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OPERATING FUNCTIONS ON FOURIER MULTIPLIERS
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Abstract. We consider the algebra of translation invariant operators of Lp( T) to

Lq(T). If 1 <p<q< oo, the spectrum of such an operator coincides with the closure of

the range of the corresponding multiplier. Furthermore, if p<2<q, the operating

functions on the algebra of multipliers are characterized.

1. Introduction. Let G be a compact abelian group and Γ be the dual to G. Let
1 <p, q< oo. A complex valued function a on Γ is called an (Lp, //(-multiplier if the
operator T= Ta defined by the Fourier transform

yeΓ

for trigonometric polynomials f(x) = Σf(y)y(x) has a bounded extension of U to Lq.
The multiplier a is identified with an (Lp, Lq) bounded convolution operator associated
with a pseudomeasure T such that f=a. Such an operator is also denoted by T. The
set of (Lp, L^-multipliers is denoted by M(p, q).

By duality we have M(p,q) = M(q',pf), where l = l//?+l//?' and \ = l/q+l/q'. If
\<q<p<2, then M(p, q) a M(s, s) for allp<s<p' (see Doss [2]). Therefore we restrict
our attention to the case 1 <p<q<cc.

M(p, q) is a commutative Banach algebra with pointwise multiplication. It has unit
if p = q and does not if p<q and G is infinite.

It is not difficult to see that M(2, 2) = L°°(Γ) and the set M(l,p) is identified with
LP(G) if 1 <p< oo and with M{G), the set of Borel measures, if p= 1. In the other cases
no effective characterization of M(p, q) seems to be known. However, some sufficient
conditions for a sequence on Γ to belong to M(/?, q), and some properties and examples
of (Lp, Lq)-multipliers are studied by many authors.

A function Φ on the domain Ω of the complex plane is said to operate on M(p, q)
if Φ(a)eM(p,q) for asM(p,q) such that the range of a is contained in Ω. When
p = q = 1, such a function is characterized by Kahane-Rudin [6], that is, Φ is an operating
function if and only if it has an entire analytic extension and their result is extended
by Igari [5] to the case pφ2 (cf. also Sarnak [9], Sato [10]).
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There are distinctive properties on M(p, q) between the cases p = q and pφq. A

characterization of the operating functions for the case p = 1 and 2<q<co is given by

Rudin [8] and Rider [7]. By their results the only operating functions on [—1, 1] of

Lq to Lq are of the form at +111 2 ( 1 " 1/q)Φ0(t), where Φ o(0 *s a n v function bounded near

the origin.

In this paper we shall give some sufficient conditions for a function to operate on

(Lp, //^-multipliers when pφq. Furthermore we shall show in §3 that our condition is

also necessary if \<p<2<q<ao. For the results and examples of multipliers related

to our paper we refer to Bonami [1], Hare [3], [4], Zygmund [11; Chap. XII] and

their references.

2. Spectra of Fourier multipliers in M(/>, q). In this section we shall show some

algebraic properties of multipliers for general orthogonal expansion. Let Lp, 1 <p< oo,

be infinite dimensional Lebesgue spaces on a finite measure space. Let {φn(x);n =

0, ± 1, ± 2 , . . . } be a complete orthonormal system in L2 such that \\φn\\ao<co. For

a function fe L1, let/π be the n-th Fourier coefficient with respect to {φn}.

For a sequence a = {a(n)} the Fourier multiplier operator T=Ta with respect to

{φn} is defined by

for any finite sum/= £/„(/>„. Let 1 <p<q<oo. M{p, q) stands for the set of all operators

T which have the bounded extension from LP to Lq.

C will denote a positive constant which will be different in each occurence.

PROPOSITION 1. M(p, q) is a commutative Banach algebra with operator norm. If

1 <p<q<oo, then it has no unit.

PROOF. It suffices to show the last part for q< oo.

If || / \\q < CII / IIp for any finite sum/= Σ/ Π 0 Π , then we have, for any non-negative

function g,

gθ Hi = II 9θlq \\q

q<Cq || gθ/q \\q

p<Cq\\ gθplq \\9jp<cqil+iqlp) + '"+{qlp)n'l) \\ gθiplq)n \\ψp)n

θ = (q/p)n. Then

for every n and g > 0. Hence || g || ̂  < CpqKq~p) \\g\\x, which is absurd, since L1 is assumed

to be infinite dimensional.

We can identify the operator Ta with the multiplier a. The multiplier associated

with T is denoted by t and we use the notation T for t if there is no confusion.

DEFINITION 1. A function Φ(z) in a domain Ω of the complex plane is said to

operate on M(p, q), if Φ(T)eM(p, q) for every TeM(p, q) such that the range of f is

contained in Ω.
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THEOREM 1. Let l</?<oo and Φo be a function in [—1, 1]. Assume that Φo is
bounded near the origin if p= 1 or q=oo and uniformly bounded in [—1, 1] if p> 1.

(i) Suppose \<p<q<2 or 2<p<q<oo. Let βo = (l/q-\/2)/(\/p-l/q) or
(l/2—l/p)/(l/p—\/q) respectively andn0 be the smallest integer such that no>βo. Then
for any constants α1? α2, . . ., αΠo

operates on M(p, q).
(ii) Suppose \<p<2<q<oo. Let β^mmiil/2- \/q)/(l/p-1/2), (1//7-1/2)/

(1/2— l/q)}. Then for any constant α

operates on M(p, q).

In §3, Theorem 3 we shall show that the converse of (ii) holds for the trigonometric
expansion case.

LEMMA 1. Let \<p<q<2. Suppose that TθM(p, q) and the corresponding
multiplier to T is real valued. Put

V<in=Vp-n(\lp-V<i) and Vv

Let n0 be the integer defined in Theorem 1, (i). Then TneM(sn, 2) and

PROOF OF LEMMA 1. We have that Te M(qn, qn + 1)forn = 0,...,n0.ln fact, since
TeM(p,q) and f is real valued, || Γ | | M ( P i β ) = || T\\M{q.%pΎ Thus TeM(u9υ) and
II T\\M(U,V)<\\ T\\MiPtq) by interpolation, where l/u = (l-θ)lp + θlq'9 \lv = (\-θ)/q + θ/pf

and 0 < θ < 1. Choose θ so that θ = n(\/p — l/q)/(l/p + l/# — 1). Then we get our assertion.
Now we have that TneM{q0,q1)M{quq2)- M(qn_uqn) and || Tn \\M{p,qn)<

|| 7 Ί | J , ( M ) for n= 1,..., n0. Remark that qno+ι>2>qno by definition. Since || T" \\M{p,qn) =
II Tn Wnnq'n.p*) a n d an<^ we have TneM(sn, 2) where l/sn = (l-τ)/p + τ/q'n and 0 < τ < l
is chosen so that \/2 = (l—τ)/qn + τ/p', which proves our lemma.

LEMMA 2. Let 1 <p<2<q<p'. Let a be the multiplier operator defined by a
bounded sequence {a(ή}} and TeM(p, q) with real valued multiplier. Then

and

(ϋ) I I ^ 2 ^ I I M ( P , P ' ) < N ( )IIOOII^IIM(P,,).

PROOF OF LEMMA 2. For feLp we have
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Since || Γ | | M ( p > 2 ) < || 7 Ί | M ( M ) , we get (i).

Remark that || T2a \\Mip,pΊ< \\ Ta | | M ( P t 2 ) || T\\M(2tPΊ and || T\\M(2tPΊ = || T\\MiPt2).

Then (ii) follows from (i).

PROOF OF THEOREM 1. By a simple consideration we can assume that Φo is

uniformly bounded.

(i) Suppose that \<p<q<2 and no>2. Let T be a multiplier in M(p,q) with

range(Γ) cz [—1, 1]. To prove (i) we apply Lemmas 1 and 2. We may assume that

α i = αMo = 0. Thus Φ(t) = \t\βo + ίΦ0(t). F o r 0 < 9 l z < l define Sz by

Sz(n) = sign f(n) | f(n) \(n°-1)z+1Φ0(f(n)).

Then with notations given in Lemma 1

I I s i y \ \ M ( S u 2 ) < \ \ ΦOHOC II ̂ I I M ( S 1 , 2 ) < I I Φ 0 Ί L II τ\\MiPtq)

and

i| <r \\ d> II II Tn° II <i II ώ II II T i l " 0

IIM(s n o , 2) ̂ 1 1 ψ0 II oo M IIM(snQ, 2 ) ^ II ψ0 II oo II i \\M(p,q) '

Thus by Stein's interpolation theorem

II Vθ II <? II (b II II T i l i + 0 ( w ( > - 1 )

II ύ \\M(q,2)^ II ψ0 II GO II i II M ( p , ί )

where θ is chosen so that \/q = (\—θ)ls1 + θ/sno which is equivalent to say that

=j8o. τ h u s

and

II C β + 1 II ^ II C β + 1 II <- II T i l II Cβ II < II Φ II II T | | ^ o
II ̂  \\M(p,q)^ II ̂  H M ( P , 2 ) ^ II i II M(p,g) II ̂  \\ M(q,2)^ W ψ0 \\ oo \\ 2 \\ M(p,q) ->

which proves (i) for n0 > 2.

When «0 = 1, define Rz by

Rz(n) = sign f(/ι) I f(n) \zΦ0(f(n)).

Then

II^ΊIM ( 2,2)<IIΦOIIOO and l l ^ + ' Ί I ^ . ^ ^ I I Φ o l L

Thus

where l/q = (l—θ)/2 + θ/s1, that is, θ = β0. The rest of the proof is similar to the case

n0 > 2. Thus (i) is proved.

(ii) Suppose TeM(p,q) and range ( f ) c [ - 1 , 1]. Since || Γ | | M ( | F f ί ) = || Γ | | M ( ^ f ^ ,

we consider the case q<p'. We assume Φ(t) = \t\βί + ίΦ0(z).
Applying Lemma 2 with an = Rz(n) we get
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IIΛIlU(,.2)^IIΦolLIIΓ|U(,,,), «2=o

and

IIΛ ' i iM^^i iΦol lcol lΓi i i^ , « z = i .

By interpolation again we have

II TDθ II ^ li rh II II T" II 0 + 1

II 1 R \\M(p,q)^\\ Φ0 II oo M \\M(p,q) ,

where llq = (\-θ)/2 + θ/p', i.e., 0 = )?!. This proves that Φ operates on M(/?, #).

REMARK 1. Lemmas 1 and 2 are valid for complex valued multipliers under some

conditions, for example, that the orthogonal system {φn} consists of real valued func-

tions or the characters of a compact abelian group. Under such a condition the

domain [—1, 1] of Φ o in Theorem 1 is replaced by a domain Ω containing the origin of

the complex plane.

THEOREM 2. Let X be a set and B be a Banach algebra of bounded functions on X

with pointwise multiplication.

Let N be a non-negative integer. Suppose that analytic functions with zero of order

N at 0 operate in B, that is, iffεB and Φ(z) = zNΦ0(z) where Φo is an analytic function

in a domain containing the range off then Φ(f) e B. Then the spectrum off in B coincides

with the closure of the range off

PROOF. It suffices to show that sp (/, B) <= range(/).

Suppose that Λ,£range(/) and λesp(fB). We may assume N>1. Choose a

homomorphism ξ such that ξ(f) = λ. Put

Then Φ0(z) is analytic on range(/). Thus Φ(f) = geB. Then fN = λN(f-λ)Ng. Hence

λN = λN(ξ(f)-λ)Nξ(g) = O. Thus Λ = 0. By assumption, Ψ(z) = zN(l/zN + 1) operates o n /

Thus Ψ(f)f= 1 G B. This is impossible if B has no unit. If B has unit, this contradicts

that 0 # £ ( / ) = A.

3. Operating functions on M(p, q). In this section we shall restrict our argument

to the most typical trigonometric expansion case, that is, G = [ - π , π) and φn(x) = eιnx.

The converse of Theorem 3, (ii) is valid.

THEOREM 3. Let \<p<2<q<co and Φ be a function on [ - 1 , 1]. If Φ operates

on M(p, q), then Φ is of the form that Φ(t) = at + \t\βi + 1Φ0(t), where oc is any complex

number and β1 is the number given in Theorem 1, and Φo is a function in [— 1, 1] bounded

near the origin if p= 1 or q=co and uniformly bounded in [— 1, 1] if p>\.

PROOF. AS mentioned in the proof of Lemma 2, we may assume that \/2—\/q<
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l/p—l/2. Our proof is divided into several steps.
First step. If Φ operates on M(p, q), then there exist two constants C and η>0

such that if || 7 Ί | M ( M ) < ι j , then \\ Φ{T) \\M{p,q)<C.
In fact, if this does not hold, for any positive integer m there is a multiplier Tm such

that

l | Γ J | M ( J , t β ) < — and | |Φ(ΓJ| | M ( J , i β ) >ιιi .
m

By a simple consideration we can assume that Tm are polynomials. Let Nm be the
degree of Tm. Put Γ(x) = Σ^= 1e

ί Λ w XΓm(x), where {nm} is chosen so that nm + 3Nm<
nm+ι-3Nm+ι. Then Teλf(p,q). Thus Φ(T)eM(p,q). Let Hm(x) = ein~xVNJx)9

where VN is the de la Vallee Poussin kernel of degree N. Then (Φ(T)Hm)(x) =
ein-x(Φ(Tm))(x). Thus

J \\MiP,q)< II Hm \\Mip,q) || Φ(T) \ \ M ( p , q ) < 3 || Φ(T) | |M ( Λ

which is absurd.

We remark that if Φ operates on M(p, q), the odd part Φ{t) — Φ{ — t) and the even
part Φ(t)-\-Φ( — t) have a similar property. Therefore we consider two cases separately.

Second step. IfΦ is even, the condition is neccessary for Φ to operate on M(p, q).
The following lemma is due to Rudin-Shapiro when r = 2 (cf. [8]) and to Rider

[7]forr>2.

LEMMA A. For a prime number r there is a sequence {δir)(ή)} with δir)(n) = r— 1 or

— 1 such that

N

Σ δ{r)(n)ein>

n=ί

(0<x<2π;N= 1,2,...).

Let

N

Δ{N\*)= Σ δ{r\n)einx.

LEMMA 3. For a prime number r we have that

(1) II Δ$ | I M ( ^ ) < ( > - 1)Γ(1

PROOF OF LEMMA 3. We apply the Riesz-Thorin interpolation theorem to the
inequalities U$U(2,2)= \\^ | L < r - 1 and \\A$ | | M ( l f β ) = II Δ$ \\s< \\Δ^\\^ <
( r- l ) r ( l+7r)7ΛΓfor any s>\. Define 0 < θ < l by l/p = θ/l +(1 -0)/2 and 2<
^<oo by l/q = θ/s + (l-θ)/2. Then 0/2= 1//?-1/2. Thus we get the lemma.

Since j^)j/y-(1/P-i/2) j s unifOrmly bounded in M(/7, ̂ ), by the first step there is a
constant C>0 such that



OPERATING FUNCTIONS ON FOURIER MULTIPLIERS 363

Φ

Since Φ is even,

Thus

CNUP-U2

1

Φ

CN1/p-1/2

1

CN1/P~1/2

M(p,q)

<c

N1~1/q<CN1~1/p .

If Φ(7) is replaced by Φ(ηt), \/2<η<\, the last inequality holds uniformly in η. Thus

I Φ{t)t~x I < C\t \βι near the origin .

Assume that p> 1 and Φ is not bounded. Then there exists a sequence ίne[— 1, 1]

such that I Φ(/π)|->oo. Let m(k) = tn iΐk = 2n and = 0 otherwise. Then {m(k)} e M{p, q).

Thus Φ(m('))eM(p, q) <= M(2, 2), which is absurd. Thus Φo is bounded in [— 1, 1].

REMARK. If Φ is odd, then in the same way we can prove that

which will be used later.

In fact, /ΛΓ= II Δ™ | | 2 <( | | Δ™ L || Δ™ h)112. Thus

Now suppose that Φ is odd. Then

1N

f Φ <c

Thus

- i
1

CΛri/P-i/2

<5<2

Σ*(-
n=l \

\n)\einx

1

<c

-1/2 J°
N
\^

n = l

<CΛ

Therefore we get | Φ(l/CΛ^ / p ~ 1 / 2 ) |<CiV 1 / 2 ~ 1 / p , which proves our assertion.

Thus in the following we assume βi>0.

Third step. In the following Φ is assumed to be odd. Then we have that

(2) f o r
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First we remark that

(3) Φ\^r

Since

N

Thus by (3)

δ(3\n)ei

, say.

M(p,q) < C by the first step and since | Φ(ή \ < C \ 11,

1

M(p,q)
\\M(p,q)^

N

Y ψ N=l9 2 , . . . .
M(p,q)

Now we apply the multiplier £ " = 1 Ψί(l/CN1/p-1/2)e-1/2)einx inx. Then

N

y
N

y ψ

Thus

1
ΛCNl/p-l/2

<c

N1-llq<CN1~llp .

Therefore we get our assertion as in the third step.

(2) shows that {2nΦ(t/2n); n= 1, 2,...} is a Cauchy sequence for every te [ - 1 , 1].

Let Φ 1 (0 = limπ^oo2
πΦ(//2") and put

Fourth step. We have

In fact,

lim2πΦ ( — - Φ ( 0 <Σ
2n~

To prove that Φ1(i) = ait we apply the technique in [7].

Fifth step. Φ t w continuous in [—1, 1].

It suffices to prove that Φχ{t) is continuous at t= 1 replacing Φ x (0 by

be a sequence such that 11 -tm\<2~m. Put 7Vm = [2m / ( 1 / p~ 1 / 2 )] and let

. Let
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Then

δi2\n)ein

n=l

+ C2 -2m

M(p,q) M(p,q)

To the first term on the right hand side apply (1) and note that the second term is
bounded since l/2—l/q<l/p—l/2. Then there exists an integer m0 such that

Since Φx is odd,

Applying successively the relation 2Φ1(//2) = Φ1(7),

>C\Φ1(l)-Φ1(tJ\2-mNm

/p-1/q-C2-mNm

/p-1/2 .

Since 2-m7V^-1 / 2^l and 2"m7ViI

/ί7-1/^oo, we have Φ^O-^Φiίl) as m->oo, which
implies that Φχ(0 is continuous at t= 1.

Sixth step. Φ t(0 = αί/or ί e [ - 1 , 1].
Fix an arbitrary 0 < / < l and a prime number r. Since Φ1(0 = 2Φ1(//2), we have

(4)

2m(r-1)/ 2mr r—

By Lemma 3 || β-"(r- l)" 1 /l ( i J i i |U ( M ) ^Cβ- M (r- l)- 1 iVi / l ' - 1 / 2 . We choose
Nm = [2m/il/p~1/2)] as before. Then the last term is bounded by 2mo uniformly in m, where
m0 is a positive integer. Thus

A(r)

Thus

By (4) we get

1
C2mo>-

2mr

φ ( *

l)φ( ' )

, Nm 1

M(

xrl/p-l/q
i y m

2"miVi/ p-1 / 2«l and 2" r

< C 2 m o .

C

2̂ V
1

Λr-l

o, we get

(5)
r - 1
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(5) holds for all 0 < t < 1 and prime numbers r. Thus for all prime numbers q, r

such that q>r and for n= 1, 2 , . . . , we have

Remark that the set

r and q are prime and n = 1 , 2 , . . .

is dense in (0, 1) and that Φx is continuous. Then we have Φί(ή = tΦί(l) for

This proves the sixth step.

The proof of Theorem 2 is complete.

REMARK 2. Under the conditions in Theorem 1, (i), for trigonometric expansion

case, Φ is an operating function of M(p, q) to M(/?, 2) if and only if Φ has the form

I t\βo + γΦo(i). In fact, the if part is proved by the last inequalities in the proof of

Theorem 1, (i). The only if part is shown by the same way to the proof of Theorem

3 applying the Λf-th Dirichlet kernel in place of Δffl.

REMARK 3. Theorem 3 will hold for infinite compact abelian groups G. If Γ, the

dual to G, has an element of arbitrarily large order, our proof can be applied by

approximation. If Γ is of bounded order, it will be needed to modify the proof to get

an analogue of Lemma A and the other part of the proof will be almost similar.
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