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Abstract. The trace theorem on anisotropic Sobolev spaces is proved. These

function spaces which can be regarded as weighted Sobolev spaces are particularly

important when we discuss the regularity of solutions of the characteristic initial boundary

value problem for linear symmetric hyperbolic systems.

In this note, we give the trace theorem on anisotropic Sobolev spaces which appear

in the study of the initial boundary value problem for linear symmetric hyperbolic

systems with characteristic boundary. The function spaces with which we concern

ourselves will be denoted by H™(Ω), Ω being an open set in Rn lying on one side of its

boundary. Denoting the usual Sobolev space by Hm(Ω), we have the continuous

embedding Hm(Ω) ci+ Hζ(Ω) for ra = 0, 1, . . . . H™(Ω) is anisotropic in the sense that the

tangential derivatives and the normal derivatives are treated in different ways in this

space. In contrast with the case where the boundary is non-characteristic, the solution

of the characteristic initial boundary value problem for symmetric hyperbolic systems

lies in general in Hζ(Ω), not in Hm(Ω). The trace theorem on H™(Ω) is needed especially

when we consider the compatibility condition. This is the motivation for the present

work.

For simplicity, we suppose that Ω is a half-space in Rn. Let

Rn

+ = {{t9y)\t>09yeR"-1}.

Let p G C°°(Λ+) be a monotone increasing function such that ρ(ί) = t in a neighborhood

of the origin and ρ(t) = 1 for any t large enough. By means of this function, we define

the differential operator in the tangential directions

where α = ( α x , . . . , ccn-ι), di = d/dyh \<i<n—\. The differential operator in the normal

direction is dk

t. We fix a nonnegative integer m. Let ueL2(R\) satisfy

IMlί. = Σ \\d™dk

tu\
r + \a\+2k<m
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the derivatives being considered in the distribution sense. The set of such functions is

denoted by H™(R\). The norm in this space is given by || ||m>3|e. It is easily seen that

H"(Rn

+) is a Hubert space for m = 0, 1, . . . . In particular, Hl(Rn

+) = L2(R\). Hl(Rn

+)

coincides with HlΛn(Rn

+) defined by Bardos and Rauch [1]. For m>2, we have

Hζ(Rn

+)^HZn{RnΛ It follows directly from the definition that Hlm{R\)^Hm{R\).

We note that the norm in Hζ(Rn

+) is equivalent to the norm defined by

where d%'a) = p(t)rdr

td
a

y. This observation is useful in the following computations. We

denote by [/?/2] the largest integer not exceeding p/2.

THEOREM 1. Let p>2 be an integer. Then the mapping

C^R\)3u^{d'tu(0,y)\i=0, ...,[/>/2]-l}6C?(J?;-1)x xC^/?;'1)

[p/2] times

extends by continuity to a continuous linear mapping of

ίp/2]-l

This mapping is surjective and there exists a continuous linear right inverse

of

such that

PROOF. Let /c = [/?/2]-l. We note that C^(R\) is dense in H%{R\). (For the

proof of this fact, see [2, Appendix B, Lemma B.I].) We show that

(1) \\d{u(O, y)IIHP-2j-i(n«-i)^C||M||PϊJ|t, 7 = 0, 1 , . . . , K ,

for ueC^}(R\\ where C is a positive constant. Let 0<j<κ. Then

(2) l|d/w(0, y)||flP-2j-i(R»-i)= K ^ y ^ - ^ / w ί O , η)\2a*η.

Here M denotes the partial Fourier transform of u defined by
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We write (η) = yjl + \η|2 and &η = (2π) (n 1]dη. The right hand side of (2) is equal to

- ί <^y>2(p-2^1( Γ dt\dίύ(t,η)\2dt)ctη
Jj|»-i \Jθ /

= " ί <^>2(p-2j-1)f2Re Γ dί+ίύ(t9η)dίύ(t,η)dt)sη
Jj|»-i \ Jo /

: ί ° ί (<l

Jo Jji"-1

Jo J««-t

\ J 0 J Rn ~ *

Σ

= -2Re

This proves the first assertion of Theorem 1. Next we define the mapping 01. Let
hjeC^(Rn-1),j=0,1,..., K. We set

βo(y)=ho(y)

We define gfj successively by

(3) Un)=Hn)-Σ ̂ y^n), i^/<κ
i = 0

where

(4) wi(t,η) = e-^>2^-gi(ri)

Let φ e C(

co)(/?+) be a nonnegative decreasing function. Suppose that φ(t)= 1 in a neigh-
borhood of the origin. We fix φ once and for all. Let ueL\R\) be a function such that

ύ(t9η) =

We define the mapping 0ί by (Λo,..., Λ^^-Oi-^w. Then we have dJ

tu(0,y) =
0<j<κ. This is seen from
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/«(O,f|)= Σ d{Wi(O,η)= £d/«(O
i = 0 1 = 0 i = 0

for 1 <j<κ. When7 = 0, we have w(0,y) = go(y)=:ho(y) by definition.

We prove in turn the continuity of ̂  as a mapping of J]1*™'1

r+kd*u\\2

Hl(Rn

+). We note that

ydu\\= Σ \\p(t)rdr

t

+kd*yu\\
r+\a\ + 2k<p ' (r + k) + \<x\+k<p

I K * = Σ \\p(tγd'td«dk

tu\\2=
r+\a\ + 2k<p ' (r-

= Σ \\p{tΓkds

td*u\\2.
s+\<x\+k<p

s>k

Each term on the right hand side of the last equality is at most

\ts \ηy^ds

tu(t,η)\2

JO JRn~ι

This in turn is not greater than a constant multiple of

K s r foo f

Σ Σ Σ
j = 0 r = 0 ? = (r-j)vθ Jo J«n-i

x φ ?J('ί) dtdη

<CΣΣ Σ Γ ί
j=0 r = 0 ί = (r-j)vθ Jo Jj|"-i

To compute each term on the right hand side of this inequality, we change the variable

of integration from / to z by setting z = t(η}2. Then

(5) Γ ί \ts-k + q - r + j ( η ) l c ί l + 2<1e-t<r'>2gj(η)\2ώdη
Jo Jir - 1

JO J R» ~ 1
f

O J R»

Since s>£ and q>r~j, we have

Γ 0 0

Jo

Hence the right hand side of (5) does not exceed
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(6)

We notice that

\
jRn-ί

(7) gj(η)= Σ (J\r\y{i-l%(n), 7 = 0, ...,κ.
ι = o\lj

This equality will be proved later as a lemma. The integral (6) is estimated by using (7)
as follows.

Σ ί
= O J R n - l

If | α | — 2s + 2/c + 2r — 21 —l>0, then each term on the right hand side is estimated by

||AI||ffiβι-2»+2ik+2r-2/-i(j|B-i). Otherwise the corresponding term is bounded by ||

Combining these estimates, we obtain finally

\\p{trkds

td*u\\2<c Σ Σ Σ Σ IIA^(M + "- 2 —DVO^-,)

K

L, l|Λi/||fll««l+2fc-2/-l(jr»-1),

which implies that

M i ; U ^ c Σ \\ρ(ty~kds

td"yu\\2<c Σ Σ iiAiiiii.i^-,/-.^.-!)

Since C ^ / f - ^ x x q ^ / T " 1 ) is dense in ifp-1(/?n"1)x x / p
the mapping (Ao? •? A[p/2]_i)ι-> w extends by continuity to a mapping of
J-|[P/2]-I //P-2j-i(/?π-i)^^p(/?n+) τ h i s c o m p i e t e s t h e proof of Theorem 1.

LEMMA. Forj=09...,κ,wehave

PROOF. First we observe that by (4)
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t-

= Σ (j)1
\qJ (ι

Σ ()1^
q=o\qJ (ι-q)\

for 0<i<j— 1, l < y < κ . Substitution of this into (3) and division of both sides by

(-(η>2)J yield

Jγ(J

forj=l,...,κ. Let Xj=gj(η)Kη}2i and let y J .=^.( f / )/(-< f / >
2 y,y=0,. . . , K. Then we

have by (9)

This implies that

From this follows (8) at once. We end the proof of the Lemma.

THEOREM 2. Let p and q be integers with [p/2] > \_qβ~\ > 1. Then the mapping

whose existence is guaranteed by Theorem 1 can be chosen so that the mapping

ho,...,hiq/2]-u0,...,0)

[p/2)-[q/2]times

extends by continuity to a continuous linear mapping of

fa/2]-l

j=o

PROOF. Let/? and q be integers such that [p/2] > [q/2] > 1. Let hje Hp~2j~ ι(Rn~*),

7 = 0, 1, . . . , [q/2] -1. We set

r _{ hj, y=0, 1, . . . ,
i = ίo, j

Then the mapping

(h0,..., h[q/2] -1) i—• (h0,...,

defines a continuous linear mapping ZΓ of
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[q/2]-ί lp/2]-l

7 = 0 7=0

Let Θί be a continuous linear mapping of

IP/21-1

Π H*-2>-\Rn

y-
γ)^Hl{R\)

7 = 0

described in the proof of Theorem 1. It is obvious that 0ίβΓ is a continuous linear
mapping of

[4/2]-1

Π
7 = 0

Now let

Then we have

/2]-1

Π Hp-2j-\Rn

y-
1)^Hp

<(Rn

+).

[4/2]-1 _

<C 2 J ZL ll^/||ffl«l+2*-2/-l(j|ii-l) .

The computation can be carried through in much the same way as in the proof of
Theorem 1. It follows from (10) that

[4/2]-1

7 = 0

This implies that 0ίZΓ extends by continuity to a continuous linear mapping of

7 = 0

The proof of Theorem 2 is thus complete.

Now we consider anisotropic Sobolev spaces defined on a general domain. Let Γ
be a smooth compact hypersurface of dimension n—\ in Rn which does not interesct
itself. Let Ω be the interior or the exterior of Γ. A vector field A on Ω is said to belong
to $™(Ω\ Cn) if each component of A is a bounded C00-function on Ω and the derivatives
of any order are also bounded on Ω. We say that a vector field A is tangential if
(A(x), V(JC)> = 0 for all xeΓ. Here v = (v l 5..., vj denotes the unit outward normal to
Γ. The function space Hζ(Ω), m>\, is defined as the set of functions satisfying the
following properties:
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(1) UEL2(Ω).

(2) Let Al9..., ΛjG^iΩ: Cn) be tangential vector fields and let A\9..., A'ke

J ^ Ω : Cn) be any vector fields. Then A1 Ά 3A\ A'kueL2{Ω\ ifj+2k<m.

Let us define a norm on H™(Ω) by making use of the partition of unity. We choose a

finite open covering {0, }7=i of Γ. Then, for each y, there exists a diffeomorphism τ ;

from OjΠΩ to a semi-ball {(ί,)>)|/>0, /2 + |>>| 2 <α 2 } such that τ / Γ n f l ^ c z ^ O } and

that the normal vector field dx corresponds to —dt there. We see that any vector field

in Θj which is tangential to Γ can be represented in the semi-ball as a linear combination

of tdt9dl9...9dn_ί with C00-coefficients. Let Θ0 = {xeΩ\dist(x,Γ)>δ} for a small

positive number δ. Then, for each j (0<j<N), there exists a function χ7- of class C 0 0

with support in Θj such that Σ7=o#; = 1 on Ω. A function M on Ω belongs to H™(Ω) if

wθ) = (χ jU) o τ ~ i e//^(/?n

+) for 1 <y<JV and if χow6Hm{Rn). The space /f^(β) is endowed

with the norm

l l z j « l l i . * = Σ H 5 ί ( n )
r+\a\ + 2k<m

where || | |m denotes the usual Sobolev norm, α = ( α 1 ? . . . , απ) and

The norms arising from different choices of Θj9 τj9 Xj are equivalent norms.

The trace theorem on H™(Ω) can be derived from Theorem 1 by using a partition

of unity and local coordinate changes. Theorem 2 also has its counterpart in H™(Ω).

REMARK 1. We recall the definition of the norm given earlier which is equivalent

to the original norm of H™(Ω). Then it turns out that H™(Ω) can be regarded as a

weighted Sobolev space. In fact, we have

IMIm,*= Σ ί \ds,d*u{t,y)\2σsβ)dtdy
s+\a\<m J Q

with

(2s + \a\-m)+ <l<s

when Ω = R\. Notice that the weight depends explicitly on the multi-index (s, α). We

refer the reader to Triebel [4] for the general weighted Sobolev spaces.

REMARK 2. We have no trace theorem on H\{Ω). There is a function that belongs

to Hl(Ω) and has no trace. We mention here a weighted Sobolev space which is similar

to H\{Ω) but is used for different problems. Let W^(Ω) denote the set of functions such

that ueHm-\Ω) and pm~kue Hm(Ω), where 0<k<m. Then Hl(Ω)s W\(Ω). The function
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spaces W£(Ω) are suitable for the study of the degenerate elliptic operators. The reader
is referred to Shimakura [3].
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