VALUES OF p-ADIC L-FUNCTIONS AT POSITIVE INTEGERS AND p-ADIC LOG MULTIPLE GAMMA FUNCTIONS

Hideo Imai

(Received May 7, 1992, revised September 18, 1992)

Abstract

We consider p-adic analogues of multiple gamma functions, and express values of p-adic L-functions at positive integers in terms of these p-adic multiple gamma functions.

Introduction. For a prime number p and for a Dirichlet character defined modulo some integer, the p-adic L-function was constructed by interpolating the values of the complex analytic L-function at non-positive integers. Diamond [6] obtained formulas which express the values of p-adic L-function at positive integers in terms of the p-adic \log gamma function. In this paper, we generalize his results to the case of the p-adic L-functions constructed by the author in [9], and obtain formulas which express their values at positive integers in terms of the p-adic log multiple gamma functions. Since the p-adic L-functions of a totally real algebraic number field can be expressed in terms of the p-adic L-functions we are considering, their values at positive integers can also be expressed in terms of the p-adic log multiple gamma functions.

1. Some p-adic integrals. Let p be a prime number. Let $\boldsymbol{Z}, \boldsymbol{Z}_{p}, \boldsymbol{Q}_{p}, \Omega_{p}, \mathcal{O}_{p}$ and m be the ring of rational integers, the ring of p-adic rational integers, the p-adic number field, the completion of an algebraic closure of \boldsymbol{Q}_{p}, the integer ring of Ω_{p} and the maximal ideal of \mathcal{O}_{p}, respectively.

We first define some twists of the Bernoulli numbers. Let c be a positive integer prime to p, and $\xi \in \Omega_{p}$ a c-th root of 1 different from 1. We define numbers $B_{k, \xi}$ and polynomials $B_{k, \xi}(x)$ for $k \geqq 0$ by the following formulas:

$$
\begin{gathered}
(\xi \exp (t)-1)^{-1}=\sum_{k \geqq 0} B_{k, \xi} t^{k} / k! \\
\exp (x t)(\xi \exp (t)-1)^{-1}=\sum_{k \geqq 0} B_{k, \xi}(x) t^{k} / k!
\end{gathered}
$$

Then, by using the method which was used in [10, pp. 7-15], we can prove the following lemma.

[^0]Lemma 1.

$$
B_{k, \xi}=\frac{1}{k+1} \lim _{N \rightarrow \infty} \frac{1}{c p^{N}} \sum_{0 \leqq m<c p^{N}} \xi^{m} m^{k+1} .
$$

For any $\xi \in \Omega_{p}$ which satisfies the above condition for some $c \in N,(c, p)=1$, we denote by μ_{ξ} the p-adic measure on $\boldsymbol{Z}_{\boldsymbol{p}}$ constructed in Koblitz [11, Proposition 2]:

$$
\mu_{\xi}\left(a+p^{N} Z_{p}\right)=\xi^{a}\left(1-\xi^{p^{N}}\right)^{-1} \quad \text { for } \quad 0 \leqq a<p^{N} .
$$

In what follows, we fix a positive integer r. For each $1 \leqq j \leqq r$, let c_{j} be a positive integer prime to p, and let ξ_{j} be a nontrivial c_{j}-th root of 1 . Let $\mu_{\xi_{j}}$ be Koblitz' p-adic measure on Z_{p}, and let $\mu_{\xi}=\prod_{1 \leqq j \leqq r} \mu_{\xi_{j}}$ be the product measure on the product space Z_{p}^{r}. Let $y=\left(y_{1}, \ldots, y_{r}\right)$ be a variable on \boldsymbol{Z}_{p}^{r}.

Lemma 2. For any $b_{1}, \ldots, b_{r} \in \boldsymbol{Z}, b_{1}, \ldots, b_{r} \geqq 0, \int_{Z_{p}^{r}} y_{1}^{b_{1}} \cdots y_{r}^{b_{r}} d \mu_{\xi}(y)$ is the coefficient of $t_{1}^{b_{1} \cdots t_{r}^{b_{r}} /\left(b_{1}!\cdots b_{r}!\right) \text { in the Laurent expansion of the function } \prod_{1 \leqq j \leqq r}(1-\quad) .}$ $\left.\xi_{j} \exp \left(t_{j}\right)\right)^{-1}$.

Proof. Let t_{1}, \ldots, t_{r} be p-adic variables with sufficiently small absolute values so that $\exp \left(y_{1} t_{1}+\cdots+y_{r} t_{r}\right)$ converges for any $\left(y_{1}, \ldots, y_{r}\right) \in \boldsymbol{Z}_{p}^{r}$. It is known that Koblitz' measure $\mu_{\xi_{j}}$ satisfies

$$
\int_{Z_{p}} \exp \left(y_{j} t_{j}\right) d \mu_{\xi_{j}}\left(y_{j}\right)=\left(1-\xi_{j} \exp \left(t_{j}\right)\right)^{-1}
$$

Since μ_{ξ} is the product measure, we obtain

$$
\int_{\mathbf{Z}_{p}^{r}} \exp \left(y_{1} t_{1}+\cdots+y_{r} t_{r}\right) d \mu_{\xi}(y)=\prod_{1 \leqq j \leqq r}\left(1-\xi_{j} \exp \left(t_{j}\right)\right)^{-1} .
$$

Taking the coefficient of $t_{1}^{b_{1}} \cdots t_{r}^{b_{r}} /\left(b_{1}!\cdots b_{r}!\right)$ in the above formula, we obtain the lemma.

Let n be a positive integer. Let $D_{1} \subset \Omega_{p}^{n}, D_{2} \subset \Omega_{p}^{r}$ be balls in respective spaces such that $\mathcal{O}_{p}^{r} \subset D_{2}$. Let $f(x, y)=f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right)$ be a holomorphic function on $D_{1} \times D_{2} . f(x, y)$ is given by a convergent power series in $x_{1}-a_{1}, \ldots, x_{n}-a_{n}, y_{1}, \ldots, y_{r}$ for some a_{1}, \ldots, a_{n}, which we write as $f(x, y)=\sum_{a_{I J}}(x-a)^{I} y^{J}$, where $a_{I J}=a_{i_{1} \cdots i_{n} j_{1} \cdots j_{r}} \in$
 $f(x, y)$ implies

$$
\left|a_{I J}(x-a)^{I} y^{J}\right|_{p} \rightarrow 0 \quad \text { for } \quad|I|+|J|=i_{1}+\cdots+i_{n}+j_{1}+\cdots+j_{r} \rightarrow \infty
$$

Let $g(x, y)$ be the power series of the form $\sum b_{I J}(x-a)^{I} y^{J}\left(b_{I J} \in \Omega_{p}, b_{I J}=0\right.$ if some component of J is zero) such that

$$
\frac{\partial}{\partial y_{1}} \cdots \frac{\partial}{\partial y_{r}} g(x, y)=f(x, y) .
$$

Hence

$$
g(x, y)=\sum a_{i_{1} \cdots i_{n} j_{1} \cdots j_{r}}\left(x_{1}-a_{1}\right)^{i_{1}} \cdots\left(x_{n}-a_{n}\right)^{i_{n}} \frac{y_{1}^{j_{1}+1}}{j_{1}+1} \cdots \frac{y_{r}^{j_{r}+1}}{j_{r}+1},
$$

if

$$
f(x, y)=\sum a_{i_{1} \cdots i_{n} j_{1} \cdots j_{r}}\left(x_{1}-a_{1}\right)^{i_{1} \cdots\left(x_{n}-a_{n}\right)^{i_{n}} y_{1}^{j_{1}} \cdots y_{r}^{j_{r}} .}
$$

We assume that this power series $g(x, y)$ converges on $D_{1} \times \mathcal{O}_{p}^{r}$.
Theorem 1. Under the above assumptions,

$$
\int_{\boldsymbol{Z}_{p}^{r}} f(x, y) d \mu_{\xi}(y)=(-1)^{r} \lim _{N \rightarrow \infty} \frac{1}{c_{1} \cdots c_{r} p^{r N}} \sum_{1 \leqq j \leqq r} \sum_{0 \leqq m_{j}<c_{j} p^{N}} \xi_{1}^{m_{1}} \cdots \xi_{r}^{m_{r}} g(x, m),
$$

where $m=\left(m_{1}, \ldots, m_{r}\right)$.
Proof. It suffices to prove this formula for each fixed $x=x_{0} \in D_{1}$. Then

$$
\frac{\partial}{\partial y_{1}} \cdots \frac{\partial}{\partial y_{r}} g\left(x_{0}, y\right)=\left[\frac{\partial}{\partial y_{1}} \cdots \frac{\partial}{\partial y_{r}} g(x, y)\right]_{x=x_{0}}=[f(x, y)]_{x=x_{0}}=f\left(x_{0}, y\right) .
$$

Hence $g\left(x_{0}, y\right)$ is the power series of y which is obtained from $f\left(x_{0}, y\right)$ by integration. Thus the theorem for a holomorphic function $f(x, y)$ in x, y follows from that for the restricted holomorphic functions $f\left(x_{0}, y\right)\left(x_{0} \in D_{1}\right)$ in y. Since $f\left(x_{0}, y\right)$ depends only on y, it suffices to consider the case where $f(x, y)=f(y)=\sum a_{J} y^{J}$ is a power series convergent on D_{2}. Since $\mathcal{O}_{p}^{r} \subset D_{2}$, we have $\left|a_{J}\right|_{p} \rightarrow 0$ when $|J| \rightarrow \infty$. Substituting this power series expression in the left hand side of the equation and using the above estimate for the coefficients, we see it suffices to consider the coefficient of $y_{1}^{b_{1}} \cdots y_{r}^{b_{r}}$. By Lemmas 1 and 2, we have

$$
\int_{Z_{p}^{r}} y_{1}^{b_{1}} \cdots y_{r}^{b_{r}} d \mu_{\xi}(y)=(-1)^{r} \lim _{N \rightarrow \infty} \frac{1}{c_{1} \cdots c_{r} p^{r N}} \sum_{1 \leqq j \leqq r} \sum_{0 \leqq m_{j}<c_{j} p^{N}} \frac{\xi_{1}^{m_{1}} m_{1}^{b_{1}+1}}{b_{1}+1} \cdots \frac{\xi_{r}^{m_{r}} m_{r}^{b_{r}+1}}{b_{r}+1} .
$$

This proves the theorem.
2. p-adic \log multiple gamma functions. For positive integers r and n, let $L_{i}(y)=L_{i}\left(y_{1}, \ldots, y_{r}\right)=\sum_{1 \leqq j \leqq r} a_{i j} y_{j}(1 \leqq i \leqq n)$ be linear forms in r variables with all coefficients $a_{i j} \in \mathfrak{m}$. Let $x_{i}(1 \leqq i \leqq n)$ be elements of Ω_{p} such that $x_{i} \equiv 1(\bmod \mathfrak{m})$. In [9], the p-adic L-function (in n variables) was constructed as the integral

$$
Z_{p}(s)=Z_{p}\left(s_{1}, \ldots, s_{n}\right)=\int_{Z_{p}^{r} 1 \leqq i \leqq n} \prod_{i}\left(x_{i}+L_{i}(y)\right)^{-s_{i}} d \mu_{\xi}(y) .
$$

(In this construction of $Z_{p}(s)$, the elements x_{i} are fixed parameters; later we regard x_{i} as variables.)

Let $\log x=\sum_{k \geqq 1}(-1)^{k-1}(x-1)^{k} / k$ be the p-adic \log function. This sum is convergent for $|x-1|_{p}<1$ (cf., e.g., Iwasawa [10]). Let $\lambda(L, x, y)=\lambda\left(L_{1}, \ldots, L_{n} ; x_{1}, \ldots, x_{n}\right.$; y_{1}, \ldots, y_{r}) be the power series which we obtain by formally integrating

$$
\prod_{1 \leqq i \leqq n} \log \left(x_{i}+L_{i}(y)\right)=\prod_{1 \leqq i \leqq n}\left(\log x_{i}+\log \left(1+L_{i}(y) / x_{i}\right)\right)
$$

with respect to y_{1}, \ldots, y_{r}. We denote this symbolically as follows:

$$
\lambda(L, x, y)=\int_{0}^{y_{r}} d y_{r} \cdots \int_{0}^{y_{1}} \prod_{1 \leqq i \leqq n} \log \left(x_{i}+L_{i}(y)\right) d y_{1} .
$$

After we express $\log \left(1+L_{i}(y) / x_{i}\right)=\sum_{k \geqq 1}(-1)^{k-1}\left(L_{i}(y) x_{i}^{-1}\right)^{k} / k$ as a power series in y_{1}, \ldots, y_{r}, it is easy to see that $\lambda(L, x, y)$ is holomorphic on $(1+\mathfrak{m})^{n} \times \mathcal{O}_{p}^{r}$.

Now we define a function $G_{\xi}(L, x)$ generalizing the p-adic log gamma function of Diamond [5], and call it the p-adic log multiple gamma function.

Definition.

$$
\begin{aligned}
G_{\xi}(L, x) & =G_{\left(\xi_{1}, \ldots, \xi_{r}\right)}\left(L_{1}, \ldots, L_{n} ; x_{1}, \ldots, x_{n}\right) \\
& =(-1)^{r} \lim _{N \rightarrow \infty} \frac{1}{c_{1} \cdots c_{r} p^{r N}} \sum_{1 \leqq j \leqq r} \sum_{0 \leqq m_{j}<c_{j} p^{N}} \xi_{1}^{m_{1}} \cdots \xi_{r}^{m_{r}} \lambda(L, x, m),
\end{aligned}
$$

where $m=\left(m_{1}, \ldots, m_{r}\right)$.
By [5, Theorem 2], $G_{\xi}(L, x)$ is a holomorphic function defined for $x \in(1+\mathfrak{m})^{n}$. By Theorem 1, we have:

Proposition 1.

$$
G_{\xi}(L, x)=\int_{\mathbf{z}_{p}^{r} 1 \leqq i \leqq n} \prod_{i} \log \left(x_{i}+L_{i}(y)\right) d \mu_{\xi}(y)
$$

By the definition of $Z_{p}(s)$ and by Proposition 1, we obtain the following theorem, which is the main result of this paper:

Theorem 2. Let $Z_{p}\left(s_{1}, \ldots, s_{n}\right)$ be the p-adic L-function in n variables constructed in [9], and $G_{\xi}(L, x)$ the p-adic log multiple gamma function constructed above. Then we have

$$
\begin{gathered}
\frac{\partial}{\partial s_{1}} \cdots \frac{\partial}{\partial s_{n}} Z_{p}(0, \ldots, 0)=(-1)^{n} G_{\xi}(L, x), \\
Z_{p}\left(a_{1}, \ldots, a_{n}\right)=\prod_{1 \leqq i \leqq n} \frac{(-1)^{a_{i}-1}}{\left(a_{i}-1\right)!} \cdot \frac{\partial^{a_{1}}}{\partial x_{1}^{a_{1}}} \cdots \frac{\partial^{a_{n}}}{\partial x_{n}^{a_{n}}} G_{\xi}(L, x)
\end{gathered}
$$

for any positive integers a_{1}, \ldots, a_{n}.
Remark. As explained in the introduction, the p-adic L-functions of a totally real algebraic number field can be expressed in terms of the p-adic L-functions of our type, in fact in terms of $Z_{p}(s, \ldots, s)$, cf. [2, Théorèmes 22 and 26]. In particular their values at positive integers can also be expressed in terms of the p-adic log multiple gamma functions. To write down these values explicitly, it suffices to quote a formula in the proof of [2, Théorème 26]. Also note that the derivative at 0 of the Kubota-Leopoldt p-adic L-function was expressed in terms of the p-adic log gamma function (cf. [6, Theorem 8]), but the derivative at 0 of the p-adic L-function of a totally real algebraic number field is related to $d Z_{p}(s, \ldots, s) / d s$ so it cannot be expressed in terms of the p-adic log multiple gamma functions.

Next we prove some properties of the p-adic log multiple gamma functions. Let $L_{i}(y)=\sum_{1 \leqq j \leqq r} a_{i j} y_{j}$ be as before. We fix a suffix j, and put $\delta_{j}=\left(a_{1 j}, \ldots, a_{n j}\right)$. For any r-dimensional vector $y=\left(y_{1}, \ldots, y_{r}\right)$, let $y^{(j)}=\left(y_{1}, \ldots, \hat{y}_{j}, \ldots, y_{r}\right)$ be the $(r-1)$ dimensional vector in which the component y_{j} is omitted. Let $L_{i}^{(j)}\left(y^{(j)}\right)=\sum_{k \neq j} a_{i k} y_{k}$ ($1 \leqq i \leqq n$) be linear forms in $y^{(j)}$. In the above construction of $G_{\xi}(L, x)$, we replace r by $r-1, \xi=\left(\xi_{1}, \ldots, \xi_{r}\right)$ by $\xi^{(j)}=\left(\xi_{1}, \ldots, \hat{\xi}_{j}, \ldots, \xi_{r}\right), L_{i}$ by $L_{i}^{(j)}$, and write the resulting function as $G_{\xi^{(j)}}\left(L^{(j)}, x\right)$. Note that $G_{\xi^{(j)}}\left(L^{(j)}, x\right)$ is defined only for $r \geqq 2$. We omit the suffix j if $r=1$. Then after some calculations, we obtain the following proposition (cf. [11, Proposition 4]).

Proposition 2.

$$
\begin{align*}
& \xi_{j} G_{\xi}\left(L, x+\delta_{j}\right)-G_{\xi}(L, x)=-G_{\xi(j)}\left(L^{(j)}, x\right), \quad \text { if } r \geqq 2, \tag{i}\\
& \xi G_{\xi}(L, x+\delta)-G_{\xi}(L, x)=-\prod_{1 \leqq i \leqq n} \log x_{i}, \quad \text { if } r=1 . \\
& G_{\xi}(L, x)=\sum_{a_{1}, \ldots, a_{r}=0}^{p-1} \xi_{1}^{a_{1}} \cdots \xi_{r}^{a_{r}} G_{\xi p}(L,(x+L(a)) / p),
\end{align*}
$$

where $\xi^{p}=\left(\xi_{1}^{p}, \ldots, \xi_{r}^{p}\right)$ and $(x+L(a)) / p=\left(\left(x_{1}+L_{1}(a)\right) / p, \ldots,\left(x_{n}+L_{n}(a)\right) / p\right)$ with $a=$ $\left(a_{1}, \ldots, a_{r}\right)$.

In some cases, logarithms of complex analytic multiple gamma functions are constructed and they are related to some special value of complex analytic L-functions (cf. [16], Theorem 1).

References

[1] E. W. Barnes, On the theory of multiple gamma function, Trans. Cambridge Philos. Soc. 19 (1904), 374-425.
[2] P. CASSOU-NoGUÈs, Valeurs aux entier négatifs des fonctions zêta et fonctions zêta p-adiques, Invent.
math. 51 (1979), 29-59.
[3] P. Cassou-Noguès, Analogues p-adiques des fonctions Γ-multiples, Astérisque 61 (1979), Soc. Math. France, 43-55.
[4] P. Colmez, Residu en $s=1$ des fonctions zèta p-adiques, Invent. math. 91 (1988), 371-389.
[5] J. Diamond, The p-adic log gamma function and p-adic Euler constants, Trans. Amer. Math. Soc. .233 (1977), 321-337.
[6] J. Diamond, On the values of p-adic L-functions at positive integers, Acta Arith. 35 (1979), 223-237.
[7] B. Ferrero and R. Greenberg, On the behavior of p-adic L-functions at $s=0$, Invent. math. 50 (1978), 91-102.
[8] K. Hatada, On the values at rational integers of the p-adic Dirichlet L-functions, J. Math. Soc. Japan 31 (1979), 7-28.
[9] H. Imai, On the construction of p-adic L-functions, Hokkaido Math. J. 10 (1981), 249-253.
[10] K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Stud. 74, Princeton Univ. Press, 1972.
[11] N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), 455-468.
[12] N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Graduate Texts in Math. 58, Springer, 1977.
[13] S. Lang, Cyclotomic fields I and II, Graduate Texts in Math. 121, Springer, 1990.
[14] Y. Morita, A p-adic analogue of Γ-function, J. Fac. Sci. Univ. Tokyo Sect. IA 22 (1975), 255-266.
[15] Y. Morita, A p-adic integral representation of the p-adic L-function, J. Reine Angew. Math. 302 (1978), 71-95.
[16] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA 24 (1977), 167-199.

Department of Computer and Mathematical Sciences
Graduate School of Information Sciences
Tohoku University
Sendai 980
Japan

[^0]: 1991 Mathematics Subject Classification. Primary 11R23.

