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Abstract. We consider the bundle of all oriented orthonormal frames over an
orientable Rίemannian manifold. This bundle has a natural Riemannian metric which
is defined by the Riemannian connection of the base manifold. The purpose of the
present paper is to clarify the structure of the Lie algebra of the group of all isometries
of the bundle with the Riemannian metric.

1. Introduction. Let (M, < , » be a connected orientable Riemannian manifold
of dimension n ̂  2 and SO(M) the bundle of all oriented orthonormal frames over M.
SO{M) has a Riemannian metric < , > defined naturally as follows:

= \Θ(X))Θ( Y) + trace(f(ω(X))ω( Y)),

where ω and θ are the Riemannian connection form and the canonical form on SO(M),
respectively.

In [5], we gave a decomposition of a Killing vector field on (SO(M), < , » which
is fiber preserving (see Proposition A of § 2) and we proved that M has constant curvature
1/2, if(SΌ(M), < , » admits a horizontal Killing vector field which is not fiber preserving
(see Proposition B of §2). In the present paper, we give a decomposition of an arbitrary
Killing vector field on (SO(M), < , » under the assumption that M is complete. The
result is stated in the following theorem.

Let p be the projection SO{M) -• M. The canonical form θ is an / "̂-valued 1-form
defined by θu(X) = u~1 °p(X), where u is regarded as a linear isometry of (/?", < , »
onto the tangent space at p{u). Let o(n) be the Lie algebra of the special orthogonal
group SO(n). For each Aeo(n), we define a vector field A* on SO(M) by ω(A*) = A
and Θ(A*) = O. A* is called the fundamental vector field corresponding to A. For each
ξeR\ we define a vector field B(ξ) on SO{M) by ω(B(ξ)) = 0 and θ(B(ξ)) = ξ. B(ξ) is
called the standard horizontal vector field corresponding to ξ. Let φ be a 2-form on M
and F the tensor field of type (1, 1) on M defined by <F7, Z> = φ(Y, Z). We define an
o(«)-valued function F* on SO{M) and a vector field φL or FL on SO(M) by F\u) =
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M " 1 oFpiu)o u and ω(FL) = F\ Θ(FL) = O (see [5]). φL and FL are called the natural lift

of φ and F, respectively. We note that φL or FL is an infinitesimal gauge transformation

of the bundle SO(M). For a vector field Y on M, we define a vector field YH on SO(M)

by ω( r H ) = 0, p( YH) = Y. YH is called the horizontal lift of Y. Let Y be a Killing vector

field on M and D Y the covariant differential of K We denote the vector field YH + (D Y)L

by YL. YL is called the natural lift of Y. It is easy to see that the set of all parallel 2-forms on

M i s a Lie algebra, which is denoted by (y\ 2 M) 0 . It is a subalgebra of the algebra

y\ 2M of all 2-forms on M. We denote by ί(M) and i(S0(M)) the Lie algebras of all

Killing vector fields on M and S0(M), respectively.

THEOREM, (i) For every Fet(M), φe(f\2M)0 and Aeo(n\ YL, φL and A* are

all Killing vector fields.

(ii) If B(ξ) is a Killing vector field for some non-zero ζeRn, then M has constant

curvature 1/2. Conversely, if M has constant curvature 1/2, then B(ξ) is a Killing vector

field for any ξeRn.

(iii) Let X be an arbitrary Killing vector field on S0{M). If M is complete, then

there exist unique Fet(M), 0 e ( / \ 2 M ) o , AGo(n) and ξeRn such that X=YL + φL +

A* + B(ξ), except when d i m M = 2 , 3, 4 or 8.

(iv) For all Y,Zei(M), φ, φe(^2M)0 and A,Ceo(ή), we have [DY,φ]e

( Λ 2 M ) 0 and

[Λ*,C*] = [ Λ , C ] * , IΦL,ΨL1=-IΦ,Ψ']L, [ r L , Z L ] = [ 7 , Z ] L ,

0 , LφL, A*] = 0 .

Especially if M has constant curvature 1/2, then ( /\ 2 M) 0 = {0} and

for all ξ,ηeRn, when dim M> 2.

COROLLARY. If M is compact and does not have constant curvature 1/2, then the

Lie algebra i(S0(M)) is isomorphic to the direct sum

except when n = dimM=2, 3, 4 or 8.

REMARK. For our proof of (iii) of the above theorem, we need the following

assumptions (*) and (**):

( * ) M is complete.

(**) « = d i m M ^ 2 , 3, 4 or 8.

The condition (*) is necessary to prove the following Lemmas 7 and 11, while the

condition (**) is necessary to prove the following Proposition B (see [5]). More pre-

cisely, to prove Proposition B, we need the following conditions (a) and (b) on the Lie
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algebra o(n):
(a) o(n) is simple,
(b) the quotient group Aut(o(«))/Int(o(«)) is isomorphic to a cyclic group of order

1 or 2,
where Aut(o(«)) and Int(o(«)) are the group of all automorphisms and the group of all
inner automorphisms of the Lie algebra o(«), respectively. However, if n = 2 or 4, then
o(n) is not simple and, if AI = 8, then Aut(o(«))/Int(o(/?)) does not satisfy the condition
(b) (see [5, p. 110]). When n = 3, we cannot prove Lemma 11 of [5] which is necessary
to prove Proposition B. We do not know whether this theorem is true or not when one
of the conditions (*) and (**) is not satisfied.

2. Preliminaries. Let X be a vector field on S0(M). X is said to be vertical (resp.
horizontal) if φ f ) = 0 (resp. ω(X) = 0). AΊs decomposed uniquely as X=XH + XV

9 with
XH horizontal and Xv vertical. X is said to be fiber preserving if [X, X'~\ is vertical for
any vertical vector field X'. Zis determined by the functions x(ξ) and x(A) on S0(M)
defined by

) , ξeR\

}, Aeo(n).

X is horizontal if and only if x(A) = 0 for any A e o(«), while X is vertical if and only
if χ(£) = 0 for any ξeRn. We denote by D the covariant differentiation with respect to
the Riemannian connection of S0(M) as well as M. We note that the right action of
SO(n) on S0(M) is isometric, which is easily seen by the definition of < , > on S0(M)
and by the fact that Raω = ad(a~1)ω and Raθ = a~ίθ for any aeSO(n). Let Ω be the
curvature form of the Riemannian connection of M. It is well-known that RaΩ =
a d ^ " 1 ) ^ for any aεSO(n).

The following Lemmas 1, 2 and 3 are proved in [5].

LEMMA 1. Let A, Ceo(n) and ξ, η, ζeRn. Then we have

2DA*C* = [A *, C*] = IA, CY , 2DB(ξ)B(η) = [2*(ξ), Λ(ff)] ,

θ&B(ξ), i?0/)]) = 0 , ω([B(ξ), B(ηy])= -2Ω(B(ζ), B(η)) ,

[A *, B{ξy] = B(Aξ)9 ω(DB(ξ)A *) = ω(DA*B(ξ)) = 0 ,

(DB{ξ)A\ B(η)} = (DA*B(ξ), B(η)} - (B(Aξ), B(η)} = (Ω(B(ξ), B(η))9 A} .

LEMMA 2. Let X be an arbitrary vector field on SO(M). Then we have

*9 XI B(ξ)} = A*(x(ξ))-x(Aξ),

A*> = B(ζ)(x(A))-2(Ω(B(ξ), X\ A} ,

*, JΓ\, C*) = A*(x(C))-x&A, C]),
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for all ξ,ηεRn and A, Ceo(/ι).

LEMMA 3. Let X be a vector field on SO(M). Then X is a Killing vector field if and
only if

A *(x(C)) + C*(x(A)) = 0 , B(ξ)(x(η)) + B(η)(x(ξ)) = 0 ,

A*(x(ξ))-x(Aξ) + B(ξ)(x(A))-2(Ω(B(ξl X), A} = 0

for all ξ,ηeRn and A, Ceo(n).

LEMMA 4. Let Xbe a Killing vector field satisfying C*(x(A)) = 0 for all A,Ce o(n).
Then we have

<[C*, [Λ*, X]], B(ξ)} = 2(Ω(B(ξ), X), [C, A\y+ 2{Ω{B{ξ), [C*, XJ), A) .

PROOF. First we note that A * is a Killing vector field for any A ε O(M), since Ra

is an isometry for any aeSO(n). We have (LAM)(B(ξ), X)= -\_A, Ω(B(ξ), X)] for any
Aeo(n), since RaΩ = ad(a'1)Ω for any αeSO(n). Then, by Lemmas 1, 2 and 3, we
have

<[C*, IA *, XJ], B(ξ)} = C*dA*, Γ\, B(ξ))- <IA*, X], [C*, B(ξ)]>

, X), A}) + B(Cξ)(x(A))

-2{Ω(B(Cξ), X), A}

X), A}-2(Ω(B(Cξ), X), A}

5 ( 0 ] , X), A}

+ 2{Ω(B(ξ), [C*, ΛΓ|), Λ>-2<Ω(5(Cξ), JO, ̂ >

= 2<Ω(fi(ξ), JO, [C, ̂ ]> + 2<Ω(5(ξ), [C , A-]), ί̂> ,

where we used the fact - <[C, F], A} = <F, [C, /4]> for any Fe o(«). •

LEMMA 5. Let X be an arbitrary Killing vector field on SO{M). Then we have

*, [C , XJ], £(£)> = <[[Λ, C] , JQ, 5(0> + 2<Ω(fi(0, LA*, X]), C>

/or all A, Ceo(n) and ξeR".

PROOF. By Lemmas 2 and 3, we have

2(Ω(B(ξ), [A*, XJ), C> + 2<Ω(5(α [C , JT]), ^>

= <[C , [A*, XJ], B(ξ)) + B(ξ)(A*(x(C))-x&A, C])) + <[^ , [C , Jf]],
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, C]*, X], B(ξy> + 2<IA*9 [C*,

LEMMA 6. Let X be a vector field on SO(M). Then, X is parallel if and only if X
is the horizontal lift YH of a parallel vector field Y on M, when n^.3.

PROOF. Assume DX=0 and X=XH + XV. Then, DAJCH + DAJ{V = O for any
Aeo(n). By Lemma 1, DA*XH is horizontal, while DA*XV is vertical. Hence,
DA*XH = DA*XV = O. It follows that Xv = 0, since each fiber of SO(M) is totally geodesic
and is isometric to the symmetric Riemannian manifold (SO(n), < , » of semi-simple
type, if «^3. Since A îs horizontal Killing vector field, we have

.X, B(ξ)}=-2(DB(ξ)X,A*} = 2(X, DB(ξ)A*> = 2(Ω(B(ξl X\ A}

XI B(ξ))

for any ξeRn, by Lemmas 1, 2 and 3. It follows that [A*, Jf] = O for any Aeo(n) and
hence RaX=X for any aeSO(n), which shows that X is the horizontal lift YH of a
certain vector field Y on M. Hence we have

B(ξ)(x(η)) = B(ξ)(x(η))- (X, DB(ξ)B(η)} = (DB{ξ)X, B(η)} = 0 .

Here, we note that (Duiξ)Y, u(η)} = Bu(ξ)(x(η)) for all ξ,ηeRn and ueSO(M) (see [5,
p. 108]). Consequently, DY=0.

Assume X= YH and DY=0. Then we have

x(A) = 0 , IA*, X]=0 , B(ξ)(x(η)) = 0 , Ω(B(ξ), X) = 0

for all ξ,ηeRn and A e o(«). The equality Ω(B(ξ\ X) = 0 follows from the fact that, for
all ξeR" and ueSO(M\ 2Ωu(B(ξ), X) = u~1 oR(u(ξ), Y)oU and R{Y, u(ξ)) = 0, where
R is the curvature transformation of M. Hence we have \_B(ξ), ^ ] = 0 for any ξeRn,
by Lemma 2. Therefore, by Lemmas 1 and 3,

\DB(ξ)X, B(η)} = <DxB(ξ), B(η)} = 0 ,

(Dm)X, A*> = (DxB{ξ\ A*)=-(Q{X, B(ξ)\ A} = 0,

(DA*X, B(η)} = (DXA *, B(η)} = (Ω(X, B(η)\ A} = 0,

</)^,C*> = <Z)^*,C*> = 0

for all ξ,ηeRn and A, Ceo(n), which means DX=0. •

LEMMA 7. Let Y be a Killing vector field on M satisfying D2Y=0. Then Y=0
identically when M is complete and has the irreducible restricted homogeneous holonomy
group.

PROOF. Assume YφQ. Then DYφO, since M is irreducible. First, we show that
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there exists non-zero aeR such that F2= —a21 (Us the identity) at each point meM,
where we put F= D Y. Let ί)(w) be the Lie algebra of the holonomy group at u e SO(M)
withp(ύ) = m. Since DF=0, it follows that [Λ, F*(w)] = 0 for every Λeί)(w). Making use
of this fact, it is easy to see that F*(u) has maximal rank n. Otherwise, for a suitable
w, F*(u) is written as

F\ύ) =
0 0

0 J

where det7#0. If [Λ, F*(w)] = 0 for such F*(u) and

then J5 = 0, which shows that ϊ)(w) is reducible. Hence, for a suitable w, F*(w) is written
as

/ 0 βi

- α t 0

\

\

0 α,

-β. 0/

where we note a1,a2,...,an are constant on M, since DF=0. Then we have

(a\ \

(F\u))2=-

all

Unless a\ = a\= ••• =a2 = a2, the distributions defined by the eigenvectors for
eigenvalues a2, αf,..., a2 of F2 are invariant by any parallel displacement, since DF2 = 0,
which contradicts the irreducibility of ί)(w).

So, we put f=(\/2a2KY, Y} and Z=grad/. Since (\/a2)F2= -/and Z)2F=0, we
get the equality

or DVZ=V,

for all vector fields V and ^ on M. In particular, we have DZZ=Z, which shows that
each trajectory of Z is geodesic. Let c: R^M be a geodesic paramerized by an arc
length such that Z is tangent to c and its tangent vector c\s) satisfies the condition
<Z(φ)), c'(s)}>0 for a sufficiently large s. Then there exists kεR such that
Z(c(s)) = (s-k)c\s) which follows from the equality Z(Z, Z> = 2<Z, Z>. On the other
hand, the distribution defined by the vectors orthogonal to Z is involutive. For, if V
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and W are vector fields satisfying < V, Z> = < W, Z> = 0, then

, vy

Let {j, x \ x 2 , . . . , xw" *} be a local coordinate system in a neighborhood of c(k) satisfying

the following conditions:

(1) c{k) has the coordinates (fc, 0,0,..., 0),

(2) S is tangent to some trajectory of Z at each point,

(3) <S,S> = 1 and <S,Xt} = 0 (l£i£n-l)9

where we put S=d/ds and X^d/dx1 (l^i^n—l). Here, we may assume Z=(s — k)S

by virtue of the argument as above and the fact X{(Z, Z> = 2<Ar

ί, Z> = 0. Consequently,

if 5 Φ k, then we have

i9 xiy=2{Dsxi, xiy=2<DXis, xiy={2/(s-k)KDXiz, xiy={2/(s-k)}<xi, xty,

which shows that the function S(Xh Xty is not continuous at the points where s = k.

This is a contradiction. •

The following propositions are also proved in [5].

PROPOSITION A. Let X be a fiber preserving Killing vector field on S0(M). Then

there exist unique Ye i(M), φ e (/\2M)0 and A e o(ή) such that X= YL + φL + A*,ifn^3.

REMARK. In Proposition A, the uniqueness is obvious by the following Lemma

8, though we did not state this fact in [5].

PROPOSITION B. If SO(M) has a horizontal Killing vector field which is not fiber

preserving, then M has constant curvature 1/2, except when n = 2, 3, 4 or 8.

3. Proof of the theorem.

LEMMA 8. Let X=XH + XV be a Killing vector field on S0(M). If n^3, then Xv

is decomposed uniquely as Xv = Xί+ X2, where [A *, X{\ = 0 and A *<Ar

2, C*> = Ofor all

A, Ceo(ή).

PROOF. This lemma follows from the fact that each fiber of S0(M) is totally

geodesic and is isometric to the symmetric Riemannian manifold (SO(n), < , », on

which any Killing vector field is decomposed uniquely as the sum of a right invariant

vector field and a left invariant vector field (see [5, p. 106]). •

LEMMA 9. Let X be a Killing vector field which is not fiber preserving. Then, there

exists A e o(n) such that [A *, X] is not fiber preserving and F*(\_A *, JΓ|, C*> = 0 for all

C,Feo(n\ when «^3.

PROOF. Assume that [v4*, X~\ is fiber preserving for any Aeo(ή). By Lemma 8,

X is decomposed as X=XH + X1 + X2 with [A*,X1] = 0 and A*(X2, C*> = 0 for
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all A, Ceo(n). Then, by virtue of Proposition A, for each Aeo(n), there exist

ΦA e 0VM)o> YA e KM) a n d FA e Φ ) such that

lA\Xl = lA\XHl + lA\X2-] = (YA)
H + (/)YA)

L + (^) L + (FJ ,

or equivalently,

\A*, JTH] = (YA)
H , lA*,X2-] = (FΛ)* + (DYΛ + φΛ)

L

If we put JA = DYA + ΦA> t n e n w e n a v e

[C, F J * = [C*, (FJ*] = [C , (FJ + (JA)
L1 = [C , [^ *, ΛTJ]

= [[C, ^ ] * , X2-] + [^ *, [C*, XJ\ = (F[C>i4]) + (/[c,^)1- + [Λ, F J * ,

or equivalently,

VICΛ^IC, FAγ-LA, Fcγ-(F[C,A])* .

This equality is possible only when both sides are equal to zero, by Lemma 8. Since

o(n) is semi-simple, JA = 0 for any A e o(n). It follows that [A *,X2'] = (FA)* is fundamental

and hence [^*, XH] = (YA)
H is a Killing vector field satisfying [C*, [A*9 Z H ] ] = 0 for

any CGO(«) . This implies that (Ω(B(ξ\ [^*, JTH]), C> = 0 for any ξeRn, by Lemma

3. Then, by Lemma 5, {HA, C]* , XH\ B(ξ)} = 0 for all A, Ceo(n) and ^ G / ? W . Since

o(n) is semi-simple, we have [A *, XH] = 0 for any A e o(n), which shows that X is fiber

preserving. On the other hand, the equality F*([A*, X~\, C*> = 0 holds good, since

jr2], c*>=^*<jr2, c*>-<jr2, [Λ, c]*> = -<x2, [^, c]*>

For ξ, ηeRn, we define ξ/\ηeo(n) by

(ξΛη)(ζ) = <η,ζ)ξ

It is easy to prove the following equalities:

where A e o(n) and a e SO(n).

LEMMA 10. Suppose that there exists a Killing vector field X on S0(M) satisfying

the following conditions (a) and (b):

(a) A *(JC(C)) = 0 for all A, Ceo(n)

(b) XH is not a Killing vector field.

If «/4 , then there exists a Killing vector field W on S0(M) written as W=

WH Jtf{e1 A e2)* in terms of a function f satisfying the following conditions (a') and (b'):
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(a') A * / = 0 for any A e o(n)

(b') B(ξ)fΦθfor some ξeR\

where {e1? e2, . . . , en} is an orthonormal basis of Rn.

PROOF. We shall construct W from X as follows. First, we give the proof under

the assumption that n^ 5. X is written as

where 2xrs = x(er A es) = (X, (er A es)*}, since {er A es 1 ̂  r < s^«} is an orthogonal basis

of o(«). By the condition (a), we have A *xrs = 0 for all r, s and 4̂ G O(«), which is equivalent

to the condition R*xrs = x r s for all r, 5 and ae SO(n). However, by (b), we have B{ξ)xrsΦ0

for some r, 5 and ξeRn, for otherwise Xv is a fundamental vector field and hence XH

is a Killing vector field. Here, we may assume B(ξ)x13Φ0 for some ξeRn. This follows

from the following facts:

RaX= RaX
H + Σ xrs(zd(a- '){er A es))*

r<s

is a Killing vector field for any aeSO(ή), since Ra is isometry, Λ*xΓS = x r s and

= (ad(<Γ'){er A es))* = (a~1erAa-^s)* .

Moreover, for each pair (r, s) satisfying 1 ̂ r<s^n, we can choose a = a(r, s)eSO(ή) in

such a way that a~1erAa~1es = e1 Ae3.

Now, let

W= l(e2 Λ e4) , [ ( ^ Λ es)*9 Lie, A ej*,

Then, we get W= WH — x13{e1 A e2)*, which is the desired vector field. The last equality

is given by the following facts (i) and (ii):

(i) [e2 A e4, \eγ A eS9 [eγ A e4, [e3 A es, et A β 3]]]] =-eίA e2,

(ii) [e2 A e4, \eγ Λ ^5, [ x̂ Λ e4, [e3 A e5, AJ]J\ = 0,

if <ex Ae3, A} = 0, which are checked easily by (^r). This proves the lemma for n^.5.

When n = 2, the assertion is trivial. When « = 3, the assertion follows from

[e2 A e3, [eγ A e2, [ex A eJJ] = 0 ,

[έ?2 Λ e3, [et A e2, [e2 A e3JJ] = eiAe2,

\e2 Ae3,{eγAe2,\eγA eJJ] = 0 .

•
LEMMA 11. Let W be a Killing vector field on S0{M) written as W= WH +

f(ei Aei)* ™ terms of a function f satisfying A*f=0for any Aeo(ή). If M is complete

and does not have constant curvature 1/2, then f is constant on SO(M), except when
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PROOF. The tangent bundle T(SO(M)) is decomposed as

T(SO(M))=T0(SO(M))+T1(SO(M))+ ••• +Td{SO{M)),

which satisfies the following conditions:

(a) For each r (Ogr<Ξd), Tr(SO(M)) is invariant under any parallel displace-

ment.

(b) Any maximal integral manifold of T0(SO(M)) is locally flat.

(c) For each r ( lrgr^ί/), any maximal integral manifold of Tr(SO(M)) is

irreducible.

Consequently, W is decomposed as

W=Wςj+W1+ +Wd, WreTr(SO(M)),

where Wr is a Killing vector field for each r ( O ^ r ^ d ) . By Lemma 6, T0(SO(M)) is

contained in the horizontal subspace at each point of S0{M). Hence Wo is horizontal.

Hence, V— W— W0=Wί+ +Wd is a Killing vector field written also as V=

Now, for each A e o(n), we define a Killing vector field XA = (XA)
H +fA * as follows:

(i) For each 1 ̂  r < s g n, choose an a(r, s) ε SO(n) so that ad((α(r, s)) " ^ Λ e2) =

erAes. Define XerAβs by

*er Λ es = Ra(r,s) V= Ra(r,s) V" +f(βr A es)* .

(ii) For each A=Yjr<sarser Aeseo(n), define XA by

Then we have

(2) ίC*,XA] =

for all A, Ceo(n) and keR. (1) is trivial by definition. The proof of (2) is as follows.

[C*, XΆ~] — X[C,A] i s a horizontal Killing vector field, which is fiber preserving, by virtue

of Proposition B, since we assumed that M does not have constant curvature 1/2. It

follows that [C*,XA~] — X[CA] is equal to the horizontal lift YH of a certain Killing

vector field Y on M, which satisfies the condition D2Y=0, by Proposition A. Here,

the tangent bundle T(M) is decomposed as

T{M) = T0(M) + 7\(Af) + + Te(M),

which satisfies the conditions similar to the above (a), (b) and (c). Consequently, Y is

decomposed as

γ=γo+γ1+
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and hence

which implies D2Yr = 0 for O^r^e. Then we have Yr = 0 for 1 ̂ r^e, by Lemma 7. By
Lemma 6, the horizontal lift of T0(M) is contained in T0(SO(M)) and hence YH =
(Y0)

HeT0(SO(M)). On the other hand, we have

l C * 9 X A ] - X { C t A } = Y a e T 1 ( S O ( A ί ) ) + •••

since Fe Γ1(Sf0(M)) + 4- Td(SO(M)) and this subbundle is invariant under Ra for
every aeSO(n). Consequently, YH = 0.

Therefore, by Lemma 3, we have

, A>B(ζ)f-2(Ω(B(ζ\ *A\ C> = 0,

for all ξeRn and A, Ceo(n). In particular,

(**) <A, A}B(ξ)f-2(Ω(B(ξ), XA\ A} = 0 ,

which implies that (A, A}(XA)
Hf=2(Ω(XA9 XA\ A} = 0 or (XA)

Hf=0 for any Aeo(n).
Finally, let Z be a vector field orthogonal to (XA)

H for any A e o(ή). We shall show
Z/= 0, which completes the proof of the lemma. If <C, A) = 0, then <Ω(Z, XA\ C> = 0,
by (*). Hence, for each A e o(«), there exists a 1-form ^^ satisfying Ω(Z, XA) = φA(Z)A.
However, by (**), we have

(A, A}Zf=2(Ω(Z, XA\ A} = 2ψA(ZKA, A} ,

which shows Ω(Z, XA) = (l/2)(Zf)A. Here, if there exists Z such that Z/^0, then

dim{Ωtt(Z, XA) e o{ή) A e o(/i)} = ιι(/i -

for some ueSO(M), which is a contradiction. Consequently, Z/=0, if <Z, (Ar

>1)
H> =

for any Aeo(ή). •

It is easy to prove the following lemma.

LEMMA 12. Let q: (TV, < , »->(M, < , » be a Riemannian covering. Then, the
induced bundle homomorphism q^ : SO(N)-+SO(M) has the following properties (a)~(e):

(a) q*: (SO(N), < , })^(S0(M), < , » is a Riemannian covering.
(b) For any Killing vector field X on S0(M), there exists a unique Killing vector

field on SO{N) which is q^-related to X.
(c) For any Killing vector field Y on M, there exists a unique Killing vector field

Z on N such that Z is q-related Y and that ZL is q^-related to YL.
(d) Let Z be a Killing vector field on N. If ZL is q^-related to some Killing vector

field on S0(M), then Z is q-related to some Killing vector field on M.
(e) For any ξeRn and A e o(«), the vector fields A * and B(ξ) on SO(N) are q^-r elated
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to A* and B(ξ) on SO(M), respectively.

LEMMA 13. If B(ζ) is a Killing vector field for some non-zero ξeRn, then M has
constant curvature 1/2. Conversely, if M has constant curvature 1/2, then B(ξ) is a
Killing vector field for any ξeRn.

PROOF. If B(ξ) is a Killing vector field for ξΦO, then RaB(ξ) = B(a~^) is a Killing
vector field for every ae SO(n), since Ra is an isometry. This shows that B(ξ) is a Killing
vector field for every ξeRn. Hence, by Lemma 3, we have

-<Aξ9 η)-

or

<2Ω(B(η), B(ξ))-(\/2)η Λξ, A} =

for all ξ,ηeRn and Aeo(n). It follows that

which means that M has constant curvature 1/2.
Conversely, suppose that M has constant curvature 1/2, that is, 2Ω(B(η), X) =

(\/2)ηAθ(X) for all vector field X and ηeR\ Then, by Lemma 3, B(ζ) is a Killing
vector field for any ξeRn. •

LEMMA 14. Let M be a sphere of curvature 1/2. Then, for any Killing vector field
Xon SO(M\ there exist unique Ye ί(M), A e o(ή) and ξeRn such that X= YL + A * + B(ξ)
when n^.3.

PROOF. In this case, SO(M) is the Lie group SO(n+ 1) and the metric < , > of
SO(M) is bi-invariant, which follows from

IA*9 B(ξy\ = B(Aξ), IA*9 C ] = [Λ C] ,

Thus, we get the assertion by the theory of symmetric Riemannian manifolds (see the
proof of Lemma 8). •

LEMMA 15. (i) // Yei(M) and </>e(y\2M)0, then [DY, (/>]e(y\2M)0. (ii) //
M has constant curvature c^O, then (/\2M)0 = {0}, when = dimM>2.

PROOF, (i) Since Yei(M), for any vector field W on Λf,

Dw(ίD Y, </>]) = IDWD Y, </>]=- [Λ( Y, W\ φ~\ = -DγDwφ + DwDγφ + D[YtW]φ = 0 ,

where R(Y, W) is the curvature transformation.

(ii) If Dφ = 0, then [Λ(W, Z\φ] = 0, where R(W,Z) = CWΛZ for all vector fields
W and Z on M. Hence we have [W/\ Z, φ~] =0, which implies that φ = 0, since o(«) is
semi-simple for « > 2. |



INFINITESIMAL ISOMETRIES OF FRAME BUNDLES 353

LEMMA 16. Let Y, Zet(M), φ,φe(/\2M)0, Aeo(M) and ξeR". Then we have
(i) IYL,Λ*]=O, (ϋ) IYL,B{ξy]=o, (iϋ) iφL,Λ*]=O, (iv) iφL,ψLi = -ίΦ,ψy ,

(v) IYL, ZL-] = IY, Z] L , (vi) IYL, φL-]=

PROOF. For the proof of this lemma, we use the following equalities (a)~(i),
whose proofs can be found in [2] and [5].

Let Y and Z be arbitrary vector fields on M. Then, for all Aeo(M), ξeR",
φ,ψe /\2M and u e SO(M), we have '

(a) A*(ω(φL))=-lA,ω(φL)l
(b) Bu(ξ)(ω(φL)) = u-ι°(Du(ξ)φ)ou,
(c) A*(Θ(YH))=-A(Θ(YH)),
(d)
(e)
(f)
(g)

Especially if Ye t(M), then we have
(h) (D YW(ZH)) =-u- \DZ Y)m,
(i) (DYK(ω{φL))=-u-ι°lDY,φ-\m°u.
Now, we give a proof of (v). It is similar to our proofs of the other five, so we

omit them. We assume that (i) and (ii) are true. Since YL,ZLei(SO(M)), for each
Λeo(M), ξeR" and ueSO(M), we have

L, Z L ], B(ξ)}(u)= YΪ(ZL, B(ξ)}-(ZL, tYL,

= < r u

H(0(zB)), ξ > + < ( D Y)L

u(θ(zH)), ξ >

= {u-\DγZ)p{u), ξy-(u-\DzY)p(u), O

\ D z Y ) m , ξ} = <lY, Z] p ( u ) ,

zL], ^ χ«)= r,ί-<zL, ̂ *>-<zL, IYL,A*1XU)= Yϊ<ω(zL), Ay

= <«-1 o ( f l r ΰ z - [ β y , z)Z])p(H) o u, A}

= ((PYDZ-\PY,DZ\)\U),A>

= (ωu{{DyDZ-lDY, DZJ)L), ωu(A•)>

= <( - R(Z, Y) - ID Y, DZ^f, A •>(«) .

These equalities show

( * ) [ YL, ZL] = [ r, Z ] H - (R(Z, Y) + ID Y, DZJ)L •
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On the other hand, for any vector field W on M, we have

DW{DYZ -DZY) = DW((DZ)( Y) - (D Y){Z))

= (DWDZ)( Y) + (DZ)(DW Y) - (DWD Y)(Z) - (D Y)(DWZ)

= -R(Z, JV)Y+R(Y, W)Z+(DZ)((DY)(W))-(DY)((DZ)(W))

by the first Bianchi identity. This shows

(*) />([ Y, Z]) = Λ( Y, Z) - [D Y, DZ] .

From (*) and (^), we get

[ γ\ z L ] = [ Y, z]H+(/>([ y, z]))L=[ r, z ] L .

PROOF OF THEOREM. For the proof of (i), see [5]. We proved (ii) in Lemma 13.
(iii) Lemmas 12 and 14 prove the theorem, under the assumption that M has constant
curvature 1/2. So we assume that M does not have constant curvature 1/2. It is sufficient
to prove that any Killing vector field X is fiber preserving. Suppose X is not fiber
preserving. By Lemma 9, we may assume A*(x(C)) = Q for all A, Ceo(ή). If XH is not
a Killing vector field, then there exists a Killing vector field Was in Lemma 10, which
contradicts Lemma 11. If XH is a Killing vector field, then it is not fiber preserving,
since X is not, which contradicts Proposition B. The uniqueness is obvious by what we
have seen so far. (iv) follows from Lemmas 1, 14, 15 and 16. •

PROOF OF COROLLARY. If M is compact, then, by the theorem of B. Kostant, D Y
is contained in the holonomy algebra at each point of M for every Yei(M) (see [2,
vol. 1, p. 247, Theorem 4.5]). Then, by Lemma 16, for any Ye\(M) and φe(/\2M)0,

which proves the corollary by virtue of the theorem. •
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