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Abstract. We construct the moduli space of pairs consisting of a vector bundle
together with a vector space of global sections on a fixed algebraic curve over an
algebraically closed field of characteristic zero. The infinitesimal deformations of such
a pair are shown to be parametrized by the first hypercohomology of a natural complex
of sheaves of vector spaces on the base curve. We then apply these results to obtain
desingularizations of theta divisors in moduli spaces of semistable vector bundles.

Introduction. The Brill-Noether loci W7 in the Jacobian of a smooth curve and
the related objects G} have been extensively studied [ACGH] and are known to enjoy
several interesting properties. In this paper we construct analogous varieties G, ; related
to the Brill-Noether loci W7}, ; in the moduli space of vector bundles on a curve. We
prove that in certain special cases these varieties G}, ; are smooth and consider some
applications in the study of generalized theta divisors.

During the final stages of writing this paper, we came across the work of Thaddeus
[Th]. Our results in the rank two case partly coincide with some of his results. For
large degrees, the moduli of pairs has been constructed by Bertram [B] using methods
of Gieseker. We thank Professor Le Potier for showing interest in our work and for
telling us about his theory [P] of coherent systems, part of which is, in a sense, a
generalization of the moduli of pairs to varieties of arbitrary dimension.

The contents of the paper are as follows. In §1, the definition of a-semistability is
given and its immediate consequences are observed. The next two sections are devoted
to the construction of G}, ;. The fourth section is an infinitesimal study of our objects.
In the final section we consider some consequences of this infinitesimal study with
special interest in the generalized theta divisor. We prove (cf. Theorem 5.5) that G,‘,’,,,(g_ m
is a desingularization of the generalized theta divisor ®, in % x(n, n(g—1)). Moreover,
we show that for a generic curve this desingularization is an isomorphism precisely on
the complement of the singular locus of @,.

We thank Professor C. S. Seshadri for suggesting us the problems studied here,
and for his encouragement. It is a great pleasure to thank Dr. V. Balaji for his active
interest and help in this work. We would like to thank Dr. P. Sastry for helpful
discussions.
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NOTATION.

® [ is an algebraically closed field of characteristic zero.

® If X and Y are k-schemes, then p is the second projection X x Y—Y and ¢ is the
first projection X x Y—X. Sometimes we denote p by py and g by py.

® Grass(a, m) is the Grassmanian of a-dimensional quotients of k™.

® For a vector bundle E, Grass(a, E) is the a-th Grassmanization of E.

® 9 (n,d) and U5(n, d) denote the moduli spaces of semistable and stable vector
bundles respectively.

® X V' stands for S-equivalence of vector bundles ¥ and V.

Sing(X') denotes the singular locus of X.

® If Fis a vector bundle over a smooth projective curve X, then deg(E) and rk(E)
denote the degree and rank of E respectively.

1. Preliminaries. In this section we briefly go through the notions of a-semista-
bility and S-equivalence of a-semistable pairs. We state at the outset that all schemes
considered are algebraic and defined over algebraically closed fields k of character-
istic zero.

Let X be an irreducible, smooth projective curve of genus g >2. If E is an algebraic
vector bundle on X, we let u(E) denote the slope, deg(E)/rk(E), of E.

DEerFINITION 1.1. (i) A pair (E, A) of type (n, d, r) on X consists of a vectot bundle
E of rank n and degree d on X and an r-dimensional subspace A of H(E).
(i) A morphism f: (E, A)—(F, IT) of pairs is a homomorphism f: E—F of vec-
tor bundles which takes A to II.
(iii) ® A subpair of a pair (E, A) is a pair (F, IT) such that F= E and I1 < A.
® A quotient pair of (E, A) is a pair (G, X) together with a surjective
homomorphism f: E—G such that X =H°(f)(A).

ReEMARK 1.2. Let (E, A) be a pair and FcE a subbundle of E. If we let
Ap=H°(F)n A, then (F, Ay) becomes a subpair. In what follows we reserve the notation
Ag for dim Ap.

DEerINITION 1.3.  Fix a rational number a>0. We say a pair (E, A) is a-semistable
(resp. a-stable) if for every subpair (F, IT) of (E, A),
dim IT

dim A
HF)+oe k() Su(E)+a—£%5— (resp. <).

We write

dim A

HAE, A):=puE)+o

REMARK 1.4. (i) Note that the a-semistability condition is the same as
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dim A

UEF)+ oA <uWE)+a forall FcE.

(i) Itis not hard to verify that for ‘small’ « (in fact, «a < 1/Ar where A=dim A and
r=rk E) a-semistability (resp. a-stability) of (E, A) is equivalent to
® Fis semistable; and
® We have
dim IT < dim A
tkF = r1kE

, (resp. <)

for all subpairs (F, IT) of (E, A) with 0# F# E and u(F)= u(E).

This is a recast (cf. [B]) of the condition of stability given in [B-D] for the case
dim A=1. Whenever we say that a pair (E, A) is ‘semistable’ we mean that (E, A) is
a-semistable for an a which is small in the above snese.

(iii)) For o small, the following are true.

® F is stable = (E, A) is a-semistable for all A< HY(E).
® (E, A) a-semistable = E is semistable.
® Further, if (n, r)=1, then (E, A) is a-semistable <> (E, A) is a-stable.

(iv) We say that a pair (E, A) is simple if the only endomorphisms of the pair are
scalars. It is not hard to see that every a-stable pair is simple (cf. [M-S]).

(v) If(E, A) is a pair of type (2, d, 1) then the above notion of a-semistability of
(E, A) coincides with that in [Th].

Fix a point pe X. This point defines an ample invertible sheaf 0(1) on X of degree
1. Let m, be any positive integer. If (E, A) is a pair of type (n, d, r) we get a new pair
(E(my), A) of type (n, nmy+d, r), where E(mg):=E® 0x(1)®™, and A is the image of A
under the canonical inclusion H°(E)< H(E(m,)).

LEMMA 1.5. A pair (E, A) is a-semistable (resp. a-stable) if and only if (E(m,), A) is
a-semistable (resp. a-stable).

Proor. This follows at once from the definitions once we notice that if W< E(m,),
then

dim(HO(W(—mg) n A)=dim(H(W)n 1) .

DEerFINITION 1.6. Let o and p be fixed positive rational numbers. We let S,(x)
denote the category of a-semistable pairs (E, A) such that p(E, A)=u.

PROPOSITION 1.7. The category S () is abelian in which simple objects are a-stable
pairs.

Proor. The only thing to be verified is that if f is a morphism of pairs in S,(u),
f is of constant rank at every point of X. The verification of this proceeds as in
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Proposition 1.15 of [M-S].

CorOLLARY 1.8. If (E, A) is a a-semistable pair, then there exists a filtration (the
Jordan-Hélder filtration):

0=(Ep, Ao)=(Ey, Ay -+~ <(E,, 4,)=(E, 1)

such that
® U(E/E; 1, Ai/A;—1)=p(E, A).
® (E,/E,_,, A;/A;_,) is an a-stable pair for all i.
Moreover, the isomorphism class of the pair

gr,(E, A):=D(E/E;_, A/A; 1)
is independent of the filtration.
DEFINITION 1.9. Two pairs (E, A) and (E’, A’) are said to be S-equivalent if
grE, A)~gr(E’, A').
We write (E, A) ~ (E’, A') if (E, A) and (E', A’) are S-equivalent.
ReMArk 1.10. (i) Itis not hard to see that
(E, A) ~ (E'A") <> (E(my), A) ~ (E'(m), A) .

(ii) The category S,(u) is bounded. The proof of this is similar to Lemma 5.2 of
[N]. So we may choose m,>0 such that H*(E(m,))=0 and H°(E(m,)) generates E(m,)
for all (E, A)e S (u).

We fix an m, chosen as in Remark 1.10 (ii) above, for the rest of the paper. Now
we go on to the definition of a family of pairs parameterized by a scheme and the
moduli functor for pairs of a fixed type.

DeriNITION 1.11 (cf. [ACGH]). (i) By a family of pairs (E4, A7) of type (n, d, r)
on X, parameterized by a scheme T, we mean:
® A vector bundle E; on X x T such that rk E,=n, deg E,=d for all 1€ T(k);
and
® A locally free subsheaf A of p E; of rank r such that the canonical map
Ar ® k(t)— H°(E,) is injective for all te T(k).

(i) Two families of pairs (E;, Ay) and (E7%, A%) are said to be equivalent if
there exists a line boundle £ on T such that E7~E;® p*# and this isomorphism
takes AT to A;® L. If (E, Ar) and (E%, A%) are equivalent, we write (Eg, Agp)~
(E7, A7).

ReMArk 1.12. If (Eg, Ag) and (EY, AT) are families of pairs such that (E,, 4,)~
(E;, Ay for all teT(k) and if (E, A,) is a-stable for all te T(k), then (E;, Ap)~
(E7, A7).

With this we define the moduli functor for pairs of type (n, d, r) as
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7 4° (Schemes)—(Sets)
defined by

@' (T):={equivalence classes of families of pairs (E,, 4,) of type (n,d, r+1)
such that (E,, 4,) is semistable for all te T(k)} .

See Remark 1.4 (ii) regarding semistability of a pair.

2. Construction of moduli spaces. In this section we construct the moduli spaces
of semistable pairs of type (n, d, r) for d>0. Recall (cf. Remark 1.4 (ii)) that ‘semistability’
of a pair (E, A) means a-semistability for small a. Note that (E, A) is semistable = E is
semistable. (See Remark 1.4 (iii).)

For the sake of brevity, set d, :=nm,+d (recall that m, is fixed and m,>0). Let
N:=yx(E(m,)) where E is a vector bundle of rank n, degree d, and y denotes the Euler
characteristic. Also set H:=H%OY).

Let P be the Hilbert polynomial of vector bundles of rank », degree d, on X, that
is, P(m)=d,+n(m—g+1). Let Q stand for the Quot-scheme of coherent quotients of
H® 0y with fixed Hilbert polynomial P. Let ¥~ be the universal quotient on X x Q.
For ge Q(k), we let ¥, denote the restriction of 7" to X x {¢}. Define

R:={qeQ: ® V, islocally free of rank n and degree d,
® The canonical map H® Ox—H°(V,) is an isomorphism} .
It is well known (cf. [S-1]) that R is a smooth, irreducible, open subscheme of Q. Let
R* (resp. R®) denote the open subscheme of R consisting of ge R such that V, is

semistable (resp. stable). Notice that p, ¥ is actually locally free as deg V,=d,>0. Now
set

R:=Grass(N—r, pY) .

The second hypothesis in the definition of R shows that p,¥” is in fact free on R and
R:=RxGrass(N—r,N).

So R is smooth and irreducible.

PrOPOSITION 2.1. (i) Let t: R»R be the natural projection. Then the pair
(1 x )*v", A), A being the tautological subbundle of t*p, ¥ =p (1 x 1)*¥", gives a family
of pairs of type (n,d,, r) on X parameterized by R. We denote this pair by (¥, AR).

(ii) R enjoys the following ‘local universality’ property:

Let (E;, Ag) be any family of pairs of type (n, dy, r) parameterized by a scheme T.
Then given te T(k), there exists an open set S containing t and a morphism f: S — R such
that
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(Es, As)~ f[*(V& AR) »
where (Eg, Ag) denotes the pair (Ey, Ay) restricted to the open subscheme S of T.

PrROOF. (i) is obvious. (ii) follows from the fact that the Grassmann functor is
representable and from the local universality property of R (cf. [S-1]).

The natural action of Aut(H)~GL(N) on R lifts to an action on R. If we let R*
(resp. R®) denote the subset of R consisting of semistable pairs (resp. stable pairs), it
is easily seen that R* and R°® are invariant under the action of GL(N). It is not difficult
to prove:

PROPOSITION 2.2. (i) The action of GL(N) on R goes down to an action of PGL(N),
and PGL(N) acts freely on R°.

(i) Two points in R lie in the same PGL(N) orbit if and only if the corresponding
pairs are isomorphic.

(iii) The orbit closure equivalence relation (cf. [S-2]) in R* is the same as
S-equivalence of semistable pairs.

Now let M be a positive integer and let Z denote the M-fold product of
Grass(n, N). There is a natural linearization of the diagonal action of PGL(N) on
Z (cf. [M-2], [S-2]). Let Z** (resp. Z*) denote the open subschemes of Z consisting of
semistable (resp. stable) points with respect to this linearization. If we fix a sequence
{x1, ..., xy} of M points in X, we get a natural PGL(N)-equivariant morphism y:
R*—>Z given by 9(q):=((Vp)s,» - - - » (Vp)xp,)> Where (V),, denotes the fibre of the vector
bundle ¥, at x; and hence is canonically a quotient of H.

THEOREM 2.3 (cf. [S-2], [N]). There exists a positive integer M, such that
whenever M > M, we can find a sequence {x,, ..., Xy} of M points in X for which the
associated morphism vy satisfies the following properties:

(i) 37} (2*)=R*

(i) y HZ)=R°

(iii) 7y: R¥*->Z*% is a closed embedding.

Fix M, as given by Theorem 2.3 above. Let M> M. Set Z:=Z x Grass(N—r, N).
and 7:=y xid: R—Z. In what follows we fix a positive rational number ¢. Also p, will
denote the constant dy/n.

Give Z the polarization (1, ..., 1, &). Let Z* (resp. Z*) denote the open subscheme
of semistable (resp. stable) points with respect to this polarization. For any point
(@1, ..., du, ¥)€ Z, and any proper non-zero subspace V of H define

V)= Y dimV,—"; and
A= dimy) & TN
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(V)= p( V)—m [N(dim V' —dim 7)—ndim V']
€ . X
=)~ Sy VGO akery)—ndim V3,

where V;=¢,(V) and V:=y(V).
It is not difficult to extract the following numerical criterion for semistability in Z
with respect to the polarization (1, ..., 1, ¢) (cf. [M-S]).

PROPOSITION 2.4. A point (¢4, ..., O, W)€ Z is semistable (resp. stable) if and only
if for every proper non-zero subspace V of H, we have 8(V)>0 (resp. >0).

We now come to the main ingredient in the construction of the moduli space:

PROPOSITION 2.5. There exists an integer M, > M, such that for all M>M, the
morphism 7: R—Z satisfies the following: (i) 7~ (Z*)= R*, and (i) y~(Z°)= R°.

PROOF. We first prove j~ Y(Z%) < R*. Let (g, ¥) e~ (Z*). Suppose that (g, y) ¢ R*.
Then there exists a subpair (G, IT) of (V,, kery), such that 0#£G#V,, u(G)=p, and
WG, I)>r/n. Let V=H°(G). It is then not difficult to see that (cf. [N, pp. 155-157])
V is a proper non-zero subspace of H, p(V)=0 and N - rk(G)=n-dim V. Therefore,

€ .
G(V)<W [nu(G, IT)dim V— N - rk(G) - w(G, I1)]=0,
a contradiction. (See Proposition 2.4.) This proves §~ 1(Z*)< R*.

Conversely, let (g, )€ R* and let (¢4, ..., ¢, ¥) denote the point (g, ¥). Fix a
subspace V of H. Let G denote the subbundle generated by V. Set IT=H°G)nker .
We have to consider now two cases:

Case 1. w(G)=p, and V=HOG). In this case, arguing as above, we see that
p(V)=0 and N-rk(G)=n-dim V. Therefore,

o) [nu(G, IT)dim V' — N - rk(G)uw(G, I1)]=0.

> &
NM(dim V)
Case 2. Either u(G)<pu or V# H°G). In this case it can be verified that

I (e)
N> ==

(See [N, pp. 153-155].) Hence

1 1 € . .
G(V)>7V2_—ﬂ |:deg(G)+W(Nd1mH—rd1m V):| .

But deg(G) <rk(G)po<np,=d,. Hence
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N—1
degG+—°  (NdimI—rdimV)<do+ 70—V _. ¢
N(dim V) N
Thus
1 C
oV)>———.
(V) N M

So 8(V)>0, for M>0. This shows that 6(})>0 in both Case 1 and Case 2. Namely,

(@1, - .., dup W) is semistable. This proves R <5~ }(Z*). The proof of (ii) is similar and
is omitted.

COROLLARY 2.6. Let(Ey, Ag)be afamily of pairs of type (n, d, r) on X parameterized
by a scheme T. Let T* (resp. T°) denote the set of te T such that (E,, A,)) is semistable
(resp. stable). Then T* (resp. T®) is open in T.

PrOOF. By Theorem 2.3, R** (resp. R®) is open in R. Now use the local universality
property of R to finish the proof.

We are now in a position to complete the construction of the moduli space of
semistable pairs of type (n, dg, r). First we have:

PROPOSITION 2.7 (cf. [S-3]). Let Z and Z be as above and let n: Z—Z be the
natural projection. Then there exists a positive number ¢, such that for any 0 <e<g,, we
have

n~NZ)<Z* and w(Z¥)=Z*.

(Recall that the constant ¢ figures in the polarization (1, ..., 1, &) on Z with respect to
which we take semistable points.)

Proor. This can be seen by a direct verification using the numerical criterion of
Proposition 2.4.

Let P(n, d, r) denote the set of S-equivalence classes of semistable pairs of type
(n, d,r) (see §1). Then we have:

THEOREM 2.8. (i) There exists a structure of an irreducible, normal projective
algebraic variety on P(n, d,, r). We denote it by G,,). Further, G,,} has the property
that given any family of semistable pairs of type (n, d,, r) on X parameterized by a scheme
T, the natural map n: T—G' ;! sending t to the S equivalence class n(t) of (E, A,) is a
morphism.

(i) If (n,r)=1, we have a universal family of stable pairs on G}, denoted by
(&p, Ap). Also G}, is smooth in this case.

(iii) There is a canonical surjective morphism t: G, >%Ux(n, dy). Furthermore t
is a projective bundle over the open subscheme consisting of stable bundles.
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REMARK 2.9. Note that Theorem 2.8 (ii) can be interpreted as: The scheme G}

n,do
represents the functor 4,1 if (n,r)=1.

PrOOF OF THEOREM 2.8. (i) Consider the morphism 7:=yxid: R*—Z*. The
image of § is actually contained in, as ¢ <g,, the open subset U:=Z* x Grass(N —r, N)
of Z. Let Y be the image of j and ¥ the closure of Y. Now the proof consists in showing
. V#=§(R*) and Y*=7(R"). To see this first observe that

Y*=YnZ* and Y*2§(R%).

To prove the other inclusion, let ze Y*. Since e¢<eg,, by Proposition 2.6, ze U. But
Yc U, hence ze Yn U. But as y: R*—Z* is proper, ze Y. Let z=7(q, V). Since ze Z*,
(g, W) €7~ Y(Z*)=R* (see Proposition 2.5). That is zeJ(R*). This proves the claim.

It follows now, (cf. [N, Lemma 3.12]), that there is a good quotient of R* by
PGL(N) and P(n,d,r), as a set, is in bijection with the k-valued points of the quotient
scheme. We denote the quotient scheme by G} .. That G}, ;! is irreducible and normal
follows from the fact that R* is irreducible and smooth (cf. [M-2]). The coarse moduli
property mentioned in (i) now follows immediately from the local universality property
of R* (see Proposition 2.1) and Proposition 2.2 (iii).

(ii) If (n, r)=1, every semistable pair is stable. So to give a descent of the universal
pair (¥, A), it is enough to show that this pair can be modified to get an equivalent
pair

(Vr@p*Z, Ak ® Z),

on which the isotropy k* acts trivially. Clearly k* acts as scalars on both #% and A3.
So it is enough to produce a GL(N) line bundle ¥ on R on which the group
k* acts by the character t—¢"!. To this end consider the line bundles Fy=
det(A g)*; and F; =det(p, 7&(1)) ® det(p,¥%)*. Now k* acts by characters ¢+ ¢~" and
t—1t" on F, and F,, respectively. If we choose a,be Z such that ar+bn=1, then
P =(Fy) “®(F,;)*" will do the trick.

(iii) This follows from the fact that the morphism 7 is proper and dominant.

3. Construction of G} ; for all degrees. In this section we construct the moduli
scheme of semistable pairs of type (n, d, r) for all d>0 and show that if (n,r)=1, it
represents the functor ¢} ;'. All along we keep the notation of §2. The general reference
for this section is [ACGH].

On X x R, considered in §2, we have the short exact sequence

07 (—mg)>¥V >V |V (—my)—-0.

Applying p, to this we get the exact sequence

0 s p W (—tmg) —— ¥ s p W V(=) —— RAp ¥ (—mg) —— 0 .
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Let K° and K* denote the locally free sheaves p,¥" and p(¥'/¥"(—my)), (cf. [M-F, p.
19]) of ranks n(my—g + 1)+ d and nm,, respectively. In what follows we will be crucially
concerned with the morphism ¢ : K°—K! of locally free sheaves.

For the sake of brevity let /=n(m,—g+1)+d and h=[—(r+ 1). Consider now the
closed, invariant subschemes of R* (resp. R®) defined by

D*(n,d,r):=R*nDy(h) and D*(n,d,r):=R°nDyh),
where D (h) stands for the 4-th determinantal locus of ¢ in R defined by
D y(h):=Spec(Or/ S 4(h)) ,

where £, : =im A"¢* : Hon(A"K*, A"K°)— 0. Here ¢p* stands for the dual of ¢.
It is now easily checked that

Supp D*(n, d,r)={qe R*: h°(V )=r+1} .

Also a good quotient of D*(n, d, r) by PGL(N) exists (cf. [N, Prop. 3.12]). Let us denote
it by SW; ;. We note also that, as char.(k)=0, SW7, , becomes canonically a closed
subscheme of % (n, d).

Supp(SW™ )={[V1eUxn, d): °(V)=r+1} .

Recall now that R (see §2) is the (r+ 1)-th Grassmannization of the locally free
sheaf p,¥ =K°. The map 7 is the projection onto R. Let D(n, d,r) be the canonical
blow-up in R of D(n, d, r):

ﬁ(n, dr).= Spec((O,;/ﬁd,) ,
where .7, : =im ¢* : #om(Ag, T*K')— 0. Here ¢ is the composite
PR PEEES CRALET Cl
(Recall that A is the tautological subbundle of 7*K°).
It can now readily be verified that
Supp D(n, d, )= {(E, A)e R: A< HY(B(—m,))} ,

where we regard H°(E(—m,)) as a subspace of H°(E) via the canonical injection from
HO(E(—m,)) into H°(E). Hence D(n, d, r) parameterizes canonically a family of pairs of
type (n, d, r+1). Note also that D(n, d, r) is a closed, invariant subscheme of R. Let

D*(n,d,r)=D(n,d,r)n R* and Dn,d,r)=D(n,d, r)nR*.

By the property of invariance of the definition of semistability (see Lemma 1.5), on
tensoring by a line bundle, D*(n, d, r) (resp. D%(n, d, r)) consists of pairs (E(—m,), A) of
type (n, d, r+ 1) which are semistable (resp. stable). Furthermore we have:

PROPOSITION 3.1. The scheme D(n, d, r) has the local universality property (see §2)
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for any family of pairs of type (n, d, r+ 1) parameterized by a scheme T.

PrOOF. Let (Er, A7) be a family of pairs of type (n,d, r+1) on X parameterized
by a scheme 7. Consider the family (E(m,), A7) of semistable pairs of type (n, dy, r+ 1)
(here A stands for the canonical image of Ay in p,E(m,)). There is a natural morphism
f: U>R, where U is an open subset of S, as (E{(m,), A) is a family of pairs of type
(n, dy, r+ 1) (see Proposition 2.1 (ii)). But as the set-theoretic image of f is contained
in D(n, d, r), we only have to show that f actually factors as a morphism through
D(n, d, r). This follows if we know that #:=kerf*c.#,, where f* is the morphism
O~ f,0r of 0 modules associated to f. To show this note that ¢: Az—>T*K" is zero
when restricted to Spec(0 z/.#). Now it is not hard to see that .#, is the smallest ideal
with this property and hence . , = .#. At this stage it is clear, as f factors as a morphism
through D(n, d, r), that f*(¥5(—m), A5)~(Er, A7). Here (¥ 5(—my), A 5) denotes the
pair (¥&(—my,), Ap) restricted to X x D.

REMARK 3.2. (i) It follows from Corollary 2.6 that D* and D* are open in D.

(i) It is not hard to see that the orbit closure equivalence relation in D*(n, d, r)
is the same as S-equivalence of pairs of type (n, d, r+1). (See Proposition 2.2 (iii) and
Remark 1.10.)

THEOREM 3.3. (1) The set of S-equivalence classes of semistable pairs of type
(n, d, r+ 1) can be equipped with the structure of a projective k-scheme.
(i) If we denote the moduli scheme of pairs of type (n, d,r+1) by G}, ;, we have:
® For any family of semistable pairs (Er, Ar) of type (n, d, r + 1) parameterized
by T, the natural map ¢: T—G, ; taking t to the S-equivalence class of
(E,, A)) is a morphism of schemes. Furthermore G}, ; becomes naturally a
closed subscheme of G ;.
® [f(n,r+1)=1, then G} ; represents the functor 9, ;.

Proor. The existence of a good quotient G% ;! of D*(n, d, r) by PGL(N) follows
from [N, Prop. 3.12]. As char(k)=0, G ;' becomes naturally a closed subscheme of

r—1

ndo - Now the theorem follows from Theorem 2.7 and Proposition 3.1.

ReMARK 3.4. The independence of D*(n, d, r), hence of SW7,,, of the choices of
m, and of the universal bundle ¥~ follows from the fact that D*(n, d, r) can be described
as the (r+1—d+n(g—1))-th Fitting ideal of R'p, ¥ (—m,). See [ACGH] for details.
Also it is not difficult to see that G}, , is also independent of these choices. For instance,
when (n, r+1)=1, it follows from the fact that G}, ; represents ¥, ;.

4. Infinitesimal deformations of a pair. Fix a pair (E, A) on X. In this section we
prove that the infinitesimal deformations of (E, A) are parameterized by the first
hypercohomology of a natural complex of sheaves on X arising from (E, A). Further,
we show that the local deformation functor of (E, A) is formally smooth if the second
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hypercohomology of this complex vanishes. The idea of parameterizing infinitesimal
deformations of certain objects by hypercohomology is due to Welters [W, Prop. 1.2].
See also [B-R].

Let k[¢] denote the algebra of dual numbers over k and set 7=Spec k[¢].

DEerINITION 4.1. (i) Let 4 be a finite dimensional local k-algebra. A deformation
over A4 of a pair (E, A) is a triple (E,, A4,, ¢ ,), where (E,, A,) is a family of pairs on X
parameterized by Spec 4 and ¢ ,: (E,®k, A, ® k)—(E, A) is an isomorphism of pairs.

(ii) A (linear) infinitesimal deformation of (E, A) is a deformation of (E, A) over
k[e].

(iii) Two deformations (E,, A,, ¢,) and (E',, A'y, ) of (E, A) over A are said
to be equivalent if there exists an isomorphism y: E,—E’, of vector bundles over
X x Spec 4 such that:

® (p,),Y carries A, onto A’;, where p,: X x Spec 4—Spec 4 is the canonical
projection; and
® oY@ N)=0,.

(iv) The local deformation functor % 4 of a pair (E, A) is the functor
(Finite dimensional local k-algebras)—(Sets)

which assigns to an algebra A the set of equivalence classes of deformations of (E, A)
over A.

We denote by T, the set % 4 (k[e]) of equivalence classes of infinitesimal
deformations of (E, A). From general arguments (cf. [Sch., Lemma 2.10]) there exists
a natural structure of a k-vector space on Tg 4.

REMARK 4.2. Recall that if 4 is a local k-algebra and E, is a vector bundle on
X x Spec 4, then giving a subbundle 4, of (p,),E, is equivalent to giving a free
A-submodule of H°(X x Spec 4, E ,).

Consider a fixed pair (E, A) on X. Let A, denote the constant sheaf on X with
fibre A. Since X is an irreducible topological space, Ay is flasque. There is a natural
monomorphism ¢: Ay— E of sheaves of k-vector spaces on X defined by éu(s)=s|U for
all U open in X and se A. We shall identify A as a subsheaf of E via the monomorphism
£. Let ¢ denote the quotient sheaf E/Ay. Since Ay is flasque, I'(U, 9)=T(U, E)/A for
all U open in X. Let p: E—% denote the canonical projection of sheaves. Define a sheaf
homomorphism

D: End E—>Hom(Ay, %) by (DP)s)=po¢(s)

for all local sections ¢ of &»< E and se A. Let 4" =A (e.4) denote the complex

D
0—— End E—— Hom(Ay, §)— 0
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of sheaves of k-vector spaces on X.

Let us compute the hypercohomology of the complex 2 * using Cech cocycles.
Choose a finite open covering # ={U,}}-, of X such that each U, is affine. Let I=
{1,...,N}andifi,...,i,el denote U, _, =[)%_, U,,. Using the Cech resolution of
the complex ¢ ° with respect to the covering %, we see that the p-th hypercohomology
HP(A ")~ ZP/B” where, denoting the Cech differential by 4,

ZP={(A, ¢): A C?~ U, HomAx, D)), p€ Z"U, End E), 5A+(— 1D =0}
BP={(6A+(—1)*" D¢, 5¢): Ac C*~ XU, Hom(Ay, b), b€ C? U, End E)} .

PROPOSITION 4.3. There is a natural isomorphism of the first hypercohomology
HY({") of the complex A (E,4) With the vector space T 4, of infinitesimal deformations
of (E, A).

PROOF. View H'(A# ')=Z'/B' as above. Denote T=Speck[e]. Let z={A4;} x
{¢;;}€Z'. We define an infinitesimal deformation (E%, A%, ¢%) of (E, A) as follows.
For each pair i,jel, define 0,;€ I'(U;;, /«t p%E) by 0,;=1+¢¢;;. Then 0,,0, =0, so
we can glue the bundles p}E|y,«r by the ; to obtain a vector bundle E% on X x T.
Let A% be the subset of H%(X x T, E%) consisting of all sections ¢ such that for all
iel, &|y,xr is of the form s—et where se A and te I'(U,, E) with p(t)= A,(s). (Recall
that p is the projection E—%.) It is easily checked that A% is a k[e]-submodule of
HOX x T, EZ). We shall now construct a k[¢]-basis for A%. Let {s*}%_, be a k-basis
for A. Fix ae{l,...,k}. For i=1,..., N, define ;e I'(U,, E) as follows:

® Let t5el'(U,,t) be any section such that p(¢3)=A4,(s%.

® If i>2, let 12eI'(U,, E) be any section such that p(z%)=A4;(s*). Then on U,

p(t%—¢;,(s®)—1%)=0. Hence 4;=15—¢;(s)—12€(U;;, Ax)=A. Define 1=

144, i>2.
Now define £¢=s*—¢t? in I'(U;x T, p%E). For all i>2, we have 6,,£5=¢&% on U;y x T.
Therefore for all i,jel, on U, x T, we have 0,£5=0,,0,;£5=0,,£]=¢¢. Since Uy, is
a dense subset of U;;, we get 0,;65=_7 on the whole of U;; x T. Hence the ¢§ patch up
via the ;; to give a global section ¢*e HY(X° x T, E%). Clearly £*e A%. Now one can
easily verify that {£°}%_, is a k[¢]-basis of A%. This proves that A% is a free k[e]-
submodule of H%X x T, E%) of rank k=dim A. By Remark 4.2, A% defines a sub-
bundle of (py),E% on T. Define ¢ 5 : E5 ® k— Eto be the identity map. Then (E%, A%, ¢7)
is an infinitesimal deformation of (E, A).

We thus obtain a map 4: Z'—T,g 4, which is easily seen to factor through Z'/B!
to give a map A: H' (A *)— T 4. Let us prove that this map is surjective. So, let
(Ey, Ay, ¢7) be an arbitrary infinitesimal deformation of (E, A4). By choosing the
U, small enough, we may assume that ¢;: E;® k—E extends to an isomorphism
Vi Ex|y,x1=P3E |v,x1- Now let 0,;=y, 0 ' € (U, #ut p%E). Since 6;;® 1=1, there
exists {¢;;} € Z (U, 6nd E) such that 0;;=1+e¢;;. Let {¢*}k_, be a k[e]-basis of
HYT, A;)c HY X x T, Ey). Let £¢= é“lui «1; We can write (%) =s*—et? where {s*}%_,
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is a k-basis of A and t*eI'(U;, E). Define a k-linear map A;: A—>I'(U;, 9) by A;(s)=
p(t%). Then z={A4;} x {$;;} € Z" and it is immediate that (Er, Ay, ¢7) is equivalent to
(E%, A%, ¢%). Hence 4 is surjective. In the same manner, we can prove that 4 is injective.
This completes the proof of Proposition 4.3.

Having computed the infinitesimal variations of a pair, we now turn our attention
to the question of smoothness.

PROPOSITION 4.4.  The local deformation functor 4 4 of a pair (E, A) is formally
smooth if HX(A (g 4)=0.

PrOOF. Recall that a small extension is an epimorphism 7: A—A of finite di-
mensional local k-algebras whose kernel is a non-zero principal ideal (¢) such that
m, - t=0 where m, denotes the maximal ideal of 4. To show that % 4 is formally
smooth it suffices (cf. [Sch, Remark 2.3]) to check that whenever #: A—A4 is a small
extension, Y 4/(n): Y .a(A)>%k 4(A) is surjective. Fix such an extension and let
ker(n)=(z). Consider an affine open covering % of X as before. If R is any k-algebra,
denote the open covering {U; x Spec R} of X x Spec R by %y. Fix a basis {s*}t_; of A.
Note that giving an element 0 e % 4,(4) is equivalent to giving the following data:

® a cocycle {0;;} € Z'(U 4, S «t p%E) such that 9:j|vij= I;

® an A-linearly independent set {¢2}%_; = I'(U; x Spec 4, p% x E) for each ie I such

that £2|;,=S* and 6,;¢%=¢7 on U, x Spec 4.

Now take an element fe %, 4 (A4) and lift the corresponding data ({0}, {£7})
arbitrarily to 0;;€ I'(U;; x Spec A, «/«¢p%E) and EfeI'(U;x Spec 4, pXE). We clearly
have 0,;0,0;"'=1+th; and 6,;¢5—¢&i=1y};, where hjel(Uy, énd E) and yjie
I'(U;;, E). Now define A;;€ I'(U;j, #om(Ax, 9)) by A;j(s*)=—p(y;), where p is the
projection E—%. We will now show that z={4,;} x {h;;} € Z?, i.e., that (i) d{h;;}=0;
and (ii) 6{A;;}+{Dh;;}=0. To check (i), decompose 6;;=1+y;; where ¥, ;em,-
I'(U;j, érd E), and using t-m,=0, check that 0;;(1+ thjy)=(1+th;,)0;;. In other
words, 0;;0;,0,,0;; ' =0;6,,0;'0,;. From these we get

Jl
(1 + thy )1+ thy) (1 —thyy) = (1 +th) .

Now, observing that t2=0 gives (i). Let us now prove (ii). Since multiplication by ¢ is
injective, it suffices to check that B:=4{ty§;} —th;;(s*)=0. Decompose the section &§
as sf—tf where sfeA and tfem, - I'(U,;, E). Then s? patch up to define global sections
s*eA, and ty5;=v;;(s")—;;(15)+ 17 —15. At this stage note that th;;=0,,0;,—0;=
0{Wi;} + V¥ jx. Therefore we see that B= — ;i ;(s*)—8{y;;(¢%)}. But applying y;; to
ty§; we get

Vi s+ (1) =W a(t0) + Wi (10) .

Hence B= —th;;(ti) which is zero because t+-m,=0. This proves that z={4;;} x
{hju}eZ?. Since H*(A ")=0, there exist {4;}eCOU, Hom(Ay, %) and {¢;}e
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CY (U, &rd E) such that {AU} 8{A4;}— D{¢;;} and 6{¢;;} ={h;;}. Define G,;=0,;+t¢;;
and *=¢%— 1%, where u? is an arbitrary section such that p(u%)= 4,(s*). Then we have
0,,0,, =0, which is well and good, but the equality §,;E*=¢2 holds only mod A. Yet,
as in the proof of Proposition 4.3, we can now perturb each £ by an element of A to
remove the phrase ‘mod A’ and write 0;;E%=_£%. Then the system §= ({055}, {€%}) defines
an element Je %y 4(A) which is obv1ously a lift of G, i.e., %, A)(n)(()) #. This proves
that 9 () is surjective.

5. Desingularization of the generalized @-divisor. In this section we show that
the schemes G}, ; (0<d<n(g—1)) are smooth when r=0. We also consider the special
case d=n(g—1) in connection with the @-divisor in % x(n, n(g— 1)).

Let (E, A)e G} 4. Recall that we have a complex

H g.4): 0> End E- Hom(Ay, §)—0
of sheaves of k-vector spaces. This complex fits into a short exact sequence of complexes
0o Hom(Ay, G 1]>H " —>End E—0

where for any sheaf #, #[1] denotes the complex whose first component is & and all
other components are zero. We thus obtain a long exact hypercohomology sequence

0—— HO(A ") —— HEnd E)—> H(Hom(Ay, §)—s H\(H ") —— H(End E)
S HY (Hom(Ay, G) —— HAA ) ——0 .

At this stage a few observations are in order.

REMARK 5.1. 1. Note that H°(¢") is precisely the vector space of global
endomorphisms of E which preserve A. Further, by Proposition 4.3, H'(x¢"") is the
vector space T 4 of infinitesimal deformations of (E, A).

2. Since Ay is a constant sheaf, H%(#om(Ay, %)) is canonically isomorphic to
Hom(A, H°(E)/A). In the above long exact sequence ¢ is the obvious map from
H%&nd E) to Hom(A, HYE)/A).

3. If (n,r+1)=1, then the scheme G}, represents the functor ¥} , as we saw in
§3. Therefore by Proposition 4.4, if H*(X g 4,)) =0 for all (E, A)e G}, ;, then the scheme
G} 4 is smooth. Notice that H*(A g, 4,) vanishes if and only if in the above long exact
sequence the map u is surjective.

PROPOSITION 5.2. Let X be a smooth irreducible projective curve of genus g>?2 and
let d>0. Then the scheme G, is smooth and non-empty.

Proor. Fix a pair (E, A)e GJ,. In view of Remark 5.1(3) we need only to check
that p: H'(End E)—>H (Hom(Ay, 9)) is surjective. Note that we have canonical



336 N. RAGHAVENDRA AND P. A. VISHWANATH

isomorphisms H'(E)~ H'(%9) and. H'(#Hom(Ay, 9)~Hom(A, H'(9)). The first one is
immediate from the exact sequence

0> Ay—>E—->%—-0

and the fact that A, is flasque. The second isomorphism comes from the fact that Ay
is a constant sheaf of vector spaces. Using Serre duality and these identifications, the
dual of u can be thought of as the ‘Petri map’

pu*: HYE*® K)x A»>H%érd EQ K)

where K is the canonical bundle of X. If 6 H(E* ® K) and se A, then we can think
of ¢ and s as global homomorphisms ¢: E—~K and s: Ox— E; the Petri map u* is now
given by u*(o, s)=0 ®s. Since dim A=1, it is now clear that u* is injective, i.e., p is
surjective. Since the genus g >2, there exist stable bundles which admit non-zero global
sections (cf. [Su]), so G2, is non-empty. O

In the rest of the section we consider the case d=n(g—1).

LEMMA 5.3. If X is a smooth curve of genus g=>3, then the subscheme SW .,
of U x(n, n(g — 1)) is reduced, irreducible and equals the closure of W ., _ 1, in Ux(n,n(g —1)).

PROOF. Let us first show that SW . _,, is irreducible. Since S W,?,,,(g_ 1y1s a good
quotient of D* = D*(n, n(g— 1), 0) it suffices to show that D* is irreducible. By [Su], we
know that Wy . _,, is irreducible, hence so is D*= D(n, n(g— 1), 0). We claim that D*
is the closure of D* in R*. Surely, since D* is irreducible and of the same dimension as
D*, it is an irreducible component of D*. Suppose D* has some other component
T# D*. Since D* is a determinantal variety in R* whose expected codimension is 1,
the codimension of T in R* is <1. But T< R*\ R*® and, since the genus g>3, the
codimension of R*\ R*®in R* is >2, a contradiction. Therefore D*= D* and hence
irreducible. This proves that SW? ,,_,, is irreducible. Next note that W2, _,, is open
in SWY ,,-1, and, by [Su], it is non-empty. Therefore its closure in % y(n, n(g — 1)) must
be equal to SW,, ). It remains to show that SW,,_,, is reduced. The scheme D*,
being an irreducible determinantal variety of expected codimension, is Cohen-Macaulay
(cf. [ACGH]), hence has no embedded components. Further, it is birational to D*
which is smooth by Proposition 5.2. Thus D* contains a non-empty reduced open
subset. Therefore D* is reduced. Hence its good quotient SWY,,_,, is also reduced.

]

REMARK 5.4. The assumption d=n(g— 1) does not seem to be very essential in
the above Lemma. Probably it can be proved more generally using results from [Su]
together with the fact that the codimension of R¥*\ R*® in R* is at least g—1. We do
not go into this process here. Notice that the lemma also shows that the blow up
D*(n, n(g—1),0), hence G2, ), is irreducible.
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Let @, denote the generalized theta divisor (cf. [D-N]) in the moduli space
Ux(n,n(g—1)) and let &, denote the smooth scheme G ug-1) It is clear that ©,=
W ue-1y hence by the above lemma, ©,=SW?,,_,,. Let t: 6,>%y(n, n(g—1)) be
the natural morphism. Then t factors through @, to give a morphism 7: §,-0,.

We now have a smooth birational model of O,

THEOREM 5.5. Let X be a smooth curve of genus g >3 over an algebraically closed
field k of characteristic zero. Then the above morphism ©: 6,— @, is an isomorphism over
the open subset W e- 111 of O, consisting of stable bundles E such that h°(E)=1. In
other words, O, is a desingularization of @,

Proor. Clearly the restriction to: t~ (Wy - 1)[11)=> W3 ae-1)[1] is proper and
bijective. Since char(k) =0, , is birational. The morphism R*—>%%(n, n(g— 1)) is smooth
because it is a geometric quotient; also D*(n, n(g — 1), 1)[1] is a smooth subscheme of R®.
Therefore its image in %%(n, n(g — 1)), namely W, _, [ 1] is smooth. Hence by Zariski’s

Main Theorem, t, is an isosmorphism.

LEMMA 5.6. If X is a generic smooth curve of genus g (g>>5), then the closed
subscheme SW} 5,_, of Ux(2,29—2) is irreducible.

PrOOF. By the results of [T], we know that W3 ,,_, is irreducible for a generic
curve and the codimension of W} ,,_, in #%(2, 2g—2) is the expected codimension 4.
The same holds for D*:= D2, 2g—2, 1) in R*. We now claim that D*:=D*(2,2g—2, 1)
is the closure of D® in R*. This follows as in Lemma 5.3, once we notice that the
codimension of R*\ R® in R* is greater than or equal to g—1>5, and that the
codimension of D* in R* is not greater than the expected codimension 4. This proves
D* is irreducible and hence SW3 ,,_, is irreducible.

LemMMa 5.7. IfXisasin Lemma 5.6, then the ©-divisor @, in U 4(2, 2g — 2) is normal.

ProOF. We have already seen that D*(2,2g—2,0) is integral. So to prove the
lemma it is enough to show that D*(2, 2g —2, 0) is normal. As D*(2, 2g—2, 0) is Cohen-
Macaulay, by a theorem of Serre, it is enough to show Codim Sing D*(2, 2g—2, 0)>
2. As D%(2,2g—2,0) is a determinantal variety in R*, we have the inclusion

D*(2,2g—2,1)=Sing D*(2,29—2,0).
On the other hand,
T: D=(2,2g—2, 0)>D*(2, 29 —2, 0)

is an isomorphism outside D*(2, 2g—2, 1). But D*(2, 2g—2, 0) is smooth (see Proposi-
tion 5.2). So we have Sing D*(2, 2g —2, 0)=D*(2, 29—2, 1). Recall that the codimen-
sion of D*(2, 2g—2,0) in R* is 4. So we get Codim Sing D*(2, 2g —2, 1)=3. This com-
pletes the proof.

PROPOSITION 5.8. For a generic smooth curve of genus g (g>5),
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Sing @2=@2\Wg,2g—2[1] .

Recall that W9 ,,_,[1] is the open subscheme consisting of stable bundles with exactly
one dimensional space of sections.

Proor. Clearly we have a set-theoretic union (disjoint)
O \W32g-2[1]1=:Y U Y,,
where Y, =SW},,_, and
Y,={[V]e¥x(2,29—2): V is semistable but not stable and h°(V)=1} .

By Theorem 5.5 we see that Sing(@,)< Y, uY,. We now show that Y, Y, cSing @,.
We first show Y, =Sing ©,. By Lemma 5.6, it is enough to show W} ,,_,<Sing®,.
First note that we have

Sing D32, 29 —2,0)=D%2, 292, 1) .

The required inclusion above now follows readily from the fact that, W9 ,,_, being a
geometric quotient of D*(2, 2g—2, 0), the quotient map is smooth.
To show Y, <Sing ®,, we consider the morphism

Y Ux(1,g—1) x Ux(1, g—1)>Ux(2, 29 —-2)

given by Y(L, M)=[L@® M]. It is not difficult to see that Y,=y(¥,), where ¥, is the
locally closed set in %4(1, 1 —g) x %x(1, 1 —g) given by

Vo =@x(1,g—1)N\O ) x W, [1TuW?,_[1]x(x(1,g—1)\6)).
(Here @, is the @-divisor in the Jacobian, %4(1, g— 1), of degree g—1 line bundles on
X and
W3 -1 [11={LeUx(1, g—1): KL)=1})

Because  is a finite morphism, dim ¥,=dim ¥,=2g—1. Now consider the map
1: @,-0, and set U:=0,\SW} ,,-,. It is clear that U is open in @, and Y, is a
closed subset of U. Restricting the morphism 1 to t~(U)— U, we see that the locus of
points where 7 fails to be locally injective is precisely T~ (Y,). Computing the dimension
of fibres of t over Y,, we see that dim 7~ !(Y,) <3g—3. It now follows that Y, is precisely
the singular locus of U from the following fact:

Let f: X—Y be a proper birational morphism from an n-dimensional smooth variety
onto an n-dimensional normal variety. Let

S={xeX: f is not locally injective at x} .
Then f(S)=Sing Y if codim(S)>2 (cf. [N-R, Lemma 4.4]). This completes the proof.

REMARK 5.9. Note that the above proof shows that the singular locus of @, splits
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into two components, that is, Sing®,=Y,u Y, is a decomposition of Sing @, into
irreducible components.

Putting Theorem 5.5 and Proposition 5.8 together we get:
THEOREM 5.10. If X is a generic smooth curve of genus g (g > 5), the desingularization
1: 0,50,
is an isomorphism precisely outside the singular locus of ©,.

REMARK 5.11. More generally Theorem 5.10 is true for n>3 and g>3. To this
end we observe

® The codimension of R*\ R® in R* is not less than 5.

® D*(n,n(g—1),1) is nonempty (indeed, we can always choose a vector bundle

V=L® M, (1<i<n—1) such that h%L)=1, h°(M;)=0).

These observations together imply that W}, _ ;) is non-empty. Hence by the results
of Feinberg [F], W, ,, -1, is irreducible. Now the proof of the theorem in the general
case proceeds as above.
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