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Abstract. We construct the moduli space of pairs consisting of a vector bundle

together with a vector space of global sections on a fixed algebraic curve over an

algebraically closed field of characteristic zero. The infinitesimal deformations of such

a pair are shown to be parametrized by the first hypercohomology of a natural complex

of sheaves of vector spaces on the base curve. We then apply these results to obtain

desingularizations of theta divisors in moduli spaces of semistable vector bundles.

Introduction. The Brill-Noether loci Wr

d in the Jacobian of a smooth curve and

the related objects Gr

d have been extensively studied [ACGH] and are known to enjoy

several interesting properties. In this paper we construct analogous varieties Gr

nd related

to the Brill-Noether loci Wr

nd in the moduli space of vector bundles on a curve. We

prove that in certain special cases these varieties Gr

nd are smooth and consider some

applications in the study of generalized theta divisors.

During the final stages of writing this paper, we came across the work of Thaddeus

[Th]. Our results in the rank two case partly coincide with some of his results. For

large degrees, the moduli of pairs has been constructed by Bertram [B] using methods

of Gieseker. We thank Professor Le Potier for showing interest in our work and for

telling us about his theory [P] of coherent systems, part of which is, in a sense, a

generalization of the moduli of pairs to varieties of arbitrary dimension.

The contents of the paper are as follows. In §1, the definition of α-semistability is

given and its immediate consequences are observed. The next two sections are devoted

to the construction of Gr

nd. The fourth section is an infinitesimal study of our objects.

In the final section we consider some consequences of this infinitesimal study with

special interest in the generalized theta divisor. We prove (cf. Theorem 5.5) that G°Mg_ υ

is a desingularization of the generalized theta divisor Θn in ̂ x ( π , n(g— 1)). Moreover,

we show that for a generic curve this desingularization is an isomorphism precisely on

the complement of the singular locus of Θ2.

We thank Professor C. S. Seshadri for suggesting us the problems studied here,

and for his encouragement. It is a great pleasure to thank Dr. V. Balaji for his active

interest and help in this work. We would like to thank Dr. P. Sastry for helpful

discussions.
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NOTATION.

• A: is an algebraically closed field of characteristic zero.
• If X and Y are A -schemes, then p is the second projection X x F-> Y and q is the

first projection Xx Y-*X. Sometimes we denote p by pΎ and q by px.
• Grass (α, m) is the Grassmanian of α-dimensional quotients of km.
• For a vector bundle E, Grass(α, E) is the α-th Grassmanization of E.
• <%x(n, d) and <%s

x(n, d) denote the moduli spaces of semistable and stable vector
bundles respectively.

• V~ V stands for S-equivalence of vector bundles Fand V.
• Sing(X) denotes the singular locus of X.
• If E is a vector bundle over a smooth projective curve X, then deg(£) and rk(ii)

denote the degree and rank of E respectively.

1. Preliminaries. In this section we briefly go through the notions of α-semista-
bility and S-equivalence of α-semistable pairs. We state at the outset that all schemes
considered are algebraic and defined over algebraically closed fields k of character-
istic zero.

Let X be an irreducible, smooth projective curve of genus g>2. If E is an algebraic
vector bundle on X, we let μ(E) denote the slope, deg(£)/rk(2s), of E.

DEFINITION 1.1. (i) A pair (£, A) of type (n, d, r) on X consists of a vectot bundle
E of rank n and degree d on X and an r-dimensional subspace A of H°(E).

(ii) A morphism / : (£, Λ)-»(F, 77) of pairs is a homomorphism / : E^F of vec-
tor bundles which takes A to Π.

(iii) A subpair of a pair (£, A) is a pair (F, Π) such that FczE and IJczA.
• A quotient pair of (E, A) is a pair (G, Σ) together with a surjective

homomorphism /: E^G such that Σ = H°(f)(A).

REMARK 1.2. Let (E,A) be a pair and F c £ a subbundle of E. If we let
AF = H°(F) n Λ, then (F, ΛF) becomes a subpair. In what follows we reserve the notation
λF for dimAp.

DEFINITION 1.3. Fix a rational number α>0. We say a pair (£, A) is α-semistable
(resp. α-stable) if for every subpair (F, 77) of (£, A),

dimT7 / τ ^ dimΛ
- r 7 3 - < M £ ) + α—r-=r (resp.

τk(F) rk is

We write

dim A

rkE

REMARK 1.4. (i) Note that the α-semistability condition is the same as
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μ(F) + aλF < μ(E) + α for all Fς
rkE

(ii) It is not hard to verify that for 'small' α (in fact, oc<\/λr where λ = dimA and

rkE) α-semistability (resp. α-stability) of (£, A) is equivalent to

• E is semistable; and

• We have

dim 77 dim A
< - — — , (resp. <)r k F rkE

for all subpairs (F, 77) of (£, A) with QφFφE and μ(F) = μ(E).

This is a recast (cf. [B]) of the condition of stability given in [B-D] for the case

dimΛ=l. Whenever we say that a pair (E,A) is 'semistable' we mean that (E,A) is

oc-semistable for an α which is small in the above snese.

(iii) For α small, the following are true.

• E is stable => (£, A) is α-semistable for all AaH°(E).

• (£, A) α-semistable => E is semistable.

• Further, if (n, r)= 1, then (£, A) is α-semistable o (£, A) is α-stable.

(iv) We say that a pair (£, A) is simple if the only endomorphisms of the pair are

scalars. It is not hard to see that every α-stable pair is simple (cf. [M-S]).

(v) If (£, A) is a pair of type (2, d, 1) then the above notion of α-semistability of

(£, A) coincides with that in [Th].

Fix a point peX. This point defines an ample invertible sheaf Θx(\) on X of degree

1. Let m0 be any positive integer. If (£, A) is a pair of type (n, d, r) we get a new pair

(£(m0), Λ) of type (n, nmo + d, r), where £(m0): = 2s(χ) 6 (̂1)®"*°, and yϊ is the image of A

under the canonical inclusion H°(E)^H°(E(m0)).

LEMMA 1.5. A pair (E, A) is oi-semίstable {resp. oc-stable) if and only if(E(m0), A) is

(x-semistable (resp. oc-stable).

PROOF. This follows at once from the definitions once we notice that if W^ E(m0),

then

dim(H °(W( - m0) nΛ) = dim(i/°( W)nA).

DEFINITION 1.6. Let α and μ be fixed positive rational numbers. We let Sa(μ)

denote the category of α-semistable pairs (£, A) such that μα(£, A) = μ.

PROPOSITION 1.7. The category Sa(μ) is abelian in which simple objects are ^-stable

pairs.

PROOF. The only thing to be verified is that if / is a morphism of pairs in Sa(μ),

f is of constant rank at every point of X. The verification of this proceeds as in
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Proposition 1.15 of [M-S].

COROLLARY 1.8. If (E,A) is a a-semistable pair, then there exists a filtration (the

Jordan-Holder filtration):

0 = (£ o , Λ0)<z{Eit ΛJcz • • c ( £ r , Λr) = (E, Λ)

such that

• (EJEi-i, Λi/Λi-i) is an a-stable pair for all i.

Moreover, the isomorphism class of the pair

is independent of the filtration.

DEFINITION 1.9. Two pairs (E, Λ) and (Ef, A1) are said to be ^-equivalent if

We write (E, A) ~ (£', A') if (E, A) and (£", A') are ^-equivalent.

REMARK 1.10. (i) It is not hard to see that

(E, A) ~ (EΆ')o(E(m0), A) ~ (E'(m0), Λ').

(ii) The category Sa(μ) is bounded. The proof of this is similar to Lemma 5.2 of

[N], So we may choose mo»0 such that H1(E(mo)) = 0 and H°(E(m0)) generates E(m0)

ΐor M(E,A)eSa(μ).

We fix an m0, chosen as in Remark 1.10 (ii) above, for the rest of the paper. Now

we go on to the definition of a family of pairs parameterized by a scheme and the

moduli functor for pairs of a fixed type.

DEFINITION 1.11 (cf. [ACGH]). (i) By a family of pairs (Eτ, Aτ) of type (n, d, r)

on X, parameterized by a scheme T, we mean:

• A vector bundle Eτ on X x T such that rk Et = n, deg Et = d for all / e T\k);

and

• A locally free subsheaf Aτ of p*Eτ of rank r such that the canonical map

Aτ® k(t)-+H°(Et) is injective for all / e T\k).

(ii) Two families of pairs (Eτ, Aτ) and (E'τ, A'τ) are said to be equivalent if

there exists a line boundle <£Ύ on T such that E'τ~Eτ®p*&τ and this isomorphism

takes A'τ to AΎ®!£Ύ. If (Eτ, Λτ) and (E'τ, A'τ) are equivalent, we write (Eτ, Aτ)~

{E'T,A'T\

REMARK 1.12. If (Eτ, Aτ) and (E'τ, A'τ) are families of pairs such that (Et, At)~

(E't, A't) for all tGi\k) and if (Et, At) is α-stable for all teT\k), then (ET,AT)~

(E'τ, Λ'T).

With this we define the moduli functor for pairs of type (n, d, r) as
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Ψn4: (Schemes)->(Sets)

defined by

yr

n,d(T): = {equivalence classes of families of pairs (£ t, Λt) of type (rc, d, r+1)

such that (Et, Λt) is semistable for all / e T(k)} .

See Remark 1.4 (ii) regarding semistability of a pair.

2. Construction of moduli spaces. In this section we construct the moduli spaces

of semistable pairs of type (n, d, r) for d»0. Recall (cf. Remark 1.4 (ii)) that 'semistability'

of a pair (E, A) means α-semistability for small α. Note that (£, A) is semistable =>E is

semistable. (See Remark 1.4 (iii).)

For the sake of brevity, set d0 : = nmo + d (recall that m0 is fixed and mo»0). Let

N:=χ(E(m0)) where E is a vector bundle of rank n, degree d, and χ denotes the Euler

characteristic. Also set H\ = H°((9$).

Let P be the Hubert polynomial of vector bundles of rank n, degree d0 on X, that

is, P(m) = do + n(m — # + 1). Let Q stand for the Quot-scheme of coherent quotients of

H®ΘX with fixed Hubert polynomial P. Let if be the universal quotient on XxQ.

For qeQ{k\ we let Vq denote the restriction of Y to Xx {q}. Define

R: = {qeQ: Vq is locally free of rank n and degree d0

• The canonical mapH®(9x-+H0(Vq) is an isomorphism} .

It is well known (cf. [S-l]) that R is a smooth, irreducible, open subscheme of Q. Let

Rss (resp. Rs) denote the open subscheme of R consisting of qeR such that Vq is

semistable (resp. stable). Notice t h a t / ? ^ is actually locally free as deg Vq = do»0. Now

set

R : = Grass (N-r.p^Y).

The second hypothesis in the definition of R shows that p^V is in fact free on R and

R: = RxGmss(N-r,N).

So R is smooth and irreducible.

PROPOSITION 2.1. (i) Let τ:R->R be the natural projection. Then the pair

((1 x τ)*Ψ\ A), A being the tautological subbundle ofτ^p^Y^pJX x τ)*Y, gives a family

of pairs of type (n, d0, r) on X parameterized by R. We denote this pair by (ΎR, AR).

(ii) R enjoys the following Ίocal universality'property:

Let (ET, Aτ) be any family of pairs of type (n, dQ, r) parameterized by a scheme T.

Then given teT\k), there exists an open set S containing t and a morphism f: S^R such

that
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where (Es, Λs) denotes the pair (Eτ, Λτ) restricted to the open subscheme S of T.

PROOF, (i) is obvious, (ii) follows from the fact that the Grassmann functor is

representable and from the local universality property of R (cf. [S-l]).

The natural action of Aut(H)~GL(N) on R lifts to an action on R. If we let Rss

(resp. Rs) denote the subset of R consisting of semistable pairs (resp. stable pairs), it

is easily seen that Rss and Rs are invariant under the action of GL(N). It is not difficult

to prove:

PROPOSITION 2.2. (i) The action ofGL(N) on R goes down to an action ofPGL(N),

and PGL(N) acts freely on Rs.

(ii) Two points in R lie in the same PGL(N) orbit if and only if the corresponding

pairs are ίsomorphic.

(iii) The orbit closure equivalence relation (cf. [S-2]) in Rss is the same as

S-equivalence of semistable pairs.

Now let M be a positive integer and let Z denote the M-fold product of

Grass(n,N). There is a natural linearization of the diagonal action of PGL(N) on

Z (cf. [M-2], [S-2]). Let Zss (resp. Z s ) denote the open subschemes of Z consisting of

semistable (resp. stable) points with respect to this linearization. If we fix a sequence

{x1? . . .,xM} °f M points in X, we get a natural PGL(ΛO-equivariant morphism y:

Rs-+Z given by y(q) : = ((Vq)Xί,..., {Vq)xJ, where (Vq)x. denotes the fibre of the vector

bundle Vq at xt and hence is canonically a quotient of H.

THEOREM 2.3 (cf. [S-2], [N]). There exists a positive integer Mo such that

whenever M>M0, we can find a sequence {xl9..., xM) of M points in X for which the

associated morphism y satisfies the following properties:

( i ) 7

(ii) y

(iii) y: RSS^ZSS is a closed embedding.

Fix M o as given by Theorem 2.3 above. Let M> Mo. Set Z : = Z x Grass (TV- r, N).

and γ: = y x id: R-+Z. In what follows we fix a positive rational number ε. Also μ 0 will

denote the constant do/n.

Give Z the polarization ( 1 , . . . , 1, ε). Let Zss (resp. Zs) denote the open subscheme

of semistable (resp. stable) points with respect to this polarization. For any point

(</>!,..., φM, ψ)eZ, and any proper non-zero subspace V of H define

p(V) = 1 Σ d i m ^ - ^ - ; and
Λf (dimF) * = i N
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θ(V) = p{V) 8 [Λf(dim V-dim V)-ndim K]
NM(dim V)

7VM(dim V)

where K£ = φi(V) and F: = ^(K).

It is not difficult to extract the following numerical criterion for semistability in Z

with respect to the polarization ( 1 , . . . , 1, ε) (cf. [M-S]).

PROPOSITION 2.4. A point (φl9..., φM, φ)eZ is semistable (resp. stable) if and only

if for every proper non-zero subspace V of H, we have θ(V)>0 (resp. >0).

We now come to the main ingredient in the construction of the moduli space:

PROPOSITION 2.5. There exists an integer MX>MO such that for all M>Ml9 the

morphism y: R-+Z satisfies the following: (i) y- 1 (Z") = JR
ss, and (ii) y~1(Zs) = Rs.

PROOF. We first prove γ" \ZSS) <Ξ RSS. Let (q, φ) e γ~ \ZSS). Suppose that (q9 φ) φ Rss.

Then there exists a subpair (G, Π) of (Vq, ken/^), such that §φGφVq, μ{G) = μ0 and

μ(G,Π)>r/n. Let V=H°{G). It is then not difficult to see that (cf. [N, pp. 155-157])

V is a proper non-zero subspace of H, p(V) = 0 and N- rk(G) = n dim F. Therefore,

^ , Π)dim V-N-τk(G) μ(G, J7)] =0 ,
Λ^Mdim V

a contradiction. (See Proposition 2.4.) This proves f ^

Conversely, let (g, φ)eRss and let ( φ l 9 . . . , φM, φ) denote the point γ(q, φ). Fix a

subspace V of //. Let G denote the subbundle generated by V. Set Π = H°(G)nkerφ.

We have to consider now two cases:

Case 1. μ(G) = μ0 and V=H°(G). In this case, arguing as above, we see that

p(V) = 0 and N- τk(G) = n dim V. Therefore,

Θ(V)> J [nμ(G9 Π)dim V-N- rk(G)μ(G, 17)] = 0 .
7VM(dim K)

Case 2. Either μ(G)<μ or VΦH°(G). In this case it can be verified that

N

(See [N, pp. 153-155].) Hence

ε
•Λ---Γ"deg(G) +

But deg(G)<rk(G)μo<«μo = ί/o Hence
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εr(N- 1)
degG + (NdimΠ-rdimV)<do

N{di V)JV(dim V) N

Thus

N2 M

So 0(K)>O, for M » 0 . This shows that θ(V)>0 in both Case 1 and Case 2. Namely,

( 0 1 ? . . . , φM, φ) is semistable. This proves ^ " c j ; ' 1 ^ . The proof of (ii) is similar and

is omitted.

COROLLARY 2.6. Le/ ( £ r , /lΓ) be a family of pairs of type (n, d, r) o« X parameterized

by a scheme T. Let Tss (resp. Ts) denote the set of teT such that (Et, Λt) is semistable

(resp. stable). Then Tss (resp. Ts) is open in T.

PROOF. By Theorem 2.3, Rss (resp. Rs) is open in R. Now use the local universality

property of R to finish the proof.

We are now in a position to complete the construction of the moduli space of

semistable pairs of type (n, d0, r). First we have:

PROPOSITION 2.7 (cf. [S-3]). Let Z and Z be as above and let π: Z^Z be the

natural projection. Then there exists a positive number ε0 such that for any 0 < ε < ε o , we

have

π~\Zs)^Zs and π(Z s s)<=Z s s.

(Recall that the constant ε figures in the polarization ( 1 , . . . , 1, ε) on Z with respect to

which we take semistable points.)

PROOF. This can be seen by a direct verification using the numerical criterion of

Proposition 2.4.

Let P(n, d, r) denote the set of S-equivalence classes of semistable pairs of type

(n, d, r) (see §1). Then we have:

THEOREM 2.8. (i) There exists a structure of an irreducible, normal projective

algebraic variety on P(n,d0, r). We denote it by Gr

n~d*. Further, Gr

n~dl has the property

that given any family of semistable pairs of type (n, d0, r) on X parameterized by a scheme

T, the natural map η: T^Gr

n~dl sending t to the S equivalence class η(t) of(Et, Λt) is a

morphism.

(ii) If (n, r ) = l , we have a universal family of stable pairs on Gr

n~dl denoted by

(SP, Λp). Also Gr

n~dl is smooth in this case.

(iii) There is a canonical surjective morphism τ : Gr

n~d*-><Wx(n, d0). Furthermore τ

is a projective bundle over the open subscheme consisting of stable bundles.
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REMARK 2.9. Note that Theorem 2.8 (ii) can be interpreted as: The scheme Gr

n~dl

represents the functor ^r

n~dl if (n, r)=\.

PROOF OF THEOREM 2.8. (i) Consider the morphism γ: = yx id : Rss-+Zss. The

image of y is actually contained in, as ε < ε0, the open subset U: = Zss x Grass (N — r,N)

of Z. Let Y be the image of y and Fthe closure of Y. Now the proof consists in showing

Ϋss = γ(Rss) and Ϋs = y(Rs). To see this first observe that

Ϋss = Ϋn Zss and Ϋss 2 y{Rss) -

To prove the other inclusion, let zeΫss. Since ε < ε 0 , by Proposition 2.6, zeU. But

Yc: U, hence ZEΫΠU. But as y: RSS-*ZSS is proper, zeY. Let z = y(g, φ). Since z e Z s s ,

((?, ι^)G7"1(Zss) = ̂ s s (see Proposition 2.5). That is zey(Rss). This proves the claim.

It follows now, (cf. [N, Lemma 3.12]), that there is a good quotient of Rss by

PGL(N) and P(n, d, r), as a set, is in bijection with the A -valued points of the quotient

scheme. We denote the quotient scheme by Gr

n~d*. That Gr

n~dl is irreducible and normal

follows from the fact that Rss is irreducible and smooth (cf. [M-2]). The coarse moduli

property mentioned in (i) now follows immediately from the local universality property

of i? s s (see Proposition 2.1) and Proposition 2.2 (iii).

(ii) If (TZ, r) = 1, every semistable pair is stable. So to give a descent of the universal

pair ( ^ , Λ$), it is enough to show that this pair can be modified to get an equivalent

pair

on which the isotropy k* acts trivially. Clearly k* acts as scalars on both f^ and A%.

So it is enough to produce a GL(N) line bundle 5£ on R on which the group

k* acts by the character t\->t~1. To this end consider the line bundles Fo =

and Fx =det(/? J | ί i^( l ))®det^i^)*. Now k* acts by characters tv^Γr and

on Fo and Fl9 respectively. If we choose a.bsZ such that ar + bn=\, then

jSf = (F0)-a®(F1)
+b will do the trick.

(iii) This follows from the fact that the morphism τ is proper and dominant.

3. Construction of Gr

nd for all degrees. In this section we construct the moduli

scheme of semistable pairs of type (n,d,r) for all d>0 and show that if (n, r ) = l , it

represents the functor ^r

n~d

ι. All along we keep the notation of §2. The general reference

for this section is [ACGH].

O n l x i ? , considered in §2, we have the short exact sequence

Applying p# to this we get the exact sequence

0 >P*r{-m0) >p^<r^L
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Let K° and K1 denote the locally free sheaves pjr and p+(irlir(-m0))9 (cf. [M-F, p.

19]) of ranks n(m0 — g+ l) + dand nm0, respectively. In what follows we will be crucially

concerned with the morphism φ: K0-*]? of locally free sheaves.

For the sake of brevity let l=n(mo — g+ \) + d and h = l—{r+1). Consider now the

closed, invariant subschemes of Rss (resp. Rs) defined by

r): = RssnDφ(h) and

where Dφ(h) stands for the Λ-th determinantal locus of φ in R defined by

where Jφ:=imΛhφ*: JF#m{ΛhK\ ΛhK°)^ΘR. Here φ* stands for the dual of φ.

It is now easily checked that

Supp Dss(n,d9r) = {qeRss:h°{Vq)>r+\}.

Also a good quotient of Dss(n, d, r) by PGL(N) exists (cf. [N, Prop. 3.12]). Let us denote

it by SWr

Hfd. We note also that, as char.(fc) = 0, SW^j becomes canonically a closed

subscheme of ^x(n, d).

Supp(SWn

nJ = {lV-]eWx(n,d): h°(V)>r+\} .

Recall now that R (see §2) is the (r+l)-th Grassmannization of the locally free

sheaf p^V = K°. The map τ is the projection onto R. Let D(n, d, r) be the canonical

blow-up in R of D(n, d, r):

where βφ:=imφ*: ^^(ΛR, τ*K1)^>Θjϊ. Here φ is the composite

(Recall that ΛR is the tautological subbundle of τ*K°).

It can now readily be verified that

Supp Din, d, r) = {(E, Λ)eR: Λ^H°(E(-m0))} ,

where we regard H°(E( — m0)) as a subspace of H°(E) via the canonical injection from

H°(E( — m0)) into H°(E). Hence D(n, d, r) parameterizes canonically a family of pairs of

type (n, d, r +1). Note also that D(n, d9 r) is a closed, invariant subscheme of R. Let

Dss{n, d, r) = D(n, d, r) n Rss and Ds(n, d, r) = D(n9 d, r)nRs.

By the property of invariance of the definition of semistability (see Lemma 1.5), on

tensoring by a line bundle, Dss(n, d, r) (resp. D\n, d, r)) consists of pairs (E( — ra0), A) of

type (n, d,r+l) which are semistable (resp. stable). Furthermore we have:

PROPOSITION 3.1. The scheme D(n, d, r) has the local universality property (see §2)
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for any family of pairs of type (n, d, r +1) parameterized by a scheme T.

PROOF. Let (Eτ, Aτ) be a family of pairs of type (n, d, r+1) on X parameterized

by a scheme T. Consider the family (Eτ(m0), Λτ) of semistable pairs of type (n, d0, r + 1)

(here Λτ stands for the canonical image of Λτ in p*Eτ(m0)). There is a natural morphism

/ : U^>R, where U is an open subset of S, as (Eτ(m0), Λτ) is a family of pairs of type

(n, do,r+ 1) (see Proposition 2.1 (ii)). But as the set-theoretic image of / is contained

in D(n, d, r), we only have to show that / actually factors as a morphism through

D(n, d, r). This follows if we know that J: = ker/* cz fφ, where /* is the moφhism

®R-*f*®τ °f ®R modules associated to /. To show this note that φ: AR-^T^K1 is zero

when restricted to Spec((P#/./). Now it is not hard to see that Jφ is the smallest ideal

with this property and hence Jφ cz J. At this stage it is clear, as / factors as a morphism

through D(n, d, r), that / * ( ^ J 5 ( - / W 0 ) , Λβ)~(Eτ, Λτ). Here ( f 5 ( - m 0 ) , Λβ) denotes the

pair ( ^ ( — m0), ΛR) restricted to I x D.

REMARK 3.2. (i) It follows from Corollary 2.6 that Dss and Ds are open in D.

(ii) It is not hard to see that the orbit closure equivalence relation in Dss(n, d, r)

is the same as S-equivalence of pairs of type (n, d, r+1). (See Proposition 2.2 (iii) and

Remark 1.10.)

THEOREM 3.3. (i) The set of S-equivalence classes of semistable pairs of type

(n, d9 r + 1 ) can be equipped with the structure of a projective k-scheme.

(ii) If we denote the moduli scheme of pairs of type (π, d, r+1) by Gr

nd, we have:

• For any family of semistable pairs (Eτ, Λτ) of type (n, d,r+ 1) parameterized

by T, the natural map φ: T->Gr

ntd taking t to the S-equivalence class of

(Et, Λt) is a morphism of schemes. Furthermore Gr

nd becomes naturally a

closed sub scheme of Gr

ndo.

• If(n, r+1)= 1, then Gr

nd represents the functor Ψnd.

PROOF. The existence of a good quotient Gr~/ of Dss(n, d, r) by PGL(N) follows

from [N, Prop. 3.12]. As char(fc) = 0, GJj^1 becomes naturally a closed subscheme of

Gr

n~dl. Now the theorem follows from Theorem 2.7 and Proposition 3.1.

REMARK 3.4. The independence of Dss(n, d, r), hence of SWnj, of the choices of

m0 and of the universal bundle "V follows from the fact that Dss(n, d, r) can be described

as the (r+1-</+«(#-l))-th Fitting ideal of R1Pt'T'(-m0). See [ACGH] for details.

Also it is not difficult to see that Gr

nd is also independent of these choices. For instance,

when (n, r + 1 ) = 1, it follows from the fact that Gr

nd represents Ψn4.

4. Infinitesimal deformations of a pair. Fix a pair (£, Λ) on X. In this section we

prove that the infinitesimal deformations of (£, A) are parameterized by the first

hypercohomology of a natural complex of sheaves on X arising from (£, A). Further,

we show that the local deformation functor of (£, A) is formally smooth if the second
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hypercohomology of this complex vanishes. The idea of parameterizing infinitesimal

deformations of certain objects by hypercohomology is due to Welters [W, Prop. 1.2].

See also [B-R].

Let k[ε\ denote the algebra of dual numbers over k and set Γ=Spec/r[ε].

DEFINITION 4.1. (i) Let A be a finite dimensional local ^-algebra. A deformation

over A of a pair (E, Λ) is a triple (EA, AA, φA), where (EA, ΛA) is a family of pairs on X

parameterized by Spec A and φA: (EA®k, AA®k)-*(E, A) is an isomorphism of pairs.

(ii) A (linear) infinitesimal deformation of (E, A) is a deformation of (E, A) over

*[ε].

(iii) Two deformations (EA, AA, φA) and (EA, A'A,φ'A) of (E, A) over A are said

to be equivalent if there exists an isomorphism φ: EA-+E'A of vector bundles over

X x Spec A such that:

• (pA)*ψ carries AA onto Λ'A, where/^: Xx Spec A->Spec A is the canonical

projection; and

• φA°(ψ®l) = φA.
(iv) The local deformation functor &(EtΛ) of a pair (£, A) is the functor

(Finite dimensional local Λ;-algebras)->(Sets)

which assigns to an algebra A the set of equivalence classes of deformations of (E, A)

over A.

We denote by TiEΛ) the set &ιEtΛ)(k[έ]) of equivalence classes of infinitesimal

deformations of (£, A). From general arguments (cf. [Sch., Lemma 2.10]) there exists

a natural structure of a A:-vector space on T(EtA).

REMARK 4.2. Recall that if A is a local fc-algebra and EA is a vector bundle on

JfxSpec^, then giving a subbundle AA of {pA)*EA is equivalent to giving a free

Λ-submodule of 7/°pf x Spec A, EA).

Consider a fixed pair (£, Λ) on X. Let Λ x denote the constant sheaf on X with

fibre A. Since A" is an irreducible topological space, Ax is flasque. There is a natural

monomorphism ξ: Ax-+E of sheaves of λ -vector spaces on X defined by ξu(s) = s\u for

all U open in Xand 5e A. We shall identify yl* as a subsheaf of £" via the monomorphism

ξ. Let # denote the quotient sheaf £/>!*. Since Λ^ is flasque, Γ(U, &) = Γ(U, E)/Λ for

all U open in X Let p: £ - > ^ denote the canonical projection of sheaves. Define a sheaf

homomorphism

D: βnd E^#e#*n{Ax, <g) by WXs) =p

for all local sections </> of Snd E and seΛL Let J f ' = ^ ( £ , Λ ) denote the complex

0 > Snd E > tf#*n(Ax, %) • 0
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of sheaves of £-vector spaces on X.
Let us compute the hypercohomology of the complex Jf# using Cech cocycles.

Choose a finite open covering ^ = {C/ι }f=1 of X such that each Ut is affine. Let / =
{1, ...,N} and if iί9 ...,/„ e /, denote C/£l i Λ =ΓΊ"=i UiΛ- Using the Cech resolution of
the complex JΓ ' with respect to the covering %, we see that the /?-th hypercohomology
Hp(jf')^Zp/Bp where, denoting the Cech differential by <5,

9)\ φeZP(W, $ndE\ δA + (-\)pDφ = 0}

, δφ):AeCp-2(<%, tfom{Ax, <$\ φeCp-\^ί, δndE)} .

PROPOSITION 4.3. There is a natural isomorphism of the first hypercohomology

Hγ(C/f') of the complex ̂ [EA) with the vector space T(EΛ) of infinitesimal deformations

of(E9Λ) '

PROOF. View /irl(jT*) = Z 1/5 1 as above. Denote Γ=Specfc[ε]. Let z = {Ai}x
{ψijjeZ1. We define an infinitesimal deformation (Ez

τ, A
z

τ, φz

τ) of (E,A) as follows.
For each pair Ujel, define β^e Γ(Uφ s/^JpxE) by θij=l+εφij. Then θijθjk = θik, so
we can glue the bundles pxE\UiXT by the θ^ to obtain a vector bundle E\ on Xx T.
Let A T be the subset of H°(X x T, Ez

τ) consisting of all sections ξ such that for all
iel, ξlutxr is of the form s — εt where seA and teΓ(Uh E) with p(t) = Ai(s). (Recall
that p is the projection E^Φ.) It is easily checked that Az

τ is a £[ε]-submodule of
H°(Xx T9 E

z

τ). We shall now construct a A:[ε]-basis for Az

τ. Let {.sα}£ = 1 be a fc-basis
for A. Fix αe{l, . . . , k}. For ι= 1,..., N, define t^eΓ(Uh E) as follows:

• Let t\eΓ{Uu t) be any section such that/?(ίί) = ,41(sα).
• If i>2, let T^GΓ{UhE) be any section such that /7(7?) = ̂ i(ls

a). Then on ί/a,
^ ί-φι i ( j " )-??) = 0. Hence λ^tl-φ^s^-^eΓiU^ AX) = A. Define rj =

Now define ξ? = j a -εί f in r(C/t. x Γ,^*£ ). For all ί>2, we have 0 £ 1 ^ = ξ? on Un x Γ.
Therefore for all ΐ , ;e/, on £/yi x Γ, we have θ.j.ξj = θ ί lθ l j.ξj = θ.1ξ5 = ξ7. Since Uin is
a dense subset of Uip we get #;;£" = ξ? on the whole of ί/fJ x Γ. Hence the ξ* patch up
via the θtj to give a global section ξ*eH°(X° x Γ, ^^). Clearly ξαG/l^. Now one can
easily verify that {ξα}«=i is a fc[ε]-basis of yl̂  This proves that Az

τ is a free A:[ε]-
submodule of H°(Xx T, Ez

τ) of rankA: = dimyl. By Remark 4.2, Λ^ defines a sub-
bundle of ( / ^ ^ Γ on T. Define φ\\ EZ

Ύ® k^Eio be the identity map. Then (Ez

τ, A
z

τ, φz

τ)
is an infinitesimal deformation of (£, /I).

We thus obtain a mapJ: Zx-^TiEtA) which is easily seen to factor through Zι\Bγ

to give a map J : H1^ ')-*T(EΛ). Let us prove that this map is surjective. So, let
(Eτ, Aτ, φτ) be an arbitrary infinitesimal deformation of (£, A). By choosing the
Ut small enough, we may assume that φτ: Eτ®k^E extends to an isomorphism
Φi: Eτ\ui x τ^PxE\ut x Γ N o w l e t θij = Φi °Φϊ1(Ξ Γ(uij> <rf"tPχE). Since 0 y ® 1 = 1, there
exists (φ-^eZ^^ndE) such that θij=\+εφij. Let {£α}ϊ=1 be a A:[ε]-basis of
H°{T, Aτ)aH°(Xx T, Eτ). Let if = ί β L χ τ ; w ^ can write ^i({f) = ,sβ-είf where { ^ = 1
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is a fc-basis of A and tteΓ(Uh E). Define a A -linear map A{\ Λ^Γ(Uh $) by A^s*)^

p(tf). Then z = {Ai] x {φ^eZ1 and it is immediate that (Eτ, Aτ, φτ) is equivalent to

(Ez

τ, Az

τ, φz

τ). Hence Δ is surjective. In the same manner, we can prove that Δ is injective.

This completes the proof of Proposition 4.3.

Having computed the infinitesimal variations of a pair, we now turn our attention

to the question of smoothness.

PROPOSITION 4.4. The local deformation functor @iE,Λ) of a pair (E, A) is formally

smooth if

PROOF. Recall that a small extension is an epimorphism η: A^>A of finite di-

mensional local ^-algebras whose kernel is a non-zero principal ideal (/) such that

mA' t = 0 where mA denotes the maximal ideal of A. To show that &(E,Λ) *S formally

smooth it suffices (cf. [Sch, Remark 2.3]) to check that whenever η: A^A is a small

extension, ^{EfΛ)(η): &\E,Λ){^)^^\E,Λ)(A) is surjective. Fix such an extension and let

ker(η) = (t). Consider an affine open covering °ll of X as before. If R is any fc-algebra,

denote the open covering {Ut x Specif} of Xx Specif by <%R. Fix a basis {sa}k

a=1 of A.

Note that giving an element θ e ^(E,Λ)(^) ^S equivalent to giving the following data:

• a cocycle { ^ J e Z 1 ^ , stfatp\E) such that θy|ι/y = 1;

• an ^-linearly independent set {ξf}ϊ=i ^Γ(t/£ x Spec,4,/?$ x E) for each /e/such

that f f l ^ S " and %£? = £? on UtJxSpecA.

Now take an element ffe&(EtΛ)(A) and lift the corresponding data ({0j7 }, {!"?})

arbitrarily to θ^eΓiU^x SpecΛ, $4utp\E) and ξ^eΓ(UiX Spec A, p^E). We clearly

have θijθjkθΰί = \ + thijk and θijξ
a

j-ξ^ = tycfj, where hijkeΓ(Uijk, SndE) and y^e

Γ{UΦE). Now define A^eΠU^ Je<>m(Ax, <$)) by Aij(sΛ)=-piy^), where p is the

projection E^^. We will now show that z={Aij) x {hijk}eZ2, i.e., that (i) δ{hijk} = 0;

and (ii) ^{y4ι7}H-{Z)Λ^} = 0. To check (i), decompose 0 o = l + i / ^ where φijemA'

Γ(Όφ£ndE\ and using t-mA = 0, check that θij(l + thjkι) = (l + thjkl)θij. In other

words, θijθjηβuθβ1 = θjkθklθji1θij. From these we get

(1 + thjkl)(l + ί*V Iχi - ίAΛI) = (1 + thijk).

Now, observing that t2 = 0 gives (i). Let us now prove (ii). Since multiplication by / is

injective, it suffices to check that B: = δ{tγ^} — thijk(sa) = O. Decompose the section ξf

as s* — t* where s^eA and t°[emA' Γ(Uh E). Then si patch up to define global sections

saeA, and tya

ij = \l/ij{s<x)-\i/ij(t')) + t<x

i-ta

j. At this stage note that thijk = θijθjk-θik =
δ{Φij} + ΨijΦjk- Therefore we see that B= -φiJψjιJisa)-δ{φij(φ}. But applying ψy to

tγΐj we get

Φijφjk(sa) + Φu(φ = Φijφjk(tΐ) + ΦijiΦ .

Hence B= —thijk(tl) which is zero because t mA = 0. This proves that z = {Aij}x

{hijk}eZ2. Since // 2 (Jf) = 0, there exist {A^eC0^, Jί?#m(Ax,g)) and {φu}e
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C\%, SndE) such that {Aij} = δ{Ai}-D{φij} and δ{φij} = {hijk}. Define ffij = θij + tφij

and <f? = ξf — ίίif, where w" is an arbitrary section such that p(u<?) = Ai(sΛ). Then we have

ff.jffjk = ffik which is well and good, but the equality {^.|? = £? holds only modΛ. Yet,

as in the proof of Proposition 4.3, we can now perturb each ζ* by an element of A to

remove the phrase 'modyΓ and write (jf.jξ^ξ?. Then the system θ = ({θij], {ζf\) defines

an element ΘG &iEtΛ)(A) which is obviously a lift of U, i.e., <&{E,Λ)(rl)(θ) = @ This proves

that &(E,Λ)(η) is surjective.

5. Desingularization of the generalized <9-divisor. In this section we show that

the schemes Gr

nd (0<d<n(g-l)) are smooth when r = 0. We also consider the special

case d=n(g—l) in connection with the <9-divisor in Wx(n9 n(g—l)).

Let (E, A)eGr

nd. Recall that we have a complex

of sheaves of k-vector spaces. This complex fits into a short exact sequence of complexes

where for any sheaf J*, &\X\ denotes the complex whose first component is J* and all

other components are zero. We thus obtain a long exact hypercohomology sequence

0 > H°(JίT *) • H\Snd E) -^-> H°{Jfom{ΛX9 <$)) > H\X') • H\Snd E)

- ^ H\je#™(Ax, <&)) • H2(jf •) • 0 .

At this stage a few observations are in order.

REMARK 5.1. 1. Note that H°(Jf') is precisely the vector space of global

endomorphisms of E which preserve A. Further, by Proposition 4.3, Hι(ctiΓ') is the

vector space T(EΛ) of infinitesimal deformations of (£, A).

2. Since Ax is a constant sheaf, H°(Jίf#wι(Ax, <&)) is canonically isomorphic to

Hom(Λ, H°(E)/A). In the above long exact sequence φ is the obvious map from

H\&ndE) to $eom{A, H°(E)/A).

3. If (n, r + 1 ) = 1, then the scheme Gr

nd represents the functor Ψnά as we saw in

§3. Therefore by Proposition 4.4, if H2(Jf{EtΛ)) = 0 for all (£, Λ)eGr

Htd9 then the scheme

Gr

nd is smooth. Notice that H\X[EA^ vanishes if and only if in the above long exact

sequence the map μ is surjective.

PROPOSITION 5.2. Let X be a smooth irreducible projective curve of genus g>2 and

let d>0. Then the scheme G®d is smooth and non-empty.

PROOF. Fix a pair (E, A)sG^d. In view of Remark 5.1(3) we need only to check

that μ\ ^{SndE)^Hι{3^^m,{Ax,^)) is surjective. Note that we have canonical
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isomorphisms H\E)^H\<$) and H\tf*m{Ax, ^))^Hom(Λ, H\V)). The first one is
immediate from the exact sequence

and the fact that Λx is flasque. The second isomorphism comes from the fact that Λx

is a constant sheaf of vector spaces. Using Serre duality and these identifications, the
dual of μ can be thought of as the 'Petri map'

μ*: H0(E*®K)xΛ^>H°{£>nΛE®K)

where K is the canonical bundle of X. If σeH°(E*®K) and seA, then we can think
of σ and s as global homomorphisms σ: E^>K and s: (9X^E\ the Petri mapμ* is now
given by μ*(σ, s) = σ®s. Since dim/L = 1, it is now clear that μ* is injective, i.e., μ is
surjective. Since the genus g > 2, there exist stable bundles which admit non-zero global
sections (cf. [Su]), so G®d is non-empty. •

In the rest of the section we consider the case d=n(g—\).

LEMMA 5.3. If X is a smooth curve of genus #>3, then the subscheme
of°llx(n, n(g—\)) is reduced, irreducible andequals the closure ofWQ

nni<g-γ) in ^ίx

PROOF. Let us first show that SW%%n{a-X) is irreducible. Since SW°Mg_1} is a good
quotient of Dss = Dss(n, n(g-l), 0) it suffices to show that Dss is irreducible. By [Su], we
know that ^ π ( g _ υ is irreducible, hence so is Ds = Ds(n, n(g-\\ 0). We claim that Dss

is the closure of Ds in Rss. Surely, since 5 s is irreducible and of the same dimension as
Dss, it is an irreducible component of Dss. Suppose Dss has some other component
TΦDS. Since Dss is a determinantal variety in Rss whose expected codimension is 1,
the codimension of T in Rss is <1. But TczRss\Rs and, since the genus g>3, the
codimension of /Γ s \ i? s in Rss is >2, a contradiction. Therefore DSS = DS and hence
irreducible. This proves that SW^g-^ is irreducible. Next note that Wj^-i) is open
in SWnMg_X) and, by [Su], it is non-empty. Therefore its closure in tfίx{n, n(g — 1)) must
be equal to SW®Mg_iy It remains to show that SW%tn{g-D is reduced. The scheme Dss,
being an irreducible determinantal variety of expected codimension, is Cohen-Macaulay
(cf. [ACGH]), hence has no embedded components. Further, it is birational to Ds

which is smooth by Proposition 5.2. Thus Dss contains a non-empty reduced open
subset. Therefore Dss is reduced. Hence its good quotient SW^%Mg-1) is also reduced.

D

REMARK 5.4. The assumption d=n(g—\) does not seem to be very essential in
the above Lemma. Probably it can be proved more generally using results from [Su]
together with the fact that the codimension of /? s s\/? s in Rss is at least g-1. We do
not go into this process here. Notice that the lemma also shows that the blow up
Dss(n, n(g—l), 0), hence G^nig^ί)9 is irreducible.
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Let Θn denote the generalized theta divisor (cf. [D-N]) in the moduli space

Wx(n,n(g — 1)) and let Θn denote the smooth scheme G°Mg_iy It is clear that Θn =

WΪ.«g-»> h e n c e b y t h e a b o v e l e m m * , ®n = SW°nMg_iy Let τ : <9 π -^ x (n, n{g-Vj) be

the natural morphism. Then τ factors through Θn to give a morphism τ : Θn-^Θn.

We now have a smooth birational model of Θn:

THEOREM 5.5. Let X be a smooth curve of genus g>3 over an algebraically closed

field k of characteristic zero. Then the above morphism τ: Θn-+Θn is an isomorphism over

the open subset ^ , π ( g - i ) [ l ] ofΘn consisting of stable bundles E such that h°(E)=\. In

other words, Θn is a desingularization of Θn.

PROOF. Clearly the restriction τ 0 : τ~1(W%9n(g-1)\Λ'])-> ^ , π ( f f - i ) [ l ] is proper and

bijective. Since char(Λ;) = 0, τ 0 is birational. The morphism Rs-+%x(n, n(g — l)) is smooth

because it is a geometric quotient; also D\n, n(g—\\ 1)[1] is a smooth subscheme of Rs.

Therefore its image in ̂ ίx(n, n(g — 1)), namely W°Mg_ υ [ l ] is smooth. Hence by Zariski's

Main Theorem, τ 0 is an isosmorphism.

LEMMA 5.6. If X is a generic smooth curve of genus g (g>5), then the closed

subscheme SW\ag_2 ofWx(2, 2g-2) is irreducible.

PROOF. By the results of [T], we know that W\f2g-2 *s irreducible for a generic

curve and the codimension of W\2g_2

 m ^xQ 2# —2) is the expected codimension 4.

The same holds for Ds: = Ds(2, 2g-2,l)inRs. We now claim that Dss: = Dss(2, 2g-2,\)

is the closure of Ds in Rss. This follows as in Lemma 5.3, once we notice that the

codimension of i ? s s \ i ? s in Rss is greater than or equal to g~ 1>5, and that the

codimension of Dss in Rss is not greater than the expected codimension 4. This proves

Dss is irreducible and hence SW\ag-2 *s irreducible.

LEMMA 5.7. IfXίs as in Lemma 5.6, then the Θ-divisor Θ2 in <%x(2, 2g - 2) is normal.

PROOF. We have already seen that Z>ss(2, 2g-2, 0) is integral. So to prove the

lemma it is enough to show that Dss(2, 2g-2,0) is normal. As Dss(2, 2g-2, 0) is Cohen-

Macaulay, by a theorem of Serre, it is enough to show Codim SingZ>ss(2, 2g — 2,0)>

2. As Dss(2, 2g — 2,0) is a determinantal variety in Rss

9 we have the inclusion

Dss(2, 2g-2,\)^ Sing Dss(2, 2g - 2,0).

On the other hand,

τ: Dss(2, 2g-2,0)^Dss(2, 2g-2, 0)

is an isomorphism outside Dss(2, 2g-2, 1). But D5S(2, 2g-2,0) is smooth (see Proposi-

tion 5.2). So we have SingZ>ss(2, 2g-2,0) = Dss(2, 2g-2,1). Recall that the codimen-

sion of Dss(2, 2#-2,0) in Rss is 4. So we get Codim SingZ>ss(2, 2 # - 2 , 1) = 3. This com-

pletes the proof.

PROPOSITION 5.8. For a generic smooth curve of genus g
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Recall that W\2g-2\\~\ ™ t n e °Pen subscheme consisting of stable bundles with exactly

one dimensional space of sections.

PROOF. Clearly we have a set-theoretic union (disjoint)

where Yι = SW\ag_2 and

Y2 = {[V-]eWx(2,2g-2): Kis semistable but not stable and h°(V)=l} .

By Theorem 5.5 we see that Sing(<92)c γχ u γ2. We now show that Yί9 F 2 c S i n g Θ 2 .

We first show y 1c=SingΘ 2 By Lemma 5.6, it is enough to show W\j2g_2^Sing<92.

First note that we have

SingDs(2, 2g- 2, 0) = Ds(2, 2# - 2, 1).

The required inclusion above now follows readily from the fact that, W 2,29-2 being a

geometric quotient of Dss(29 2g — 2,0), the quotient map is smooth.

To show F2c=Sing<92, we consider the morphism

given by φ(L, Af) = [ L © AT]. It is not difficult to see that r 2 = ̂ ( f 2 ) , where Ϋ2 is the

locally closed set in %x(l, l-g)x °HX{\, 1 -g) given by

(Here Θx is the <9-divisor in the Jacobian, <%x(l,g—l), of degree g— 1 line bundles on

Xand

Because φ is a finite morphism, dim Y2 = dim Ϋ2 = 2g — 1. Now consider the map

τ: <92-><92 and set U: = Θ2\SW\f2fl_2. It is clear that U is open in 6>2 and Y2 is a

closed subset of U. Restricting the morphism τ to τ" 1(ί/)-^t/, we see that the locus of

points where τ fails to be locally injective is precisely τ~1(Y2). Computing the dimension

of fibres of τ over Y2, we see that dimτ~1(F2)<3gf —3. It now follows that Y2 is precisely

the singular locus of U from the following fact:

Let f: X-+ Y be a proper birational morphism from an n-dimensional smooth variety

onto an n-dimensional normal variety. Let

S={xeX\ f is not locally injective at x] .

Then /(5) = Sing Y if codim(5)>2 (cf. [N-R, Lemma 4.4]). This completes the proof.

REMARK 5.9. Note that the above proof shows that the singular locus of Θ2 splits
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into two components, that is, Sing<92 = ^ u F 2 is a decomposition of Sing<92 into

irreducible components.

Putting Theorem 5.5 and Proposition 5.8 together we get:

THEOREM 5.10. If X is a generic smooth curve of genus g(g>5\ the desingularization

τ : Θ2-+Θ2

is an isomorphism precisely outside the singular locus of Θ2-

REMARK 5.11. More generally Theorem 5.10 is true for n>3 and g>3. To this

end we observe

• The codimension of i ? s s \ # s in Rss is not less than 5.

• Dss(n, n(g — 1), 1) is nonempty (indeed, we can always choose a vector bundle

V= L ® Mt (1 < i < n - 1 ) such that h°(L) = 1, /ι°(M/) = 0).

These observations together imply that WlMg_ υ is non-empty. Hence by the results

of Feinberg [F], W ^ - D is irreducible. Now the proof of the theorem in the general

case proceeds as above.
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