of
[GJ; (5.18)]), the assumption that ^[Γ(λ)~] has a Kazhdan-Lusztig theory implies

statement (5.1.1) in this case. (For a more conceptual point of view, see (5.7) below.)
Since UsL(τ) is self-dual, the statement dual to (5.1.1)

Ext'(F(σ), UsL(τ))^Q=>i=S(τs)-S(σ) (mod2)

holds as well. It follows easily that X = UsL(τ) satisfies the hypothesis of Theorem 4.1
(or Corollary 4.2). Thus, UsL(τ) is completely reducible. Π

The Lusztig conjecture [LI; §3] asserts, for w λεΓ(λ), that

(5.2) chL(w A)= Σ (- lyv-'Wp^ ,wwo(- l)ch V(y X) .

Here the Pu „, w, v E Wp, are the Kazhdan-Lusztig polynomials [KL1] for Wp, and vv0 e W
is the long word. We follow the formulation in [J; §11.7.20], but differ in that, because
we view the Puv as polynomials in t (rather than q = t2), we evaluate them at t= — 1.

The following result provides an attractive reduction of the above conjecture,
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relating it to the more flexible notion of a Kazhdan-Lusztig theory. Vogan knew [GJ;
p. 285], [VI; I, 3.9; II, 3.5] in the category 0 context, that the substance of (a) was
implied by (b) as well as by (c), and that complete reducibility of UsL(τ) implied (b).
The key new ingredient is our Lemma 5.1 (which in turn relies on Theorem 4.1).

(5.3) THEOREM. Let G be a semisimple, simply connected algebraic group over k,
as above. Fix λeCz. The following statements are equivalent:

(a) The highest weight category <^\_Γ(λ)~] has a Kazhdan-Lusztig theory relative to the

length function < on (Γ(λ), |) defined by /(w λ) = S(w).
(b) The character formula (5.2) is valid whenever w λeΓ(λ).
(c) Whenever τ, σeΓ(Λ) lie in adjacent p-alcoves, then Extc(L(τ), L(σ))^0.
If these conditions hold, the Kazhdan-Lusztig polynomials (3.0.3) identify with the

Kazhdan-Lusztig polynomials for Wp as follows:

Py λ^ λ = Λv0y,w0wO λ,yλeΓ(λ)).

PROOF. The equivalence of the three conditions follows from Lemma 5.1 together
with the results of [A2; §2]. Assuming this, the identification of the polynomials (3.0.3)
follows from [A2; (2.12)], using the fact that "w/ί" in the notation of that paper is
"w0w Λ," in the notation of the present paper. (We mention that the proof of [A2;
(2.12)] is more transparent using the results of Deodhar [D; (3.4)].) Π

Notice in (5.3c) the order of weights is irrelevant, since L(τ), L(σ) are fixed by the
duality D. We now establish other new equivalent forms of the Lusztig conjecture.

(5.4) COROLLARY. Let G, etc. be as above. The validity of the character formula
(5.2) for all w λeΓ(λ) is equivalent to each of the following assertions'.

(a) Whenever seΣ and τ<τs belong to Γ(λ), there is a quotient X(τs) of the Weyl
module V(τs) with exactly two composition factors L(τ) and L(τs). (The quotient X(τs) is
unique and can be explicitly described.)

(b) For τ, v e Γ(λ) satisfying /(τ) = £(v) (mod 2), we have

Exti(K(v),L(τ)) = 0.

(c) The natural map

Ext^LOO, L(τ)) -» ExtXnv), L(τ))

is surjective for all weights v, τeΓ(λ).

(d) Any quotient M of a Weyl module in ^{Γ(λ}] having exactly two B-stable lines
has exactly two composition factors.

PROOF. Clearly, (a) => (5.3c), while (5.3c) => (a) by the universal mapping property
of Weyl modules. By [J; §11.7.18], V(τs) has a unique quotient X(τs) with simple head
L(τ^), simple socle L(τ), and such that any other composition factor L(v) satisfies
.τ Φ v Φ τs. We can explicitly describe X(τs) as follows: V(τs) contains unique 5-fixed lines



ABSTRACT KAZHDAN-LUSZTIG THEORIES 53 1

kv and kv+ of weights τ and τs, respectively. Then X(τs)= V(τs)/M, where M is the
unique G (or ^)-submodule of V(τs) maximal with respect to not containing v or v + .

Suppose X(τs) has more than two composition factors. Let v be maximal Φ τs with
L(v) a composition factor of Jf(τs)/L(τ). Thus, there is a nonzero homomorphism

f:V(v)-^radX(τs)/L(τ)-+A(τ)/L(τ\ giving Ext^HCv), L(τ))^0. However, one can
similarly argue that Ext^Fίv), L(τls

ι))^0 using DX(τs). This contradicts the hypothesis
of (b), so (b) => (a). Conversely, it is clear that (5.3a) => (b).

Next, (5.3a)=»(c) by Theorem 4.3, while (c)=>(5.3c) by [J; §11.7.18].
Clearly, (d)=>(a). Finally, let F(σ)->M be a surjective morphism in #|T(Λ,)] in

which M has exactly two 5-stable lines, having weights σ>τ. Thus, τ is the maximal
weight of radM, giving an embedding radMc=v4(τ). We show (b) implies radM^L(τ).
If not, let L(ξ) be a composition factor of radM/L(τ) with ξ maximal. As above, this

implies Ext\V(ξ)9 L(τ))^0. A dual argument gives Extl(V(ξ),L(σy)ϊO. Similarly,
Ext\V(τ\ L(σ))^0. This contradicts the parity conditions of (b), so (b) => (d). Π

(5.5) REMARK. By Andersen [A3; (6.13)], Jantzen's Weyl module filtration
conjecture implies the Lusztig conjecture. We observe that the i— 1 case of the Jantzen
conjecture implies the Lusztig conjecture for G: In the notation of [J; §11.8], for τ<τs
in Γ(λ\ there is a Z-module homomorphism fz: V(τ)z-*V(τs)z inducing a nonzero
G-homomorphism /: V(τ)-*V(τs). (Since Hom(F(τ), V(τs)) has the same dimension as

HomίKWMίwVLίτ^sExtHKίτXJXτ^^O, / exists.) Then the module (pV(τs)z +
fz(V(τ)z)/V(τs)z ® ̂  defines a nontrivial extension of L(τ) by L(τ^) provided fV(τγ c:
V(τs)2. (Making use of [A3; (6.4i)], this latter inclusion is equivalent to the non-

vanishing of Ext1(L(τ), L(τs)).)

Let & \ be the affine Hecke algebra over Z[ί, t~ x] associated with Wp. Let {Ty}yeWp

be the standard basis of 3fa. (Thus, Γs

2 = (t2 - l)Ts-\-t2Tly seΣ.) Let x = xw = Σwew τ^
so that the right ideal xtfa is the natural "# = ί2-analog" of the right ^-permutation
module W\WP.

The following result and remarks provide a conceptual link between this section
and §2. Write Λ^(^ = limΛ:£(#[Γ], /)> the directed union over all finite ideals Γ of~

(5.6) PROPOSITION. There is a natural action of 3?a on KQ(^^, isomorphίc to
the action of J^a on x^a. In this isomorphism, ^(y)[F(>> Λ,)] corresponds to xTy for

y λeX(T) + . The element bs = Γl(Ta+ 1) in tfa sends [V(y λ)] to {.βsV(y Xf\.

PROOF. Let ί2c= Wp be the set of distinguished right coset representatives for W

in Wp (i.e., yeΩoS(wy) = S(w) + S(y) VweWoy'λeX(TΓ). Thus, {[_V(y λ)~]}yeΩ

(resp., (xTy}yeΩ) is a basis for the free Z[ί, Γ ^-module K^λ) (resp., xJ^a), and the
map i'.K^λ)-^xjea defined by ι[_V(y X)] = Γ'(y)xTy (yeΩ) is an isomorphism of

Z[ί, t~ ̂ -modules.
The description of translation functors [J; §11.7] shows that ΘsV(y λ) = Q unless
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ys λeX(T) +

 9 in which case ΘsV(y λ) has two sections V(ys λ) and V(y λ) (with the
Weyl module of smaller highest weight appearing as a quotient). The map ε(V(y λ))
of (5.0.3) is surjective if y λ<ys λ, while δ(V(y λ)) is injective if y λ>ys λ. If follows,

for yeΩ, that D8,K(^A)] = r1[K(^ A)] + [K(^ A)] (resp., /[K(y A)] + [K(^ λ)],
(ί + ί ~ 1)[K(j A)]) if j < jλs1 e Ω (resp., ys < y, y<ysφΩ).A direct computation shows that

f\ = (i{V(y Λ )])δ, (Observe that jcΓw = /2<f(w);c, we JF.) Π

This result parallels corresponding geometric Hecke actions of Lusztig-Vogan [LV]
and of MacPherson [Sp]. Similar results hold for the category 0, using the Hecke
algebra for W in place of ^q and taking x=l9 and for perverse sheaves, agreeing
precisely with MacPherson's work. Through [PS; §5], MacPherson's work inspired
(5.6) and led to the results of this section. The existence of a Kazhdan-Lusztig theory,
i.e., "even-odd vanishing", allows irreducible objects to be represented in Λ^oC^C/XΛ,)]) c

A^O(^A) The computations of [A.2] on the "Vogan conjecture", i.e., the complete
reducibility in (5.1), can be recovered from this action, the combinatorics of [D], and
the identity

(5.7)

for L(v)eOb(<l*). (This identity essentially follows from the exact sequences proved in
[A2]; we will publish another proof in a future paper.) Casian makes a related assertion
[C; (8.9)], with different hypotheses, and (5.7) was inspired by his version of βs (called
Us there) for the geometric "push-forward/pull-back" operator on perverse sheaves.

The Hecke algebra calculations given in [LV] and [Sp] relying on "weights" and
cohomology, respectively, can be compared via the formalism of the appendix to §3.

(5.8) REMARK. There are analogs of (5.3), (5.4) in other contexts. For example,
these reductions hold for Lusztig's quantum conjecture [L3; (8.2)] (announced as a
theorem in [KL3], depending on other work) at an /-th root of unity (/ odd), at least

for a root system of type A in the comodule set-up of [PW]. The proofs are the same,
using [PW] to supply the analogs of characteristic p results used in this section. For
any type, one may use [APW] for /> 3 a prime power or [AW] for more general / with
certain restrictions. The validity of the quantum conjecture would also give calculations
of Ext groups between simple modules having regular highest weights.

Our proofs apply in the category Θ case, giving algebraic reductions of the original
Kazhdan-Lusztig conjecture. In particular, the analog of (5. 1) settles a question regarding
"even-odd vanishing" apparently left open by Vogan (see [V2; Prob. 7, p. 739] for the
Harish-Chandra module case), despite a more optimistic communication in [KL1].

As already remarked above (4.3), our results apply to perverse sheaves on Schubert
varieties, providing a partial replacement for the decomposition theorem.

These results can all be treated simultaneously within an appropriate axiomatic
setting, including perverse sheaves as well as potential examples arising from finite
dimensional algebras. Details will be presented elsewhere.
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