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Abstract. For a Kac-Moody Lie algebra we study pairs of real roots the sum of

which is a real root. More precisely, we study in which way the existence of such pair

of roots determines the existence of certain subroot system within the root system.

0. Introduction. The study of pairs of real roots {yuγ2} of a Kac-Moody Lie

algebra g whose sum is a real root was initiated by Morita in [3] and [4] (though [4]

contains a mistake as pointed out in [5]). Morita put this information to good use to

derive information about K2 in the case of Kac-Moody groups.

Morita looks at the case when <γ1? y2 > = — 1 and <y2, γf > = — a where a= 1, 2, 3.

(There are also some results if a>3 but only under some strong assumptions on the

Cartan matrix.) Morita assumes that yί9 γ2 are positive and that y^— y2 is not a root

(a Morita pair in our terminology). His key observation is that a determines the existence

of certain entries in the corresponding Cartan matrix A of g (and hence that A somehow

sheds information about the existence of such pairs of roots).

Our own interest in this problem came out from trying to understand the nilpotency

degree of certain subalgebras of g (Conjecture 1 below). We will deal with a above

arbitrary and show how a determines a sequence of entries in A with certain properties.

1. Notation and some basic facts about root systems of Kac-Moody Lie algebra.

We begin by recalling some well-known objects related to Kac-Moody Lie algebras.

Our running reference for this will be [9, Ch. 4, 5]. Most of this material is also

covered in [1].

A=(Aij)ijeI will throughout denote a generalized Cartan matrix. (The index set /

is allowed to be infinite.) Let (I), 77, Π v ) be a realization of A. Thus

As usual we set

W= (rt I /e /> where rt: = rα.,
r e A = WΠ,
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A the root string closure of τeA (= the set of all roots, real and

imaginary, of the corresponding Kac-Moody Lie algebra),

imΔ=Δ\τΆ ^

iel

A+=AnQ+ , τeA + =τeAr\Q + .

Let βeA and oceTeA. Recall the oc-string through β, defined by S(a, β) = {β + koc\ke

Z}nA. Then there exist w, veN such that

Moreover u — v = (β, α v > and the reflection ra flips S(OL, β) about its midpoint

β-((β, αv>/2)α. We refer to β-uoc and β + vu, as the first and last roots of 5(α, β)

respectively.

We intend to describe the real and imaginary nature of the roots in a root string.

It is easy to do this visually by attaching to S(α, β) a series of nodes; black for real

roots and white for imaginary. For example o o depicts a string S(α, β) with four

roots where only the first and last roots are real.

Parts of the next proposition are exercises in [1] and are also implicitly used in

[3]. For the sake of completeness and convenience we state and prove.

PROPOSITION 1. Let βeA and cue™ A. Let r(α, β) denote the number of real roots

in S(α, β). Assume r(α, β)>0. Then

(i) The first and last roots of S(ot, β) are real.

(ii) r(α, β)= 1, 2, 3, or 4. Moreover

(a) // r(α, β) = 1, then S{oc, β) = {β} and β is real.

(b) If r(α, β) = 2, then S(ot, β) is depicted by a diagram of shape

• o o o .

(c) If r(α, β) = 3, then S(oc, β) is depicted by the diagram and {α, β}

generates a root system of type C2

(d) If r(α, β) = 4, then *S(α, β) is depicted by a diagram of shape

• o o o . Furthermore, if S(oc, β) does not contain imagi-

nary roots, then {α, β} generates a root system of type G2.

PROOF. There is no loss of generality in assuming that α e reA + and that S{oc, β)

contains real roots. Moreover since S(α, β) is independent of βeS(oc, β) we may as-

sume that βeτeA, β-<x$τeA, and </?, α v > < 0 . (Choose β to be the real roots of small-

est height in S(α, β).)

We begin by reducing the problem to the rank 2 case. Let W be the subgroup of

W generated by ra and rβ and let τeA' = Wot u W'β. With the terminology of [8] r eA' is

a closed subroot system of τeA and {α, β) is a base of rezΓ [8, Proposition 8.1] and hence
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(Z(x + Zβ)r\A = Af, (Zoc + Zβ)nτeA=τeAf,

where A' denotes the root string closure of r eA ' .

From this discussion it follows that it will suffice to establish the proposition in

the case where τeA is a rank 2 root system with base {α, β}. We assume this for the

remainder of this proof.

Let ( I •) be a symmetric W-invariant bilinear form satisfying ||y|| : = (y |y)>0 if

yeτeA and ||γ|| < 0 if γeimA.

Consider the function Faβ: R^R defined by

We now prove the proposition.

(i) If the first root β — uoc of S(a, β) is imaginary, so is the last β + v<x = ra(β — u(x).

By assumption there exists —u<k<v such that β + kaeτeA. Then Faβ( — u) < 0, FΛβ(k) > 0

and Faβ(v)<0, which contradicts the fact that the graph of Faβ(t) is a concave up

parabola.

(ii) For each ceR the equation Faβ(t) = c has at most two solutions. Now if β +

k(xereA, then β + ka is PF-conjugate to either α or β and hence ||/ϊ + faχ||e{||α||, \\β\\}.

Thus k is a solution of either Faβ(t) = ||α|| or Faβ(t) = \\β\\, so at most four real roots ap-

pear in ,S(α, β). The statements of (a), (b), (c) and (d) now follow from the symmetry

of S(α, β) about its midpoint and the concave up nature of the graph of Fa β(t). Π

2. Morita pairs. We begin by looking at root strings with two consecutive real

roots up to conjugation by the Weyl group and sign. To this end we define a non-ordered

pair of positive real roots {α, β} to be a Morita pair if

MP1. oc-βφA

MP2. oc + βeAτe

MP3. (Minimality condition) ht(α + β)<ht(w(α + β)) for all we W such that w(α),

PROPOSITION 2. (i) Let αi? OCJEΠ. A pair {αί? α,-} is a Morita pair if and only if

<α i9 α/ > = - 1 or <αJ , α f

v > = - 1 .

(ii) Every Morita pair is of the form [<xh β} for some iel. Moreover if βφΠ, then

</Uv> = - i .
(iii) If {αί5 β} is a Morita pair with βφΠ, then <β + αi5 α/ > < 0 for all j φ L

PROOF, (i) If <αi5 α / > = — 1 , then rj((xi) = oti — <αί5 α/> = αi + αJ , hence αj + α^e
τeA. Since OLi — oLjφΔ and the minimality condition obviously holds, we have that {αi? α,-}

is a Morita pair. If <αt , α / > < — 1 and <α7 , α f

v >< — 1, then oCi + ctjφ^A, and therefore

{αt , α,-} is not a Morita pair.

(ii) Let {α, β) be a Morita pair. Then oc + βeτeA+ so that there exists iel such

that <α + β, αf

v > > 0. As ht(rt(a + β)) < ht(a + J?) then by MP3 either φ) e J _ or ^(j?) e A _,
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so that either α = αf or jS = αf. If βφΠ then oc = oci. As (β + <xi9 ai V >>0 we have </?, o O

> - 2 , while (β, α£

v > < 0 since jS-α f is not a root by MP1. Thus <j8, αf

v > = - 1 .

(iii) If <j8 + α ί , α / > > 0 for some ; # / , then ht(rJ.(jS + aI))<ht(j8 + a i) and r,.(j?),

rj(oci)ereA+ as βφΠ and zVy. This contradicts MP3. •

The main theorem of this paper describes in which way the value (μi9 α v ) of a

Morita pair {α, α j determines the existence of a sequence of fundamental roots with

certain properties.

The next two results show in which way two real roots whose sum is a real root

determines the existence of a Morita pair {α, α j with a certain <αi5 α
v > .

PROPOSITION 3. Letγl9 y2e
τeA be such that y1+y2e

τeA.

(i) Ifγl9 y2εA + andy2 — y1φA, then there exists we Wsuch that {wγί9 wy2} is a

Morita pair.

(ii) There exists σe ± W such that σyί e A + and S(σγl9 σy2)<=A + .

PROOF, (i) Among all weW for which {wyl9 wy2}czA + choose one minimizing

(ii) We may assume that y^^eΠ. In this case either S(γί9 y2)aA+ (in which case

yuy2e
xtA+) or S(yuy2)czA_. Now if S{γl9y2)c:Δ-, then ryιS(γl9 y2)^A_ (since

-yiΦS(γί9y2)). But ryίS(γί9γ2) = S(-γl9rγιγ2) where both -y, and rny2 belong to

A_. Now (ii) follows if we set σ = — r y i.

PROPOSITION 4. Let y1,y2e
reA+ be such that y1+y2e

τcA. Then there exists an

integer N> — 1 and a Morita pair {α, α j such that exactly one of the following holds:

( 0 7i ~72 G ^ and {?i> yi) ^ w o ί conjugate by ±W to a Morita pair, <γ l 9 y2} =

(ii) yx— y 2 ί ^ and {71972} ™ conjugate by ±W to {α, α,}. In particular, after

interchanging γί and y2 if necessary, we have <y1? y2 ) = — 1 and <αί9 α
 v ) = (y2, yl).

PROOF. By Proposition 3(ii) we may assume that yx and S(γl9 y2) lie inside A + .

Assume y2 — y1 e A. If <y2, yx

v > <0, then γx and y2 generate a G2-type root system

(Proposition 1). By direct inspection we find that <y2, γϊ > = <y l9 y2 > = — 1. Furthermore,

any base of this subroot system can be conjugated to a Morita pair (Proposition 3(i)).

Thus (i) holds with N=-\.

If <72> 7iv> = 0, then γ1 and y2 generate a C2-type root system and, just as above,

we see that (i) holds with N=0.

If <72,7iv> = # > 0 , then y: = rn(γ2 + γ1) = γ2-(N+l)y1 and ryi(γ2) = γ2-Nγ1 are

the first two roots of S(γί9 y2). By Proposition 3(i) we can conjugate {y, γt} to a Morita

pair. This pair is as desired since <j, 7iv> = <72 + 7i, — 7i v>= —2 — N. Furthermore, we

must have (yl9 y v > = - 1 (Proposition 2). Thus rnry(y1) = ryι(y1+y)= -y1 + ryiy = γ2 and

therefore
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<Ύι> 7 2 > = <7i> ryjyyi > = <Xyιyu ryll > = - <7i, r

yli > = ~ <Jyyl9 yl >

= <r7yl9 ryjl > = <ry/yyu 7 l

v > = <y2, 7 l

v > = N .

Finally if y2 — y1φA, then {γ1,γ2} is conjugate to a Morita pair by Proposition

3(ii) and clearly (ii) holds. Π

3. Submatrices attached to Morita pairs. We begin by stating (with proofs when

necessary) five lemmas that will be used in the proof of the main result. The first three

lemmas are in [3] and are here restated with our present notation for the reader's

convenience.

LEMMA 1. Let i,jel, iφj, and let aeA + . Suppose <αi9 α/> = <«,-, α f

v >= — 2. Then

we have:

(i) <α,α ί

v> + <α,α/><0.

(ii) // <α, α,v > + <α, α/ > = 0, then <α, α,v > = - <α, α/ > ΞΞ 0 (mod 2).

LEMMA 2. Lei Ϊ , ; G / , ΐ # ; , and let aeA + . Suppose < α i 9 α / > = - 4

LEMMA 3. Let ijel, iφj, and let aeA + . Suppose <α i,α/><α j,α i

v>>4.

LEMMA 4. Lei U e / , Ϊ ^ Λ a n d l e t ocεreA + . Suppose <ai? a/><a j ? a f

v >>4. If

<a, a£

v > = - 1 a«rf <a, a/ > > 0, i/κ?« <aj? af

v > = - 1 and either <a, a/ > = 1 or a = a7 .

PROOF (due to J. Morita). Consider jβ: = r7α = α - < α , a/>aj. If a^a7- then

βereA + . Note that

By Lemma 3 if </?, αf

v > > 1, then <α, αf

v > < — 1, which will contradict the assumption

<α, αf

v > = - 1 . It follows that <jB, αf

v > = 0 and hence <α, α/ ><αj9 αf

v > = - 1 . From this

last equality we deduce that <α, α/ > = 1 and <α7 , α^ > = — 1. •

LEMMA 5. Let J be a finite subset of I such that the submatrix A3 is indecomposable.

Let μeQ+ be such that <μ, α/>>0/<9r alljeJ. Assume supp(μ)n JΦ0. Then we have:

( i ) Aj is either of finite or affine type.

(ii) If <μ, α/ > > 0 for some j e J, then Aj is of finite type.

(iii) If Aj is affine and supp(μ) is connected, then μ is a null-root of the affine sub-

system generated by {Uj}j(=j.

PROOF. Let μ = YJieIcioίi. As supp(μ)n/τ έ 0 there exists keJ such that ck>0.

Consider β = ΣkeJck(xkφQ. Then </J, α/>><μ, α / > > 0 for every jeJ. By a result of

Vinberg it then follows that Aj is of finite or affine type (cf. [9, Proposition 3.6.5]).

If in addition <μ, α / > > 0 for some ye J, then </?, α / > > 0 and A3 is of finite type
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(ibid.).

From what has been said it follows that if A3 is affine then <μ, α/ > = </?, α/ > =

0 for all jeJ. Hence for every vertex iφj of the Dynkin diagram of A such that / is

connected by an edge to some vertex from J we have ct = 0. As supp(μ) is connected and

supp(μ)n Jφ0 it follows that supp(μ)cz J and μ = β is by definition a null-root. D

PROPOSITION 5. Let {αi5 β} be a Morita pair with βφΠ. Then we have:

( i ) (β + αi5 α/ > < 0 /or all j sljφ i. Furthermore if (β + αί5 α/ > = 0, /Λe/i eiVAer

(a) < α i , α / > = 0 o r

(b) {αi5 α,-} generates a subsystem of type G 2 , with <αi5 α/ > = — 3,

<α, , αf

v > = - 1 and β = r/α. ) = α£ + 3α,,

(ii) Assume (i)(b) αύαve w «<?/ /Ae awe. If j el is such that </?, α/>>0, /Λeft either

(a) <j», α/> = 1, <α£, α/>< - 1 , <α,, α,v> = - 1 or

(b) {αί? OLj} generates a subsystem of type BC[2\ with <αi5 α / > = — 4,

<0y, αiV>= — 1. Moreover β = (Xj + nδ, where neN and δ = 2ai

Jtaj is a

null-root of the affine subroot system in question.

(iii) There exists a unique j e I such that </?, α/>>0. Moreover jφi.

PROOF, (i) We have seen that </? + αi? α/ > < 0 in Proposition 2(iii). Furthermore,

if <j5 + αί? α/> = 0, then ht(rίrj(j5 + αί))<ht(j3 + αί), hence rj^eA- or rtr^eA_.

Consequently, either <αί5 α/> = <α7 , αf

v> = 0 or β = rjocί. In the latter case )5 + α£ is

a real root of the subsystem generated by {ai9 OCJ}. Since <jβ + αί? α/> = 0 and

<jS + αί? αf

v > = 1, Lemma 5(ii) shows that {αi5 α̂ } generate a subsystem of finite type for

which β + oίi is a dominant root. In the C2 case /? + α£ is the highest root (because βφΠ).

But then β — OL^Δ, which contradicts {αi5 β} being a Morita pair.

(ii) From (i) and the assumption </?, α/>>0 it follows that <αi9 α/>< — 1 and

<jβ + αf, α/><0. Let us consider the cases where {αί? α,-} generates a subsystem of

hyperbolic, affine or finite type separately.

Case 1. Suppose that {αi? α,-} generates a hyperbolic system, i.e., <α, , α/><α, , α/>

>4. Then by Lemma 4, <α, , αf

v> = - 1 , <αi9 α/> < - 4 and <jff, α/ > = 1.

Case 2. Suppose that the subsystem generated by {cch OLj] is affine. Since

< β ? α . v > = _ l and </?, α/>>0, Lemma 1 rules out the case ^ ( ! υ , i.e., <αί5 α/> =

<αJ , αf

v > = - 2. Since <αt , α/ > < - 1 , the only possible case is <αi9 α/ > = - 4,

<αJ-, αf

v > = - 1. Applying Lemma 2 we get that </?, 2αf

v + α/ > < 0, hence 0 < <β, α/ > < 2.

If <β, α/ > = 1 then (ii)(a) holds. If <β, α/ > = 2 then by Lemma 5(iii) j? - α,. is a null-root

of the affine system of type BCψ generated by {αi5 α7}. Then β-(Xj = nδ as prescribed

by (ii)(b).

Case 3. Suppose that {αί5 α7} generate a finite subsystem. Since <αi5 α/ > < — 1, it

follows that <aj, af

v > = - 1 and <α£, α/ > may equal either - 2 or - 3. If <αί5 α/ > = - 2

then <j8, α/ > = 1, because <]8, α/ > > 0 and <β + αi9 α/ > < 0. Similarly if <αi5 α/ > = - 3,

then <j9,α/>G{l,2}. Now if <)8,α/> = 2, then <j8 + αί9 α/>= - 1 , and hence
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) = β, whereas (rίr7 )
2(αi) = αi+3αi/ . From the minimality of {/?, α j it then

follows that (rirj)
2(β)eΛ_, so that β belongs to the finite root system generated by

{αf, (Xj} and either β = ajeΠ oτ β = ai-\-3(Xp both of which are ruled out by assumption.
Consequently, <β, α/ > = 1 as desired.

(iii) Since βeT*A+ there exists jel such that <β, α/>>0. Moreover, jΦi since
</?, αf

v > = — 1 by Proposition 2(iii). We show j to be unique by way of contradiction.
To this end let us assume that </?, α/>>0 and </?, αfc

v>>0, where jΦk.
Note that <α i 9α/>^0 and <α ί?α fc

v>^0 by (i). Since <β,αfe

v>>0, we have
β — GckeΛ+ and

<j8-α J k ,α l

v >=-<α k ,α i

v >-l>0,

By Lemma 5(ii) the root system generated by {αi5 α,-} is finite. Mutatis mutandi for
{ahoik}. By (ii) then <α,, α,v > = <αk, α,v > = - 1 and {<α£,α/>, <αί9 αk

v>}^={-2, -3}.
Write jβ = Σ s e / c s α s with c s>0. Then

(1) - 1 = <jβ, ay > = X cs<αs, α f

v ><q<α i ? αf

v> + c j<αJ , αf

v > + ck<αk, αf

v } = 2ci-cj-ck .
sel

On the other hand

(2) 0<<β, α / ) ^ ^ , α/> + c / α j , α/>< -2c,

and mutatis mutandi

(3)

From (2) and (3) we get that c^Cj— 1, c{<ck-1, thereby contradicting (1). •

PROPOSITION 6. Le/ π>2 and let {/l5..., /„}, «>2, 6^ (necessarily distinct) ele-
ments of I satisfying the following conditions

IND 1 =0

βeτeA+ be such that

&*£> = <) for k=l,...,n-2; (β, α ί

v

n_1>= - 1
IND 2 . . . . . .

foralljφιn.
Let α = r̂  J? = β — αίn E rezl +. Assume jel satisfies <α, α / > > 0. ΓAew

( i ) <α, ocl

y

k} = 0for all \<k<n, and <α, α ^ > = — 1. In particular jφ{iu . . . , /„}.
(i i) Either

(a) α = α/,<α ίn,α/><-2, or
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(b) < α , α / > = l o r

(c) the submatrix Λ3 of the generalized Carton matrix A corresponding to the

subset of indices 7={/ l 5 . . . , / „ , 7} is of affine type BC^ and oc =

(Xj + nδ, neN, where δ is a null-root of this subsystem.

(iii) < α j , α ί

v

n > = - l .

(iv) j is the unique element of I with the property <α, OLJ > >0.

(v) (OLP ocyk} = O for all k=l,..., n-l.

PROOF, (i) This follows easily from the assumptions.

(ii) If α = OLp then <αίn, α/ > < - 2 as <α + αin, α/ > < 0 and <α, α/ > = 2. If neither

(a) nor (b) hold, then <α, aj > > 1 and α ̂  α̂  so that α — α7 e J + and <αίn, α/ > < — 1 (this

last since <α + αin, α/ > < 0). Recall that <αin, α/ > < - 1 implies <αj? α^ > < 0. We then have

for fc=l,...,π-l;

< α - α 7 , α^>= - l - < α j ? α^>>0 and

By Lemma 5(i) the submatrix A3 corresponding to the subset of indices / =

{i l 5..., /„, j} is of finite or affine type. But since <αfl, α^ > < — 1 and <αίn, α/ > < — 1

we get that A3 is of type BC^ (Figure 1). By Lemma 5(iii) α — cCj is a null-root of this

subsystem and we are in case (b).

0=*0H> 0-0<=0
1 2 2 2 2 1

1

o
0=^0-0- •—O
1 2 2 2 \

o
1

FIGURE 1.

(iii) Note that in case ii(a) and ii(c) we have <α7 , α^ > = — 1 (given that

<α, α^>= — 1). Assume that ii(b) holds, i.e., <α, α / > = - 1 . Suppose, by way of con-

tradiction, that (iii) fails. Then (jxj9 α^>< —2. Note that je supp(α) since <α, α / > > 0 .

Thus 2α — 0CjeQ + , supp(2α — α̂  ) = supp(α) is connected, and
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<2α-α,., α£>>0 for k=l,..., n-1

<2α-α, , α£>=-2-<α,., α£>>0 and

Hence, by Lemma 5(i) the submatrix Aj, where J={iί9..., in,j}9 is of finite or

affinetype. Then it is of type Cj,υ in Figure 1, because <α ί l? α^>< — 1 and <αJ , α£>< — 1.

By Lemma 5(iii) 2a —aj is a multiple of the null-root of C^υ. Thus 2α — 0,- =

w(αfl + 2α/2 + + 2αίn + α7), but this equality is impossible as the left hand side has ah

with even multiplicity and α,- with odd multiplicity.

(iv) Let us prove the uniqueness of ye/ such that <α, α/>>0.

Suppose, by way of contradiction, that <α, α/>>0, <α, α fc

v>>0 for some kel, kψj.

From (i) k,jφ{iu...9in} because <α, α^><0, m=\, ...,n. From (ii) it follows that

<α, α/ > = <α, αk

v > = 1 while (iii) gives us <αj9 α^ > = <αk, α^ > = - 1 . As <α, α/ > > 0 and

<α, α k

v >>0 we have 2α — α, — α k eQ + . Now

< 2 α - α j - α k , α^>>0 for m = l , . . . , « - l ;

< 2 α - α i / - α Λ , α ^ > = - 2 + 1 + 1 = 0 ,

< 2 α - α j - α J k , α / > > 2 - 2 = 0,

<2α-α 7 -α f c , α k

v > > 2 - 2 = 0,

so that by Lemma 5(i) the submatrix As corresponding to the set / = {/l5..., in, j , k} is

of finite or affine type. The only possible type for Aj is Cj,2^ in Figure 1, then by

Lemma 5(iii) 2α — α; — ak is a multiple of the null-root of Cj,2^ and consequently,

2α — aj — ock = m(ociί + 2(xi2+ +2α ί n + α7 + αfc) for some meN. However, this equality is

impossible as can be seen by comparing parities as above. This finishes the proof that

j is unique.

(iv) It remains to be shown that <α/k, α/ > = 0 for all 1 <k<n. Suppose not. Then

neither (ii)(a) nor (ii)(c) can hold (because otherwise <αίk, α/ > = 0 as can be seen by (i)).

We may therefore assume that <α, α/> = 1. Let m<n be the maximal index with the

property <αim, a] > ̂ 0 . Let <αim, aj > = — x, (ap α^> = - j , and note that x,y>0. Since

<α, α/> = l, we have α —OjeJ + Then by (i)

< α - α j , α^>>0 for fc=l,...,«-l;

while also

< α - α i , α ί ^ > = - 1 + 1 = 0 ; and < α - α , , α/> = 1 - 2 = - 1 .

Since >>>0, we have a — α,- — aimeΔ + . If we assume that y>2, then
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< α - α , - α ί m , < > > 0 for k=l,...,n;

and it then follows from Lemma 5(i) that the submatrix Aj9 where / = {/l5..., /„, j}9 is

of finite or affine type. But this is impossible as <α/l? α£ > < — 1 and the Dynkin diagram

of Aj contains a cycle (namely j , im, im+u ..., in). If y = 1 and x>2, then the same

argument works for 2(α — α,.) — α im.

We may therefore assume that x=y=\. Then (i) yields rinχrj((x) = (x — (xj — airn. We

consider two cases:

Case 1. <αim, α ^ + 1 > = - 1 . Then m>\ and <α —α 7 —α i m , α i^_ 1>>0. Thus μ: =

oc — aj — ocirn_ι — ( x i r n e Δ + s a t i s f i e s t h e c o n d i t i o n s o f L e m m a 5 ( i ) f o r J={im, ...,in9j}.

Indeed, <μ, α ^ + 1 > > 0 and hence A3 is of finite type which contradicts the fact that Aj

has a cycle.

Case 2. <αim, α ^ + 1 > < — 1. Consider μ\ = a — α,— α ί w — oiinι + ίeΔ + . Then μ satis-

fies the conditions of Lemma 5(i) for / = { / m , . . . , in,j}. Thus Aj is, on the one hand

of finite or affine type, while on the other, having an entry less than - 1 and a

cycle is of indefinite type. This contradiction completes the proof of the proposition.

4. The main theorem.

THEOREM 1. Let {α, β] be a Morita pair with <α, jS v>= -a and <jS, α v > = - 1 .

Then exactly one of the following holds.

Case F. {Finite case.) a= 1, 2, or 3 and either

(i) oc,βεΠor

(ii) a=\ and there exist αi9 α̂  e Π such that <αt , α / > = — 3 , <αi? α^ > = — 1, and
}

j

Case A. (Affine case.) a = 4 and there exists a sequence of distinct fundamental

roots α f l, . . . , α^e/7, />2, w/z/c/z generate an affine subsystem of type BC{^11 and which

furthermore satisfy

< α ί l j α j

v

2 > = - 4 if 1=2,

where δ is a null-root of BC\2J1 andn>0 (by convention rh-
 triι_1 = 1 if 1=2).

Case I. (Indefinite case.) a>5 and there exists a sequence of distinct fundamental

roots α f l, . . . , α f lei7, />2
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<α i fc,α^> = 0 if \k-m\>29

<αi1? α^>< - 1 , <αi,_l9 α^>< - 1

α = α t l , and

β = ri2' -riι_ί(cciι).

PROOF. Before going into the main proof we note for future reference that if α

and β are as stated in Case A then <α, / ? v > = - 4 . To see this first use a positive

semidefinite PΓ-invariant bilinear form on the affine system in question to see that

<α, (β + nδ)v> = <α, βv> for all neZ. Thus

if /=2

if

If a= 1, then the assertion of the theorem (namely Case F(i) or (ii)) remains true

if we interchange α and β. It follows then by Proposition 2 that we may henceforth

assume that </?, α v > = — 1 and that α = αt for some iel.

By Proposition 2(ii) and Proposition 5 there exists ye/, jφi such that one of the

following holds:

(a) β = ajeΠ, a n d < α , , o O = - l .

(b) β = αjr + 3α7 , where {αi5 α̂  } generates a subsystem of type G2.

(c) β = (Xj + nδ, where {αί5 α7 } generates an affine subsystem of type BC^\

Moreover <α7 , α f

v>= — 1, <αi5 α / > = — 4 and 5 is a null-root of this sub-

system.

(d) </?, α/>>0 and α7- is the unique element of Π with this property (i.e.,

<jS, α k

v><0 for all kφj). Moreover, < α i 5 α / > < - l , <αJ , α i

v > = - l and

</U/> = l.

If (a) holds then we are either in Case F(i), Case A, or Case I according to whether

ae{l, 2, 3}, a = 4 or a>4, respectively.

If (b) holds, then Case F(ii) holds.

If (c) holds, then Case A holds with 1=2 as can be seen by setting iί = i, i2=j

Assume (d) holds. We first note that β does not belong to the subroot system A'

generated by αf and α,. Otherwise rjβ = β-(xje
τtAf

+, which is not possible given that

(rjβ, (χy) = 0 and <r/, α/ > = - 1 . Let ix = i, i2 =j, and β2 = β. Then J2 : = {iί9 i2) satisfy

Ind 1 while β satisfies Ind 2 of Proposition 6. Thus if we let β3 = rh(β2) = β2- αi2 e
 rcΔ +,

then there exists a unique i3eI\J2 such that with J3: =J2 u {/3} either
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(1.3) Aj3 is affine of type BCψ and β3 = cch + nδ, where δ is a null root of

this subroot system or

(2.3) β3 = ah and < α i 2 , α £ > < - l or

/o o\ / n Λ / V \ 1 / R / v v \ 1

\OCj , Oίj / I = = 1 , \0 ί ; , OCj / == 1

<α ι V α£ > = 0 (Proposition 6(iii))

< α ί l , α ί

v

2 > < - l , and

<β3, α£ > < 0 for all kφJ3 Proposition 6(v).

If (1.3) holds, then we are in Case A of the theorem with α f l, αi2, αί3.

If (2.3) holds then Case A with n = 0 or Case I of the theorem holds.

Assume (3.3) holds. Then J3 and β3 satisfy the assumptions Ind 1 and Ind 2 of

Proposition 6. Thus there exists a unique ι4 and β 4 : = rhβ3 = rhri2β such that J4 = J3 u {/4}

and jS4 satisfy the assumptions of Proposition 6.

What we have is an algorithm that creates in step /> 3 a sequence of distinct indices

Jι = {iu ...,iι} and of positive roots /?2, j5 3 , . . . , ft of decreasing height such that

βι = riι-x'' 'ri2β
 = βι-i—(χiι-ι a n d either

(1./) Case A holds for the sequence α i l 5 . . . , αίt

(2./) ft = αfl and <αfl _ 1? α^ > < - 1 or

(3./) Jt and βι satisfy the assumptions Ind 1 and Ind 2 of Proposition 6.

It follows that for some 3</<ht(j?) + 2 it is the case that (3./-1) and either (1./) and

(2./) hold. We then have

1-2

(because of (3./-1)), while by Proposition 6(i) applied to α: = αil = ft1_1-αil_1

(5) <α ik,αjv>:=0 for all \<k<l.

Thus by (4) and (5)

l - l

k=l

a
COROLLARY. If {α, β} generate a subsystem of type

2 -p

, - 1 2



ROOT STRINGS WITH TWO CONSECUTIVE REAL ROOTS 403

where p is a prime number, then there exists wεW such that WOL, wβe77.

REMARK 1. Case F of this theorem was proved in [5].

REMARK 2. The results of this paper hold also for root systems of a set of root

data (cf. [8] and [9, Ch. 5]).

We now state a conjecture which is related to this work: Let g(̂ 4) = n_©ϊ)©n + be

a Kac-Moody algebra corresponding to a generalized Cartan matrix A, and let

s w : = rt+ n w(n_) for weW. The subalgebra sw is nilpotent (since it is finite-dimensional

and n + is residually nilpotent).

CONJECTURE 1. The degree of nilpotency of sw is bounded by a constant which

depends on A but not on w.
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