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Abstract. We show that a simple adjoint Chevalley group over a g-algebra without
zero divisors and its elementary subgroup have isomorphic automorphism groups which
are generated by the inner automorphisms, the graph automorphisms and the ring
automorphisms. This leads to an expression for every automorphism as the composite
of a ring automorphism and an automorphism of an algebraic group, which is analogous
to the Borel-Tits theorem and the Margulis theorem for the automorphisms of rational
subgroups of algebraic groups over certain fields.

Introduction. Let G be a simple Chevalley-Demazure group scheme of adjoint

type. The main purpose of this paper is to describe the automorphisms of the Chevalley
group G(R) and its elementary subgroup E(R) provided that the rank of G is greater
than one, where R is an associative and commutative algebra over the rational number
field Q without zero divisors. The first study of this problem goes back to the work of
Schreier and Van der Waerden [13] where they gave a description of the automorphisms
of the projective group PSLn over an algebraically closed field. The automorphisms of
adjoint simple Chevalley groups were determined first by Steinberg [14] for finite fields
and then by Humphreys [12] for infinite fields. We refer to [11] for a historical survey

on homomorphisms of algebraic groups and Chevalley groups. In this paper we discuss
the automorphisms of all subgroups between G(R) and E(R). It turns out that such an
automorphism can be always expressed in a unique way as a product of an automorphism
induced by the conjugation of an element in G(R), a graph automorphism and a ring

automorphism (see § 1 for the definition). We find that each automorphism of a subgroup

between G(R) and E(R) is a restriction of an automorphism of G(R) and, meanwhile,
keeps E(R) invariant (see Theorem 1). This leads to an isomorphism between the

automorphism group of G(R) and the automorphism group of E(R). The structure
of the automorphism group of G(R) and E(R) is given by Theorem 2. We show in
Theorem 3 that every automorphism of a subgroup between G(R) and E(R) is a
composite of a ring automorphism and an automorphism as an algebraic group, which
is an analogue of the Borel-Tits theorem [4] and the Margulis theorem [17]. When
the rank of G is equal to one, the automorphisms of G(R) are known only for some
special rings R and we refer to [6, §1] for a brief review of recent developments in this
particular case.
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1. Terminology and main results. Let gc be a complex simple Lie algebra with

a root system Φ. Using the adjoint representation of QC and a Chevalley basis, we can

construct an affine group scheme G over Z, which is called the Chevalley-Demazure

group scheme of adjoint type (cf. [9]). In particular, for each commutative ring R with

a unit, we obtain a group G(R) which is called the Chevalley group over R of adjoint
type. For each root aeΦ, there is a canonical (exponential) map ua from the additive

group R+ into G(R) (cf. [1, §1.3]). We denote by Ua(R) the set of images ua(r) for all

r e R. The elementary subgroup E(R) is defined to be the subgroup of G(R) generated by
Ua(R) for all aeΦ. For example, if Φ is of type An_l9 the corresponding Chevalley

group of adjoint type is then PSLn(R) and its elementary subgroup E(R) is the subgroup

of PSLn(R) generated by the images of all n x n elementary matrices over R under the

natural homomorphism from SLn(R) to PSLn(R). It is known that E(R) = PSLn(R) when

R is a semilocal ring (cf. [2]). The structure of the groups between G(R) and E(R) is
not yet clear for us for an arbitrary ring R. However, we have following result:

THEOREM 1. Let R be an associative and commutative Q-algebra without zero

divisors. Suppose G(R) is a simple Chevalley group of adjoint type and the rank of G is

greater than 1. Let H be a subgroup ofG(R) which contains E(R). Then every automorphism

of H can be extended uniquely to an automorphism of G(R) and the restriction of each

automorphism of H to E(R) is an automorphism of E(R). In particular, the automorphism
group of G(R] is isomorphίc to the automorphism group of E(R).

We need some description about certain particular automorphisms of G(R] and

E(R) before further stating our main results. Let K be a universal domain containing

Q. In the following, R stands for a β-subalgebra of K and G is a simple Chevalley-

Demazure group scheme of adjoint type.

Let Δ be a set of fundamental roots of Φ and γ an automorphism of Φ which keeps

A invariant. It is easily seen from [10, exp. XXIII, §5.5] that y gives rise to an automor-

phism of G and, hence, an automorphism y of G(R) such that

(1.1) y(ua(r}} = uy(a)(r\ for all a E A or - A , r e R .

y is called a graph automorphism of G(R) related to y. Since E(R) is generated by Ua(R)

for all aeA or —A, the restriction of y on E(R) is also an automorphism of E(R). We

call an automorphism of E(R) of the form (1.1) a graph automorphism of E(R) related to y.

Let φ be an automorphism of R. Since G is a covariant group functor on the

category of commutative rings with unity, φ gives rise to an automorphism of group

G(R), which is called a ring automorphism of G(R) related to φ. A ring automorphism

of E(R) related to φ is an automorphism φ defined by

(1.2) Φ(ua(r}) = ua(φ(r)), for all a e Φ and r e R .

The ring automorphism of G(R) related to φ coincides with φ on E(R) (see the proof

of Proposition 4.2), hence we denote it also by φ without any confusion.
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For each element g e G(R), we denote by Int g the inner automorphism of G(R]

induced by the conjugation by g. Since G is of adjoint type, G(R) is centreless and we
may identify G(R) with the subgroup oΐ AutG(R) generated by Inig for all geG(R).

THEOREM 2. Suppose the rank of G is greater than one. Let H be G(R) or E(R).
Then Aut H is generated by G(R), the graph automorphisms and the ring automorphisms.

More precisely,
( i ) every automorphism αe Aut// has an expression

(1.3) α = Int0 y φ ,

where g e G(R), y is a graph automorphism and φ is a ring automorphism. Moreover, the
factors g, y and φ are uniquely determined by α;

(ii) let A be the subgroup of Aut H generated by G(R) and the graph automorphisms,
and let B be the subgroup of Aut H generated by G(R) and the ring automorphisms. Then

we have normal sequences

(1.4)

and

(1.5)

(iii) we have following isomorphisms:

(1.6) AutH/A^B/G(R)^AuiR

and

(1.7) Aut H/B ^ A/G(R) ^ S ,

where S is the group of order two if G is of type An9 Dn (n^5) or E6, S is the symmetric
group on three objects ifG is of type D4 and Sis trivial for all other cases. Inpartίcular

(1.8) AutH/G(R)^AutRxS .

THEOREM 3. Suppose the rank of G is greater than one. Let H be a subgroup of
G(R) which contains E(R). If a is an automorphism of H, then there exist an automorphism

φ e Aut R and an automorphism β of the algebraic group G(K) such that

(1.9) a(g) = β(φ(g)), for all

where β and φ are uniquely determined by α.

2. Notation and some lemmas. Throughout this paper G stands for a simple
Chevalle'y-Demazure scheme of adjoint type and we assume that the rank of G is greater
than one, K is a universal domain containing Q and R is a β-subalgebra of K. If M
and P are subgroups of a group //, we denote by CP(M) and NP(M) the centralizer and
the normalizer of M in P, respectively. The centre of H is denoted by C(H). [M, P]
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stands for the subgroup of H generated by the elements of the form xyx~1y~1 for all
xe M and for all ye P. A subgroup of H which is generated by subsets Xl9 X2, . . . is
expressed by (Xl9 X2, . . . >. If H is an algebraic group, we denote by L(H) the Lie
algebra of H and if M is an abstract subgroup of H, we denote by cl(M) the Zariski

closure of M in H and by cl(M)° the connected component of cl(M) that contains the
identity element.

LEMMA 2. 1 . Suppose H is a connected algebraic group of one dimension. Then every

infinite subgroup of H is Zariski dense in H.

PROOF. Let M be an infinite subgroup of H. Since the quotient group cl(M)/cl(M )°
is finite, cl(M)° is infinite. This means that dim cl(M)° ̂  1 . On the other hand, the

inclusions cl(Λf)° c C1(M) c H implies that dimcl(Λf)°<dim//=l. Thus dimcl(M)° = l
and the above inclusions yield immediately that cl(M) = H.

For each root ae Φ we simply denote by Ua the group Ua(K)9 and let U (resp. J7~)
be the subgroup of G(K) generated by Ua for all aeΦ+ (resp. — aeΦ+). Let B (resp.
B~) be the Borel subgroup ofG(K) which contains £/(resp. U~) as its unipotent radical.

Then BnB~ is a maximal torus of G(K\ which is denoted by T. Note that

Ua(R) = Ua n E(R) , for all a E Φ .

It is obvious that UnE(R) (resp. U~ nE(R)) is generated by Ua(R) for all aeΦ+ (resp.
-αeΦ+). We denote by U(R) the group UnE(R) and by U~(R) the group C/~ nE(R).

COROLLARY 2.2. (i) TπE(R) is Zariski dense in T;

(ii) U(R) is Zariski dense in U and U~(R) is Zariski dense in U~;
(in) B n E(R) is Zariski dense in B.

PROOF, (i) Let A = {aί,a2, .., an} and denote by Tt for the group Γn ( Ua.9 ί/_α.>
for all l^i^n. Then T{ is a one dimensional subtorus of T for all l^i^n and
T=Y[n. = ί Tv Let Ti(R), !</<«, be the set of ^-rational points of Th which is Zariski
dense in Tt by Lemma 2.1, since 7? is infinite. Moreover, it is easily seen that
TnE(R)^>Y\ϊ=:1Ti(R). Therefore we have

ΓΞ> cl(Γn ^(Λ)) 3 Π cl(^(jR)) - Γ ,
i = l

which implies that cl(Γn £(Λ))= Γ.
(ii) Since U(R) is generated by Ua(R) for all aGΦ + , which is Zariski dense in Ua

by Lemma 2.1, we have

Replacing the positive roots by the negative roots, we then obtain the Zariski density

ofU~(R)m U'.
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(iii) Consider inclusions B^Br\E(R}^(TnE(R}} U(R}. By taking their Zariski
closures, we obtain from (i) and (ii)

U(R))=T U=B

from which follows (iii).

PROPOSITION 2.3. Let H be a subgroup of G(R) which contains E(R). Then

E(R) = Γ) N.
E(Q)<=N<ιH

PROOF. Let M be the intersection of all normal subgroups of H which contains
E(Q). Then M^E(R) since E(R) is a normal subgroup of 7/by [16]. On the other hand,

for each a e Φ and each x e β*, let

Λβ(*) = κβ(;φ_β(-;r^

We have

ha(x)ua(r}ha(x) ~ 1 = ua(x 2r) , for all x e Q* and r e /? .

Choosing such xe Q* that x2 ̂  1, we obtain

ua(r) = ha(x)ua((x2-lΓir)ha(xΓlua((x2-lΓίrΓ1£M, for all re^ and aεΦ ,

since M is a normal subgroup of //. This implies that M^E(R). Therefore M = E(R}.

Let g be a Z-form of the simple complex Lie algebra gc and denote by gΛ the
jR-Lie algebra g®z^. Let ad: Qκ-^Matn(K) be the adjoint representation of gκ, where
n is the dimension of QK.

Lemma 2.4. Let z be an element of QK such that ad(z) e Matn(R). Then

PROOF. We write the Cheavalley base of gc as {el5 e2, . . . , en}. Then ad(ef<8)l)e
Matn(Z) for all 1 ̂ i^n. Suppose z has an expression ]Γ"=1 et®Xi, where ^-e AT for all

. Then

(2.1)

On the other hand, suppose

), zsteR, for j, ίe{l, 2, . . . , yι}

and

ad(e/®l) = (^sf)6MatB(Z), e / f r t6Z, for i,s, te { l , 2, . . . , / ι } .

Then the equation (2.1) implies following /22 equations.
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Z12=*l^l, 12+^2^2,12+ ' ' ' + *A,12

Znn = Xiei,nn + X2e2,nn + ' ' ' + Xn^nn '

Since ad^® 1), ad(β2® 1), . . . , ad(eπ® 1) are linearly independent, there are n linearly
independent equations in the above system. Hence the unique solution for xl9 x2,..., xn

satisfying the above equations is given by Cramer's rule as the quotients of the
determinants of certain n x n matrices in Matn(R) factored by the determinant of an

n x n matrix in Matn(Z). Consequently, we obtain that {xl5 x2,..., xn}^R. Hence z lies

in g*.

LEMMA 2.5. Suppose g e G(K). If gua(l)g~1 e G(R) for all ae Φ, then g e G(R).

PROOF. Let {ea, ha. \/a E Φ, Vα t e A} be a Chevalley basis of gc, where \ea., e_Λι~] =
haι. Considering G(K) as a subgroup of GLn($κ) via the adjoint representation of G(K), we
have(cf. [15])

w f l(l) = expad(efl(χ) 1), for αeΦ

and

(2.2) 0Mα(l)0Γ1=expad(0 (eβ®l)), for α e Φ ,

where exp is the canonical exponential map which sends the nilpotent elements in
Mat^) to the unipotent elements in GLn(K). Recall that the logarithm map log sends

the unipotent subset of Main(R) to the nilpotent subset of Matπ(7?) and the composite

log-exp is the identity map on the nilpotent subset (cf. [5, Chap. II. §6.1]). Applying

log on both sides of (2.2), we obtain

log(gua(l)g ~ *) = a% (ea® 1)) e Matn(*), for all a e Φ .

Thus it follows from Lemma 2.4 that g (ea® 1) lies in g^ for all a E Φ. Moreover, we have

^•(A f l l®l) = [̂  (e f l ι(8)l),gr (e_ έ I i ®l)]6g Λ , for all ateA .

Hence g e GLn($R) and we then obtain g e G(K) n GLn(§R) = G(R).

Let QK be a simple Lie algebra over K and Φ a root system of g#. Denote by gfl

the root subspace of gκ related to a root ae Φ. Let ti be the subalgebra of gκ generated
by gfl for all α e Φ + . If b is a subalgebra of gκ, denote by Cu(b) the centralizer of b in
u. The following properties of u are obvious:

LEMMA 2.6. Suppose aeΦ + . Let I={bεΦ+\a + bφΦ + } and J={ceΦ+\c + bφ

Φ + , VZ>e/}, then
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(ii) Cu(Cu(ga))=£gc.
ceJ

Moreover, c + dφΦ+ for all c, deJ, hence Cu(Cu(gJ) is a commutative subalgebra.

LEMMA 2.7. Let I be as in Lemma 2.6 and a e Φ + . Then Cv(Ua) is generated by Ub

for all be I. In particular, Cv(Ua} is connected for all aεΦ + .

PROOF. Let H be the subgroup of G(K) generated by Ub for all positive roots b
such that a + bφΦ. It is obvious by the commutator formula [15] that

(2.3)

On the other hand, since L(U) = u and

Qb = L(Ub)ς:L(H), for all beΦ+ , a + bφΦ ,

we have

dim Cυ( Ua) = dim Cu(gfl) = dim X g fe^ dim L(H) = dim H .
bel

This implies, together with (2.3), that dim Cv(Ua) = dim H. Moreover, both Cv(Ua) and
H are connected because the former is unipotent and invariant under the conjugation
of the maximal torus T, while the latter is generated by connected subgroups. Hence
we obtain Cυ(Ua}^H.

LEMMA 2.8. Let J be as in Lemma 2.6. If a is a positive root, then

(2.4)

PROOF. Since Cv(Ua) is connected by Lemma 2.7, we obtain from Lemma 2.6 that
for each

Note that CuCu(Ua) is unipotent and invariant under the conjugation of T. Hence it is
connected. Thus by the one-to-one correspondence between connected subgroups and
the related Lie subalgebras we obtain (2.4) immediately from the above identities.

LEMMA 2.9. Let a be a positive root. Then CU(R}(Ua(Q)) is Zariski dense in Cv(Ua).

PROOF. It follows from Lemma 2.7 that Ub(R)^CU(R)(Ua(Q)) for all bel. Since
Ua(Q) is Zariski dense in Ua by Lemma 2.1, we then have

(2.5) < Ub(R) [Vbεiy^ CU(R](Ua(Q)) = CU(R)(Ua) ς: Cυ(Ua] .

Moreover, the Zariski density of Ub(R] in Ub for all beΦ+ implies
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Hence, taking the Zariski closures of the subgroups in (2.5), we obtain

3. Automorphisms of E(R). In this section we describe the automorphisms of
E(R), which will play a key role in the proofs of our main results.

LEMMA 3.1. Let H be an absolutely almost simple algebraic group over K. If there
exists a homomorphίsm from E(Q) to H with Zariski dense image, then

dimH=dimG(K).

For the proof of Lemma 3.1, see [7, Cor. 2.4].

PROPOSITION 3.2. Every nontrίvial homomorphism from E(Q) to G(K) has a Zariski

dense image.

PROOF. Let α: E(Q)-*G(K) be a non trivial homomorphism. We first show that

the Zariski closure of u(E(Q)) in G(K) is connected. Let δ be the natural homomorphism
from cl(α(£(β))) to its quotient group cl(α(£(0))/cl(α(£(0))°. Consider a composite of

homomorphisms δa = β: E(Q)->cl(a(E(Q)))/d(a(E(Q)))°. Then | £(β)/ker β \ < oo since
c\(ot(E(Q)))/cl(oι(E(Q)))0 is a finite group. This implies that, since E(Q) is infinite and
simple, E(Q) = ker β. Thus we have

a(E(Q)) s cl(«(£ (0))° £ cl(α(£ (β))) .

Taking the Zariski closures of the above groups simultaneously, we obtain immediately

thatcl(α(£(β)))0 = cl(α(£(β))).
We show next that c\(oc(E(Q))) and G(K) have the same dimension. Then the

connectedness of c\(a(E(Q))) yields immediately that cl(oc(E(Q))) = G(K). Since E(Q) is

equal to its commutator subgroup, we have

In particular, d(a(E(Q))) is not a solvable group and, hence, cl(u(E(Q)))/& is a nontrivial

semisimple group, where 0t is the radical. Let {Gjr= i be the family of simple components
of cl(a(E(Q)))/& and G*d the adjoint simple algebraic group of the same type as G{ for

l^i^m. Then there exists an isogeny ε : cl(α(£(0))/^-»ΠΓ=ι Gf- Let π be tne natural
morphism from cl(α(£(0)) to d(a(E(Q)))/& and Pj the projection of Π™=ίGf to the
7-th factor G^d for 1 ̂ jXm..Note that the image of a Zariski dense subset under the
map PJ (resp. ε and π) is also a Zariski dense subset. Hence the composite ppπ preserves
the Zariski density. In particular, we have for

= G

which means that the composite p^πa is a homomorphism from E(Q) to G^d with

Zariski dense image. It follows from Lemma 3.1 that
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dim G = dim Gf = dim Gj ^ dim cl(α(£(β)))/« ̂  dim cl(α(E(β))) ̂  dim G .

This implies that dimcl(u(E(Q))) = dίmG(K). Hence α(£(β)) is Zariski dense in G(K).

PROPOSITION 3.3. Let H be a subgroup of G(R) which contains E(R). If α is an

automorphism of //, then there exists an element g e G(R) such that

PROOF. Since the restriction of α to E(Q) is a homomorphism from E(Q) to G(K)

with a Zariski dense image by Proposition 3.2, it follows from the Borel-Tits theorem

[4] that there exist a homomorphism of fields φ : Q-+K and an isogeny ε from φG(K),

the group obtained by the base change through φ, to G(K) such that

α(A) = εφ°(A), for all Ae£(β),

where φ° is the canonical morphism from (/(T^) to φG(ΛΓ) induced by φ (for the notations

see [4]). Note that φ is in fact the natural embedding, which implies that φ° is the

identity map. This yields

(3.1) α(λ) = ε(A), for all heE(Q).

Since char K=Q, the isogeny ε is an automorphism of the algebraic group G by [8,
EXP. 23, 24], which can be written in the form (see [3, §14.9])

(3.2) ε = (Intgf-1) y ,

where g e G(R) and γ is a graph automorphism of G related to an automorphism y ,of

Φ. It is easily seen from the definition of a graph automorphism that

(3.3)

hence we have from (3.1) and (3.2)

(Int g) α(£(β)) = Int 0

We claim that g actually belongs to G(R). This is because, for each αeΦ, we have by

(3.1) and (3.3)

(Int g ~ ̂ (l)) = (Int g ~ *) y(Γ >«

which implies by Lemma 2.5 that g~l, hence also gr, lies in G(R).

COROLLARY 3.4. Suppose α is an automorphism ofE(R). Then there exist an element

g e G(R) and a graph automorphism y of E(R) such that

γ (Intg) «(q) = q, for all qeE(Q).

PROOF. Since each graph automorphism of G(R) induces by the restriction a graph

automorphism ofE(R). This result follows from (3.1) and (3.2) where γ is replaced by y ~ 1.
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LEMMA 3.5. If a is an automorphism ofE(R) which fixes each element in E(Q), then

oc(U(R))=U(R).

PROOF. We have oc(BnE(R))^BnE(Q). Taking the Zariski closures of the above

subgroups in G(K), we obtain from Corollary 2.2, (iii) that

d(a(B n E(R))) => d(B n E(Q)) = B .

Note that B is a maximal solvable subgroup and that d(a(B(Rj) is solvable since so is

a(B(R)). Thus we have cl(a(BΓiE(R))) = B. In particular, this implies

(3.4)

Let α e Φ + . We can choose an element heTnE(Q) such that α(/z)^l since TnE(Q) is
Zariski dense in T by Lemma 2.2, (i). Then we have

(3 . 5) hua(r)h ' 1 ua(r) ~ 1 - ua((a(h) - 1 )r) , for all a e Φ + and r e R ,

which implies that Ua(R)<^[Tr\E(Q)> U(R)~] for all aeΦ + . Thus we obtain by (3.4)

a(U(R)) ς= [α(Γn E(Q)\ α(t/(/?))] ς= [Γ, £] n E(R) = U n

This implies that α( U(R))= U(R) since α is an isomorphism.

LEMMA 3.6. Let α be as in Lemma 3.5. Then

(3.6) α( ί/α(7?)) = Ua(R) , /or α// α e Φ + .

PROOF. Suppose a is a positive root. Since Ua(R) is contained in CU(R)Cu(R)(Ua(Q)),

we have by Lemmas 3.5, 2.9 and 2.8 that

(3.7) α(t/β(Λ))c Cϋ(R)CU(R}WUJίΰ)))= CU(R)CU(R)(Ua(Q))

= U(R) n CvCU(R}(Ua(Q)) = U(R) n QC^C/J - t/(Λ) n
ceJ

where J is as in Lemma 2.6. Suppose J={cί9c2, ...,cr] where cl = a. If r^l, then
<x(Ua(R))^U(R)nUa=Ua(R), from which follows (3.6) since α is an automorphism.

Suppose r>2. Then α^cr and (ker £r)° \ker α is an open subset of (kercr)°. Note that,

since (kercv)0 splits over Q (cf. [3, CH. Ill, Cor. 8.7]), (ker cr)° n E(Q) is Zariski dense

in (kerc ,)0 by [4, Cor. 6.8]. Hence

{(ker cr)° \ker a} n E(Q) = {(ker cr)° n E(Q)} n {(ker cr)° \ker a] Φ 0 .

Let λe{(kercr)°\kerfl} n£(β). Then (3.5) and Lemma 2.8 yield

Ua(R)=ί<h)9UJίR) ] and Γ<λ>, Π E/Js Ή C/Cι .
L i=l J i=l

Thus it follows from (3.7)



AUTOMORPHISMS OF SIMPLE CHEVALLEY GROUPS 91

r-l

α(ί7β(Λ)) = [<A>5α(C/β(Λ))]c [] C/Cι..

This gives rise to (3.6) immediately if r = 2. When r>3, we obtain (3.6) by repeating

analogous procedures as above.

LEMMA 3.7. Let a be as in Lemma 3.5. Then

*(UJίR))=UJίR)9 for all aeΦ .

PROOF. Thanks to Lemma 3.6, it is sufficient to show that for all αeΦ +

Write wa = ua(l)u-a(-l)ua(l) for each aeΦ + . Then ^t/^w'1- U-a(R). Note that

α(wα) = wfl for all αeΦ + . Thus we obtain by Lemma 3.6

Let α be as in Lemma 3.5. Since α keeps ί/β(Λ) invariant for all αe Φ, we can assign

a map ΦΛ : R^>R to each #e Φ, which is defined by

φa is obviously well-defined and is an automorphism of the additive group R + .

LEMMA 3.8. Let aeΦ. Then φa is an automorphism of R and φa = φb for all beΦ.

PROOF. We first consider the case where α is a fundamental root. Since the rank

of G is greater than one, there exists a positive root b such that a + beΦ. Let h : Φ+ -»Z

be the height function of Φ + . Then we have by the commutator formula [10, EXP.

XXΠ, §5]

ua(r}ub(s)ua(r) - 1 ub(s) ~l=ua + b(natbrs)u , for r,seR,

where ntttb is an integer determined uniquely by the roots a and b, while u is a product

of elements uc(t) for teR and ceΦ+ such that h(c)<h(a + b). Applying α on both sides,

we obtain

ua(φa(r))ub(φb(s))ua(φa(r)) ~ ^ ub(φb(s)) ~1=ua + b(na,bφa + b(rs}}u' ,

where u' is also a product of elements of the form uc(t) for ceΦ+ with h(c)>h(a + b).

On the other hand, it follows from the commutator formula that

Ua(φa(^b(φb(s))Ua(φa(r)Γ *ub(φb(s)Γ 1 = ua + b(na,bφa(r)φb(s)}u" ,

where u" is a product of elements of the form uc(t) with h(c)>h(a + b). Comparing these

two identities, we obtain

(3 .8) φa+ b(rs) = φa(r)φb(s) , for all r,seR.
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Taking r and s to be 1 respectively, we have

9a + b = (Pa = 9b'

If cεA, then there is a sequence of fundamental roots

such that at + ai+1e0 for all l^i^m—l. Thus we have by the above argument that

φa = φc for all c e A . Let φ stand for φβ for all a e A . It follows from (3.8) that φ(rs) = φ(r)φ(s)

for all r, seR, which means that φ is a ring homomorphism and hence φ is an

automorphism of R.

We show next that φa = φ for all aeΦ + . We use induction on the height of the

roots. If a is not a fundamental root, suppose that φc = φ for all ceΦ with h(c)<h(a).

We can write the root a in the form b + c for some b,ceΦ+ with both h(b) and h(c)
being smaller than h(a). We then have

ub(r)uc(s)ub(r) ' 1 uc(s) ~ 1 = ua(nbtCrs)υ , for all r,seR,

where nb^c is an integer which depends only on b and c, while i? is a product of elements

ud(t) for some teR and deΦ+ with h(d)>h(a}. Applying α on both sides and using the
induction hypothesis, we obtain

ub(φ(r)}uc(φ(s))ub(φ(r}Γluc(φ(s)Γ 1 = ua(nb.cφa(rs))vf ,

where v ' is a product of elements which involves only those positive roots whose height

is greater than h(a). On the other hand, we have by the commutator formula that

^b(ψ(Φc(φ(s))ub(φ(r)Γ\(φ(s)Γ1 = ua(nbtCφ(r)φ(s))υ" ,

where v" is a product of elements involving only the positive roots whose height is

greater than h(ά). Comparing the above two identities, we obtain that φa(rs) = φ(r)φ(s)

for all r,seR. Taking s=l, we then have the identity φa = φ.

Finally we show that φa = φ for every negative root a, hence φb = φ for all beΦ.
Let a be a negative root. Then for any rεR

ua(r) = w-.au-a(-r)wll .

Applying α on both sides, we have

WflίφαW) = w - β« - β( - <p(r))w - a = ua(φ(r)) .

Thus φa — φ. This completes our proof.

THEOREM 3.9. Every automorphism α of E(R) has an expression

(3.9) α = (Int0) rφ,

where g e G(R), y is a graph automorphism and φ is a ring automorphism. Moreover, the

factors g, y and φ are uniquely determined by α.
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PROOF. It follows from Corollary 3.4 that there exist an element geG(R) and a
graph automorphism γ of E(R) such that the restriction of y~l (IntgΓ1) α to E(Q) is
the identity map on E(Q). This means by Lemmas 3.7 and 3.8 that y~1(lnig~1) α is a
ring automorphism φ for some φeAutR, from which follows the expression (3.9).

We show now the uniqueness of g, y and φ. Suppose we have

where g1eG(R), y± is the graph automorphism of E(R) related to an automorphism
of Φ and φ1 is the ring automorphism related to an automorphism φί of R. Then

(3.10)

Since graph automorphisms and ring automorphisms keep both U(R) and U~(R)
invariant, the above equation implies

GW(cl(U-(R))) = #G

G( C7) n NG(U~) = GCR) nBnB~= G(R) n Γ .

This yields, for each fundamental root aeA,

0Ϊ ^"αίlX^Γ ^)~ X = «β(ΦΓ V))

On the other hand, we have

- 1 α ( l ) , for all aeΔ .

Comparing the two equations, we obtain yl=y and a(gϊ 1g)=l for all aeA. In other
words, gϊίgef]ae4kera = C(G(K)). This implies immediately g = g1 and hence φ^ — φ
by (3. 10).

4. Automorphisms of G(7?) and its subgroups. In this section we give the proofs
of the theorems stated in §1. Notation is the same as that in the previous sections.

LEMMA 4. 1 . Let Hbea subgroup ofG(R) with contains E(R) and α an automorphism
of H. If a fixes every element of E(R), then α is the identity map on H.

PROOF. Since E(R) is a normal subgroup of H by [16], we have for all h e f f

hgh~1= a(hgh ~^ = α(%α(A) " 1 , for all g e E(R) .

This yields

(α(A)- 1h)g - g(φΓ )̂ , for all g 6 E(R) , heH,

which means that, since E(R) is Zariski dense in G(K),
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Since G is of adjoint type, CH(G(K}} is trivial. Hence we obtain that a(h) = h for allhεH.

PROPOSITION 4.2. (i) Every automorphism ofE(R) can be extended uniquely to an
automorphism of G(R);

(ii) If H is a subgroup of G(R) which contains E(R), the restriction of each auto-
morphism of H to E(R) is an automorphism of E(R).

In particular, Aut G(R) ̂  Aut E(R).

PROOF, (i) Let α be an automorphism of E(R). We know by Theorem 3.9 that
α has an expression of the form (Int g) γ φ, where g e G(R), y is a graph automorphism
and φ is the ring automorphism of E(R) related to an automorphism φe Aut 7 .̂ It is
evident that y can be extended to a graph automorphism of G(R) by definition. Let φ
be the ring automorphism of G(R) related to φ. We show that the restriction of φ to E(R)
coincides with φ. Identifying G(R) with Homβ..alg(β[G], R), where Q\_G~\ is the Q-
regular function ring of G, we can easily see that φ is defined by

(4.1) ΦteW = φ(0(f)), for geG(R) and /

Suppose aeΦ. Let i : Ua-*G be the natural embedding and ι*: β[G]->β[t/α] the
homomorphism of (g-algebras induced by / in the canonical way, where β[ί/α] is the
(λ-regular function ring of Ua. Then an element g belongs to Ua(R) if and only if there
exists an element 0'GHomβ_alg((2[t/α], R) such that g = g'ι*. Thus, given φeAutR, we
have a commutative diagram

which implies immediately <p(Ua(R))=Ua(R), for all aeΦ. This, together with (4.1) (see
also [1, §1.3]), yields

φ(ua(r)) = ua(φ(r)), for all r e R and a e Φ .

Comparing this identity with (1.2), we see that φ is an extension of φ. Therefore, α can
be extended to an automorphism α in an obvious way. If α e Aut G(̂ ) is also an extension
of α, then ά α~ 1 fixes every element of E(R) and, hence, α = α by Lemma 4.1. Thus the
extension of α to an automorphism of G(R) is unique.

(ii) Suppose α is an automorphism of H. Then it follows from Proposition 3.3
that there exists an element g E G(R) such that the homomorphism (Int g) α: H-*G(R)
keeps E(Q) invariant. In other words, we have E(Q) ̂  Int g a(H) = gHg ~1. Hence it
follows from Proposition 2.3 that

n χ= n N',
NeP N'eP'
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where P is the set of normal subgroups of H which contains E(Q) while P' is the set
of normal subgroups of gHg'1 which contains E(Q). Note that (Intg) α induces a
one-to-one correspondence between P and P' . Thus we obtain

((Int g) α)(£(*)) = ((Int g) α)( f| *} = Π #' = EW -
\NeP / N'eP'

This implies, since E(R) is a normal subgroup of G(R) by [16], that a(E(R)) = E(R).
In particular, on taking H to be G(R), we obtain from (i) and (ii) that the restric-

tion of the automorphisms of G(R) to E(R) yields an isomorphism from Aut G(R) to

AutE(R).

THE PROOF OF THEOREM 1. Thanks to Propositon 4.2, we only need to show that
every automorphism of H can be extended uniquely to an automorphism of G(R). Let
αe Aut H and write α' for the restriction of α to E(R), which is an automorphism of
E(R) by Proposition 4.2, (ii). It follows from Proposition 4.2, (i) that α' can be extended

uniquely to an automorphism α of G(R). We claim that α is also an extension of α.
Indeed, we have for any g e E(R)

Therefore, since E(R) is a normal subgroup of H by [16], we have

%ft-1==(α α- 1)(fcgfΛ- 1) = α(α"1(A))gf(α α-1(A))-1 , for all

This yields

α(α - l(h)} ~lhg = 0(α(α " X(A)) ~ 1 A) , for all # e £(7?) and A e // .

Hence

α(α ~ l(h)} - 1 A e CG(k)(£(Λ)) - C(G(̂ )) = { I } , for all heH.

Thus we obtain that α(A) = α(A), for all heH. Suppose α e Aut G(T^) is also an extension
of α. Then α α~ 1 is the identity map on H and hence is also the identity map on E(R).
This implies by Lemma 4.1 that α α~ 1 is the identity map on G(R). Thus oi — u and the
extension of α to an automorphism of G(R) is unique.

THE PROOF OF THEOREM 2. (i) See the proof of Proposition 4.2, (i).

(ii) It follows from the definitions of graph automorphisms and ring auto-
morphisms that G(R) is a normal subgroup of both A and B. Moreover, let S be the

group of automorphisms of Φ which keep Δ invariant. Then for any γ e 5, φ e Aut R
and ae +A, we have

yΦ(ua(r)) = y(ua(φ(r))) = uy(a}(φ(r)) = φ(uγ(a)(r)) = φγ(ua(ή) , for all reR.

This implies that yφ(g) = φy(g), for all g e E(R). We obtain therefore from Lemma 4. 1

(4.2) γφ = φγ , for all γ e S and φ e Aut R ,



96 Y. CHEN

from which follow the normal sequences (1.4) and (1.5) immediately.

(iii) The normal sequences (1.4) and (1.5), together with the uniqueness of the

expression (1.3), give rise to the following structure of the automorphisms group of H:

Hence, it follows from (4.2) that

Aut H^ G(R) x(Sx Aut R) ,

from which follow the isomorphisms (1.6), (1.7) and (1.8). Finally, the structure of S is

well-known (see, for instance, [10, EXP. XXI, §7.4.6]).

THE PROOF OF THEOREM 3. It follows from Theorem 1 that each automorphism

α e Aut H is the restriction of an automorphism, say α, of G(R). We know from Theorem

2 that α is a product of the form (Int g) yφ for some g e G(R), yeS and φ e Aut R. Note

that γ can be extended to a graph automorphism of the algebraic group G(K) in an

obvious and unique way, and so does Intg. Hence (Intg) γ can also be extended to an

automorphism of the algebraic group G(K). Denote this extension of (Int g) ybyβ and

we then have the expression (1.8). The uniqueness of β and φ is obvious.
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