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Abstract. We consider the bundle of all oriented orthonormal frames over an
orientable Riemannian manifold. This bundle has a natural Riemannian metric which
is defined by the Riemannian connection of the base manifold. The purpose of the
present paper is to clarify the structure of the Lie algebra of the group of all isometries
of the bundle with the Riemannian metric.

1. Introduction. Let (M, {, )) be a connected orientable Riemannian manifold
of dimension n>2 and SO(M) the bundle of all oriented orthonormal frames over M.
SO(M) has a Riemannian metric < , ) defined naturally as follows:

X, Y)=<0(X), 6(Y)) +{(X), &(Y))
="(0(X))0(Y) + trace((w(X))(Y)) ,

where w and 6 are the Riemannian connection form and the canonical form on SO(M),
respectively.

In [5], we gave a decomposition of a Killing vector field on (SO(M), { , >) which
is fiber preserving (see Proposition A of § 2) and we proved that M has constant curvature
1/2,if (SO(M), { , »)admits a horizontal Killing vector field which is not fiber preserving
(see Proposition B of §2). In the present paper, we give a decomposition of an arbitrary
Killing vector field on (SO(M), < , ») under the assumption that M is complete. The
result is stated in the following theorem.

Let p be the projection SO(M) — M. The canonical form 6 is an R"-valued 1-form
defined by 0,(X)=u"'0p(X), where u is regarded as a linear isometry of (R", { , )
onto the tangent space at p(u). Let o(n) be the Lie algebra of the special orthogonal
group SO(n). For each 4 eo(n), we define a vector field 4* on SO(M) by w(4*)=A4
and 0(4*)=0. A* is called the fundamental vector field corresponding to 4. For each
£eR", we define a vector field B(¢) on SO(M) by w(B(£))=0 and 8(B(¢))=¢&. B(E) is
called the standard horizontal vector field corresponding to £. Let ¢ be a 2-form on M
and F the tensor field of type (1, 1) on M defined by (FY, Z)=¢(Y, Z). We define an
o(n)-valued function F* on SO(M) and a vector field ¢ or F on SO(M) by F*(u)=
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u~toF,, ou and o(F¥)=F* O(FX)=0 (see [5]). ¢~ and F" are called the natural lift
of ¢ and F, respectively. We note that ¢~ or FL is an infinitesimal gauge transformation
of the bundle SO(M). For a vector field Y on M, we define a vector field Y# on SO(M)
by o(Y*)=0, p(Y*)=Y. YH is called the horizontal lift of Y. Let ¥ be a Killing vector
field on M and DY the covariant differential of Y. We denote the vector field Y# + (DY)~
by Y*. YLliscalled the natural lift of Y. It is easy to see that the set of all parallel 2-forms on
M is a Lie algebra, which is denoted by (A*M),. It is a subalgebra of the algebra
/\*M of all 2-forms on M. We denote by i(M) and i{(SO(M)) the Lie algebras of all
Killing vector fields on M and SO(M), respectively.

THEOREM. (i) For every Yei(M), ¢ (A\*M), and Aeo(n), Y, ¢* and A* are
all Killing vector fields.

(it) If B(¢) is a Killing vector field for some non-zero &€ R", then M has constant
curvature 1/2. Conversely, if M has constant curvature 1/2, then B(£) is a Killing vector
field for any £ R".

(iti) Let X be an arbitrary Killing vector field on SO(M). If M is complete, then

there exist unique Yei(M), p€(N\>*M)o, A€o(n) and Ee R" such that X= Y + L+
A*+ B(&), except when dimM =2, 3, 4 or 8.

(iv) For all Y,Zei(M), ¢, ye(\*M), and A, Ceo(n), we have [DY, ¢p]e
(A*M), and

[4* C*1=[4,CT*, ["y"1=—[o,¥1", [Y"2Z"]=[Y,Z]",
(Y% ¢*1=—-[DY, 41", [Y" 4*]=0, [¢" A*]=0.
Especially if M has constant curvature 1/2, then (\>M),={0} and
[B(), B(m]=—(1/2)(& A m*,
[4*, B(E)]=B(AE), [Y5 B()]=0
for all £, ne R", when dim M >2.

COROLLARY. If M is compact and does not have constant curvature 1/2, then the
Lie algebra i(SO(M)) is.isomorphic to the direct sum

(M) +0(n)+(A*M), ,
except when n=dim M =2, 3,4 or 8.

ReMARK. For our proof of (iii) of the above theorem, we need the following
assumptions (*) and (*x):

(*) M is complete.

(*x) n=dimM+#2,3,4 or 8.
The condition (*) is necessary to prove the following Lemmas 7 and 11, while the
condition (%) is necessary to prove the following Proposition B (see [5]). More pre-
cisely, to prove Proposition B, we need the following conditions (a) and (b) on the Lie
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algebra o(n):

(a) o(n) is simple,

(b) the quotient group Aut(o(rn))/Int(o(x)) is isomorphic to a cyclic group of order
1or2,
where Aut(o(n)) and Int(o(n)) are the group of all automorphisms and the group of all
inner automorphisms of the Lie algebra o(n), respectively. However, if n=2 or 4, then
o(n) is not simple and, if =8, then Aut(o(n))/Int(o(n)) does not satisfy the condition
(b) (see [S, p. 110]). When n=3, we cannot prove Lemma 11 of [5] which is necessary
to prove Proposition B. We do not know whether this theorem is true or not when one
of the conditions (*) and (xx) is not satisfied.

2. Preliminaries. Let X be a vector field on SO(M). X is said to be vertical (resp.
horizontal).if (X) =0 (resp. w(X)=0). X is decomposed uniquely as X =X + XV, with
X* horizontal and XV vertical. X is said to be fiber preserving if [ X, X] is vertical for
any vertical vector field X”’. X is determined by the functions x(¢) and x(4) on SO(M)
defined by

X&) =X, BE))=<B(X), &y,  EeR",
X(A)=(X, A*y=(o(X), 4>,  Aeo(n).

X is horizontal if and only if x(4)=0 for any A € o(n), while X is vertical if and only
if x(¢)=0 for any £€ R". We denote by D the covariant differentiation with respect to
the Riemannian connection of SO(M) as well as M. We note that the right action of
SO(n) on SO(M) is isometric, which is easily seen by the definition of ( , > on SO(M)
and by the fact that R,w=ad(a™')w and R,0=a" !0 for any ae SO(n). Let Q be the
curvature form of the Riemannian connection of M. It is well-known that R,Q=
ad(a—YH)Q for any ae SO(n).
The following Lemmas 1, 2 and 3 are proved in [5].

LEMMA 1. Let A, Ce o(n) and &, n, € R". Then we have
2D, C*=[A*, C*]=[4,C]*,  2DyeB()=[B(). Bn)].
6(B&), B =0, w([B(E), Bin)])=—22(B(), B(r)) ,
[4* BEO1=B(AE),  o(Dyyd*)=o(D BE)=0,
{DpgA*, B(n)) =D 4B(&), B(n)) — B(AS), B(n)) =<{B(), B(n)), 4 .

LEMMA 2. Let X be an arbitrary vector field on SO(M). Then we have

K[4*, X1, B(£)) =A*(x(£)) — x(AL) ,

K[B(), X1, A*) =B(E)(x(4)) — 2{Q(B(%), X), 4> ,
[4*, X], C*)=A4*(x(C))—x([4, C]),
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K[B(&), X7, B(m)> = B(E)(x(n)) — <(X)E, 1)
for all £, neR" and A, Ceo(n).

LEMMA 3. Let X be a vector field on SO(M). Then X is a Killing vector field if and
only if

A*(x(C))+C*(x(4)=0,  B(E)(x(m)+ Bm)(x(£))=0,
A*(x(E)) —x(AL) + B(E)(x(4)) —2{Q(B(¢), X), A>=0
for all £, neR" and A, Ceo(n).

LeMMA 4. Let X be a Killing vector field satisfying C*(x(A))=0 for all A, C e o(n).
Then we have

<[C*, [4*, XT], B(§)) =2C(B(&), X), [C, A1) +2CQ(B(5), [C*, X]), 4) .

Proor. First we note that 4* is a Killing vector field for any 4 eo(n), since R,
is an isometry for any ae SO(n). We have (L .Q)(B(¢), X)= —[4, Q(B(¢), X)] for any
Aeo(n), since R,Q=ad(a”")Q for any ae SO(n). Then, by Lemmas 1, 2 and 3, we
have

<[C*, [4*, XT], B(E)) = C*[4*, X], B())—<[4*, X], [C*, B(O)]>
= CH(A*(x(£)) — x(4L)) — (A*(x(CE)) — x(ACL))

=C*(=B(E)(x(A)) + 2{(B(%), X), 4)+ B(CE)(x(A4))
—2CQ(B(CE), X), 45

= —B($)CH*(x(4)) + 2C*AB(&), X), 4> —2((B(C?), X), 4)
= —2[C, QB(), X)], 4> +2{(Q[C*, B(Y)], X), A>
+2{Q(B(E), [C*, X]), A) —2{QB(C?), X), 4)
=2CQ(B(Z), X), [C, A1) +2<Q(B(&), [C*, X]), 45,
where we used the fact —<[C, F], 4> =(F, [C, A]) for any Feo(n). ]
LEMMA 5. Let X be an arbitrary Killing vector field on SO(M). Then we have
2{[4*, [C*, X]], B()> =<[[4, C]*, X1, B(§)> +2KQB(), [4*, X]), C>
+2CQ(B(S), [C*, XT), 4)
for all A, Ceo(n) and £ R".
Proor. By Lemmas 2 and 3, we have
2{QB(), [4%*, X]1), C>+2<AB(), [C*, X]), 4)
={[C*,[4* X]], B(£)) +BENA*(x(C)— x([4, C]))+<[4*, [C*, X]], B(E)>
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+ B(E)(C*(x(4)) — x([.C, 4]))
= —<[[4, CT*, X1, B(&)> +2<[4*, [C*, X]], B(Z)) .
|

LEMMA 6. Let X be a vector field on SO(M). Then, X is parallel if and only if X
is the horizontal lift Y® of a parallel vector field Y on M, when n>3.

ProOF. Assume DX=0 and X=X"+X". Then, D X"+ D,X"=0 for any
Aeo(n). By Lemma 1, D,X" is horizontal, while D,X" is vertical. Hence,
D X"=D X" =0. It follows that X¥ =0, since each fiber of SO(M) is totally geodesic
and is isometric to the symmetric Riemannian manifold (SO(n), { , ») of semi-simple
type, if n=3. Since X is horizontal Killing vector field, we have

0=2(D 4 X, B(£)y=—2{DppeX, A*>=2(X, Dy A*>=2{R(B(¢), X), A)
=A*x(E))—x(4¢)=<[4*, X1, B()>

for any £e R", by Lemmas 1, 2 and 3. It follows that [4*, X]=0 for any 4 € o(n) and
hence R,X=X for any ae SO(n), which shows that X is the horizontal lift Y¥# of a
certain vector field Y on M. Hence we have

B(E)(x(m) = B(E)(x(m) — <X, Dy B(1)> =Dy X, B()>=0.

Here, we note that (D, Y, u(n)) = B,(&)(x(n)) for all £, neR" and ue SO(M) (see [5,
p. 108]). Consequently, DY =0.

Assume X=Y¥ and DY=0. Then we have
x(4)=0, [4* X]1=0, B(&)(x(n)=0, Q(B(¢), X)=0

for all £, ne R" and A4 € o(n). The equality Q(B(¢), X)=0 follows from the fact that, for
all £eR" and ue SO(M), 2Q,(B(&), X)=u""o Ru(¢), Y)ou and R(Y, u(¢))=0, where
R is the curvature transformation of M. Hence we have [B(¢), X]=0 for any éeR",
by Lemma 2. Therefore, by Lemmas 1 and 3,

(DX, Bn)y=<DxB(), Bn)> =0,
{DpeX, A*)={DxB(%), A*)=—(QX, B({)), 4>=0,
(D 4+X, B(n)) ={DxA*, B(n)) =<QX, Bn)), A>=0,
(D uX, C*y=(DyA*, C*>=0
for all £, ne R" and A4, Ce o(n), which means DX =0. |

LEMMA 7. Let Y be a Killing vector field on M satisfying D*Y=0. Then Y=0
identically when M is complete and has the irreducible restricted homogeneous holonomy

group.
Proor. Assume Y#0. Then DY #0, since M is irreducible. First, we show that
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there exists non-zero a€ R such that F>= —a?I (I is the identity) at each point me M,
where we put F=DY. Let h(u) be the Lie algebra of the holonomy group at ue SO(M)
with p(u)=m. Since DF=0, it follows that [A, F*(u)] =0 for every heb(u). Making use
of this fact, it is easy to see that F*(x) has maximal rank n. Otherwise, for a suitable

u, F*(u) is written as
00
F*u)= )
=g 9)

where det J#0. If [, F*(u)]=0 for such F*(u) and

h=< i g)el)(u),

then B=0, which shows that b(u) is reducible. Hence, for a suitable u, F*(u) is written
as

0 a
—a; 0
Ftuw)= ) aa, - a,#0,
0 a,
—a, 0
where we note a,, a,, ..., a, are constant on M, since DF=0. Then we have
a;
af
(F¥u))*= —
a;
a;
Unless a?=a?= -+ =a?=a? the distributions defined by the eigenvectors for
eigenvalues a?, a2, ..., a? of F? are invariant by any parallel displacement, since DF? =0,

which contradicts the irreducibility of §(u).
So, we put f=(1/2a®)<Y, Y) and Z=grad f. Since (1/a®)F?>= —I and D*Y =0, we
get the equality .

DNV, W)=V, W) or Dy,Z=V,

for all vector fields ¥ and W on M. In particular, we have D,Z=Z, which shows that
each trajectory of Z is geodesic. Let ¢c: R—M be a geodesic paramerized by an arc
length such that Z is tangent to ¢ and its tangent vector ¢’(s) satisfies the condition
{Z(c(s)), c'(s)>>0 for a sufficiently large s. Then there exists ke R such that
Z(c(s))=(s—k)c'(s) which follows from the equality Z{Z, Z)=2{Z, Z). On the other
hand, the distribution defined by the vectors orthogonal to Z is involutive. For, if V'
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and W are vector fields satisfying <V, Z)=<{W, Z)=0, then

(Z,[V, W])=(Z,DyW—DyV)=—DyZ, W)+<{DyZ, V)

Let{s, x*, x2, ..., x"~ '} be alocal coordinate system in a neighborhood of (k) satisfying
the following conditions:

(1) c(k) has the coordinates (k, 0,0, ..., 0),

(2) S is tangent to some trajectory of Z at each point,

(B) <S,S8>=1land (S, X;>=0(1<Li<n-1),
where we put S=09/ds and X;=0/0x' (1<i<n—1). Here, we may assume Z=(s—k)S
by virtue of the argument as above and the fact X;{Z, Z) =2{X;, Z)=0. Consequently,
if s#k, then we have

SCX;, X =2{DsX;, X;>=2{Dy, S, X;>={2/(s—k)}{Dx,Z, X;>={2/(s—k)}{X;, X,
which shows that the function S(X;, X;) is not continuous at the points where s=k.
This is a contradiction. [ |

The following propositions are also proved in [5].

PROPOSITION A. Let X be a fiber preserving Killing vector field on SO(M). Then
there exist unique Y€ (M), ¢ € (A\>*M), and A€ o(n) such that X=Y"+p*+ A*,if n=3.

ReEMARK. In Proposition A, the uniqueness is obvious by the following Lemma
8, though we did not state this fact in [5].

PrROPOSITION B. If SO(M) has a horizontal Killing vector field which is not fiber
preserving, then M has constant curvature 1/2, except when n=2, 3,4 or 8.

3. Proof of the theorem.

LEMMA 8. Let X=X+ X" be a Killing vector field on SO(M). If n=3, then X"
is decomposed uniquely as X¥ = X, + X,, where [A*, X,]1=0 and A*{X,, C*)>=0 for all
A, Ceo(n).

Proor. This lemma follows from the fact that each fiber of SO(M) is totally
geodesic and is isometric to the symmetric Riemannian manifold (SO(n), < , »), on
which any Killing vector field is decomposed uniquely as the sum of a right invariant
vector field and a left invariant vector field (see [S, p. 106]). ]

LEMMA 9. Let X be a Killing vector field which is not fiber preserving. Then, there
exists A eo(n) such that [A*, X] is not fiber preserving and F*{[A*, X], C*>=0 for all
C, Feo(n), when n=3.

PrOOF. Assume that [4*, X] is fiber preserving for any 4 €o(n). By Lemma 8,
X is decomposed as X=X"+X,+X, with [4*X,]=0 and A*{X,, C*>=0 for
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all 4, Ceo(n). Then, by virtue of Proposition A, for each Aeo(n), there exist
$4€(AN*M),, Y, €i(M) and F,eo(n) such that

[A* X]=[4% XT]+[4* X,]=(Y ) + (DY )"+ (90" +(F0)*,
or equivalently,
[A* XM=Y )", [4% X ]=(F)*+(DY,+¢0".
If we put J,=DY,+¢,, then we have
[C, FAJ*=[C*, (F)*]1=[C*, (F)*+(J)"1=[C*, [4* X,]]
=[[C, AT, X,]+[4*, [C*, X,11=(Fic 0)* + e )" +[4, Fc]*,

or equivalently,

(J[C,A])L= [C, FA]* - [A, FC]* - (F[C,A])* .

This equality is possible only when both sides are equal to zero, by Lemma 8. Since
o(n) is semi-simple, J , =0 for any 4 € o(n). It follows that [4*,X,]=(F,)* is fundamental
and hence [4*, X¥]=(Y,)" is a Killing vector field satisfying [C*, [4*, X¥]]=0 for
any Ceo(n). This implies that {Q(B(¢), [4*, XH#]), C>=0 for any {eR", by Lemma
3. Then, by Lemma 5, {[[4, C1*, X¥], B(¢)»=0 for all 4, Ceo(n) and £e€ R". Since
o(n) is semi-simple, we have [4*, X#]=0 for any 4 € o(n), which shows that X is fiber

preserving. On the other hand, the equality F*{[A4*, X], C*)> =0 holds good, since

[4*, X], C*)=[([4*, X;], C*)=A*{X,, C*) —<{X,, [4, CT*) = —<{X;, [4, CT*)
|

For £, ne R", we define & Aneo(n) by
EAm@)=<n, (XL, OOn ((eR™).

It is easy to prove the following equalities:
<é AN, A> = _2<A£a 7I> 5
ad(a)(E Am)=alnan,

(%) (4, Ean]=AEAn+EnAn,
where 4 eo(n) and ae SO(n).

LEMMA 10. Suppose that there exists a Killing vector field X on SO(M) satisfying
the following conditions (a) and (b):

(@) A*(x(C))=0 for all A, Ceo(n)

(b) X* is not a Killing vector field.

If n#4, then there exists a Killing vector field W on SO(M) written as W=
WH +f(e, Aey)* in terms of a function f satisfying the following conditions (a') and (b'):
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@) A*f=0 for any Aeo(n)
®) B(&)f#0 for some £E€R",
where {31, €3, .0ns e,,} is an orthonormal basis of R".

ProoF. We shall construct W from X as follows. First, we give the proof under
the assumption that n=5. X is written as

X=X94+Y x,(e,ne)*,
where 2x,,=x(e, A e))= (X, (e, A e)*), since {e, A e;; 1 Sr<s=<n} is an orthogonal basis
of o(n). By the condition (a), we have 4 *x,,=0 for all r, s and A4 € o(n), which is equivalent
to the condition R}x,,= x,, for all , s and a € SO(n). However, by (b), we have B(¢)x,,#0
for some r, s and £ R", for otherwise X" is a fundamental vector field and hence X¥
is a Killing vector field. Here, we may assume B(&)x,3#0 for some &e R". This follows
from the following facts:

RX=RX"+ Y x,(ad(@a e, ne))*

r<s
is a Killing vector field for any ae SO(n), since R, is isometry, R}x,,= x,, and
Ry(e,ne)*=(ad(a™ e, ne))*=(a""e,na”e)*.

Moreover, for each pair (r, s) satisfying 1 <r<s=<n, we can choose a=a(r, s) € SO(n) in
such a way that a 'e,na " le,=e; Ae;.
Now, let

W=[(e; nes)*, [(e; nes)*, [(eg Aey)*, [(e3 nes)*, XTTT] .
Then, we get W= W —x (e, A e,)*, which is the desired vector field. The last equality
is given by the following facts (i) and (ii):
(1) [exneq,[esnes,[e;ney, [esnes,e; nes]]]]=—e; ne,y,
(i) [exneq, [egnes, [e; Aey, [e3nes, A]]]]=0,
if (e, Aes, A>=0, which are checked easily by (¥¢). This proves the lemma for n>5.
When n=2, the assertion is trivial. When n=13, the assertion follows from
[es nes, [eg Aey, [0 A€2]]1]1=0,
[exnes, [es Aey [exnez]]]=e ne,y,
[e;nes, [ey ney, [eg Ane3]]]=0.

LEMMA 11. Let W be a Killing vector field on SO(M) written as W=WH"+
f(ey Aney)* in terms of a function f satisfying A*f=0 for any Aeo(n). If M is complete
and does not have constant curvature 1/2, then f is constant on SO(M), except when
n=2,3,4 or8.
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Proor. The tangent bundle T(SO(M)) is decomposed as
T(SO(M))=To(SO(M))+ T,(SOM))+ -+~ +T(SOM)),

which satisfies the following conditions:

(a) For each r (0=r=<d), T,(SO(M)) is invariant under any parallel displace-
ment.

(b) Any maximal integral manifold of T, (SO(M)) is locally flat.

(c) For each r (1=r=d), any maximal integral manifold of T,(SO(M)) is
irreducible.
Consequently, W is decomposed as

W=Wo+W;+ - +W,, W,e T(SO(M)),

where W, is a Killing vector field for each r (0<r<d). By Lemma 6, T,(SO(M)) is
contained in the horizontal subspace at each point of SO(M). Hence W, is horizontal.
Hence, V=W—-W,=W,+ --- + W, is a Killing vector field written also as V=
VE+f(e, Aey)*.
Now, for each 4 € o(n), we define a Killing vector field X, = (X ,)¥ +fA4* as follows:
(i) Foreach 1 <r<s=<n,choose an a(r, s) € SO(n) so that ad((a(r, s)) ~*)(e; Ae,)=
e, A e;. Define X, by

ernes
H
Xer Aes = Ra(r,s) V= Ra(r,s) V +f(er A es)* .

(i) Foreach A=) _ a.e, Ae,eo(n), define X, by
XA = 2 arsXe

r<s

=(X)E+fA* .

rAes

Then we have

(1) XA+C:XA+X67 XkA=kXA’
(2) [C*a XA]=X[C,A]s

for all A, Ceo(n) and ke R. (1) is trivial by definition. The proof of (2) is as follows.
[C*, X ,]— X|c.4 is a horizontal Killing vector field, which is fiber preserving, by virtue
of Proposition B, since we assumed that M does not have constant curvature 1/2. It
follows that [C*, X,]— X,c 4 is equal to the horizontal lift Y* of a certain Killing
vector field Y on M, which satisfies the condition D2Y=0, by Proposition A. Here,
the tangent bundle T(M) is decomposed as

TM)=Ty(M)+T,(M)+ -+ +T (M),

which satisfies the conditions similar to the above (a), (b) and (c). Consequently, Y is
decomposed as

Y=Y0+Y1+"'+Ye, Y,ET,(M),
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and hence
0=D?Y=D?Yy+D?*Y, + --- +D?Y,,

which implies D?Y,=0 for 0<r<e. Then we have ¥,=0 for 1 <r<e, by Lemma 7. By
Lemma 6, the horizontal lift of To(M) is contained in To(SO(M)) and hence Y=
(Yo)® e To(SO(M)). On the other hand, we have

[C*, X = Xic,q=YTeT{(SOM)+ -+ +T(SOM)),

since Ve T{(SO(M))+ -+ + T,SO(M)) and this subbundle is invariant under R, for
every ae SO(n). Consequently, Y#=0.
Therefore, by Lemma 3, we have

(*) {Xic,ap B(&)) +<C, AYB(E) f—2{QAB(), X,), C>=0,
for all £e R" and 4, Ceo(n). In particular,
() <4, AYB)f—2{AB(), X,), 4>=0,

which implies that {4, AX(X ) f=2<{Q(X 4, X,), A>=0 or (X )¥ f=0 for any 4 eo(n).

Finally, let Z be a vector field orthogonal to (X ) for any A € o(n). We shall show
Zf=0, which completes the proof of the lemma. If {(C, 4) =0, then {(Q(Z, X,), C)>=0,
by (*). Hence, for each 4 € o(n), there exists a 1-form y , satisfying Q(Z, X )=y (Z2)A.
However, by (%), we have

(A, ADZf=26QZ, Xp), A =2 (Z)A, 4,
which shows Q(Z, X ,)=(1/2)(Zf)A. Here, if there exists Z such that Zf#0, then
dim{Q,(Z, X )eo(n); Aeo(n)}=n(n—1)/2,
dim{((X,)"),€ 0,5 Aco(m)}=n,

for some ue SO(M), which is a contradiction. Consequently, Zf=0, if {(Z, (X, )¥>=0
for any A4 eo(n). [ |

It is easy to prove the following lemma.

LEmMmA 12. Let q: (N, <, D))= (M, <, )) be a Riemannian covering. Then, the
induced bundle homomorphism q,: SO(N)—SO(M) has the following properties (a) ~ (€):

@ g,: (SOWN), <, »)—~(SOM),<, ») is a Riemannian covering.

(b) For any Killing vector field X on SO(M), there exists a unique Killing vector
field on SO(N) which is q,-related to X.

(c) For any Killing vector field Y on M, there exists a unique Killing vector field
Z on N such that Z is q-related Y and that Z" is q,-related to Y".

(d) Let Z be a Killing vector field on N. If Z" is q,-related to some Killing vector
field on SO(M), then Z is g-related to some Killing vector field on M.

(e) Forany&eR"and A € o(n), the vector fields A* and B(£) on SO(N) are q,-related
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to A* and B(&) on SO(M), respectively.

LeMMA 13. If B(¢) is a Killing vector field for some non-zero € R", then M has
constant curvature 1/2. Conversely, if M has constant curvature 1/2, then B({) is a
Killing vector field for any £€ R".

Proor. If B(¢)is a Killing vector field for £ #0, then R,B(¢)= B(a™'¢) is a Killing
vector field for every ae SO(n), since R, is an isometry. This shows that B(¢) is a Killing
vector field for every £ € R". Hence, by Lemma 3, we have

— A&, 1) —2<A(B(n), B(S)), 4>=0,

or

2Q(B(n), BE)—(1/2n &, 4>=0,
for all £, e R" and A4 € o(n). It follows that

2Q(B(), BE)=(1/2m A&,

which means that M has constant curvature 1/2.

Conversely, suppose that M has constant curvature 1/2, that is, 2Q(B(n), X)=
(1/2)n A 6(X) for all vector field X and ne R". Then, by Lemma 3, B(¢) is a Killing
vector field for any e R". [ ]

LEMMA 14. Let M be a sphere of curvature 1/2. Then, for any Killing vector field
X on SO(M), there exist unique Y e (M), A € o(n) and & € R" such that X=Y"+ A* + B(¢)
when n2>3.

ProOF. In this case, SO(M) is the Lie group SO(n+1) and the metric { , > of
SO(M) is bi-invariant, which follows from

(4%, B(5)]=B(4Z),  [4* C*]=[4,C]*,
[B(S), B(m)]=—(1/2)0EAn)*.

Thus, we get the assertion by the theory of symmetric Riemannian manifolds (see the
proof of Lemma 8). |

LemMa 15. () If Yei(M) and pe(N\*M),, then [DY, $1e(N2M),. (i) If
M has constant curvature ¢ #0, then (\>M),={0}, when=dim M >2.
PrOOF. (i) Since Yei(M), for any vector field W on M,
Dy([DY, ¢]))=[DwDY, 1= —[R(Y, W),_ ¢1=—DyDy¢+DyDyop+ D[Y,W]d) =0,

where R(Y, W) is the curvature transformation.

(i) If D=0, then [R(W, Z), $]1=0, where R(W, Z)=cW A Z for all vector fields
W and Z on M. Hence we have [W A Z, $]=0, which implies that ¢ =0, since o(n) is
semi-simple for n>2. [ ]



INFINITESIMAL ISOMETRIES OF FRAME BUNDLES 353

LEMMA 16. Let Y, Zei(M), ¢, Yy €(A\*M),, A€o(M) and Ee R". Then we have

() [Y* 4*]1=0, (i) [Y" B()]=0, (i) [¢*, 4*]=0, (iv) [¢", ¥ 1= —[¢,¥]",
v) [Y%, ZR)=[Y, Z]5, (Vi) [Y", ¢*1=—[DY, 41"

Proor. For the proof of this lemma, we use the following equalities (a)~ (i),
whose proofs can be found in [2] and [S].

Let Y and Z be arbitrary vector fields on M. Then, for all 4eo(M), (€R",
¢, ¥ e A*M and ue SO(M), we have ’

(@) A*((¢")=—[4, v(¢")],

() B (@ N=u""o(DyyP)ou,

(© A*O(Y™)=—-A06(Y"),

(d) BUOOTYT)=u"'(DyyY),

(e YOZ™)=u"'(DyZ)puw

) Yi(o(¢D)=u""(Dyd)yu s

@ [0@"), o@H]=olp, y19.
Especially if Yei(M), then we have

(h) DY)(OZ™)=—u""(DzY)pup

@) DY)w(@Y)=—u"'[DY, ¢]puo°u.

Now, we give a proof of (v). It is similar to our proofs of the other five, so we
omit them. We assume that (i) and (ii) are true. Since Y%, ZLei(SO(M)), for each
Aeo(M), (e R" and ue SO(M), we have

KLY, Z1], B> ()= Y, <(Z", B(&)) —<Z*, [ Y, B (W)=Y, <8(Z"), &)
=Y HOZ")), &> +UDY)AO(Z™), &>
=<u" (DyZ) puys £ — U™ (D2 Y )pwy £
=<u" (DyZ—DzY)py, &> =LY, Z] i, (&)
=<[Y, Z1%, BE&)>(u),
[YH ZR), A*) (W)=Y, KZF, A*)—<(Z5 [YE, A*])(w) = Y K o(Z"Y), 4)
=Y (@((DZ)"), 4) +{(DY)i(@((DZ)")), 4>
={u" o (DyDZ) gy u, Ay—<u" o [DY, DZ],uou, 4)
={u"'o(DyDZ—[DY, DZ]) o u, A
={(DyDZ—-[DY, DZ])*(u), A)
={w,(DyDZ~[DY, DZ])"), 0,(4%)>
={(—R(Z, Y)—[DY, DZ])*, A*)(u) .
These equalities show

(%) (Y%, Z1=[Y, Z]"—(R(Z, Y)+[DY, DZ])* .
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On the other hand, for any vector field W on M, we have
Dy(DyZ—D;Y)=Dy((DZ)Y)—(DY)Z))
=(DwDZ)Y)+(DZ)DwY)—(DywDY)Z)— (DY) DwZ)
=—R(Z, W)Y+ R(Y, W)Z+(DZ)(DY)W))—(DY)(DZ)W))
=R(Y,Z)W—-[DY,DZ1W,
by the first Bianchi identity. This shows
(%) D(LY,Z1)=R(Y, Z)—[DY,DZ].
From (*) and (%), we get
(Y%, Z1 =LY, Z]"+(D(Y, Z])"=[Y, Z]".
]

PrOOF OF THEOREM. For the proof of (i), see [5]. We proved (ii) in Lemma 13.
(iii) Lemmas 12 and 14 prove the theorem, under the assumption that M has constant
curvature 1/2. So we assume that M does not have constant curvature 1/2. It is sufficient
to prove that any Killing vector field X is fiber preserving. Suppose X is not fiber
preserving. By Lemma 9, we may assume 4*(x(C))=0 for all 4, Ceo(n). If X¥ is not
a Killing vector field, then there exists a Killing vector field W as in Lemma 10, which
contradicts Lemma 11. If X® is a Killing vector field, then it is not fiber preserving,
since X is not, which contradicts Proposition B. The uniqueness is obvious by what we
have seen so far. (iv) follows from Lemmas 1, 14, 15 and 16. [ ]

PrOOF OF COROLLARY. If M is compact, then, by the theorem of B. Kostant, DY
is contained in the holonomy algebra at each point of M for every Yei(M) (see [2,
vol. 1, p. 247, Theorem 4.5]). Then, by Lemma 16, for any Yei(M) and ¢ € (A*M),,

[Y% ¢*1=—[DY, ¢]"=0,

which proves the corollary by virtue of the theorem. [ ]
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