ON Q-STRUCTURES OF QUASISYMMETRIC DOMAINS

Ichiro Satake

(Received February 10, 1994)

Abstract

We will give a complete classification of \boldsymbol{Q}-structures of quasisymmetric domains. In the standard case, it will be shown that there are only very natural Q-structures coming from semisimple \boldsymbol{Q}-algebras with positive involutions. As is shown in the Appendix, when the domain is symmetric, any \boldsymbol{Q}-structure of it as a quasisymmetric domain can uniquely be extended to one as a symmetric domain.

The purpose of this note is to determine the Q-structures of quasisymmetric domains.

The notion of a quasisymmetric domain was introduced in [S3] (cf. also [S6, Ch. V]). It was shown that, among Siegel domains (of the second kind), the symmetric domains were characterized by three conditions (i), (ii), (iii). A Siegel domain is called quasisymmetric if it satisfies the conditions (i), (ii). It is known that any symmetric domain \mathscr{D} with a fixed boundary component \mathscr{F} has a natural structure of a fiber space (a Siegel domain of the third kind) over \mathscr{F}, in which the fiber over each point of \mathscr{F} is a quasisymmetric domain. All quasisymmetric domains of "standard" type are obtained in this form (see §4), while there are quasisymmetric domains of non-standard (quadratic) type that are not obtained in this manner.

A quasisymmetric domain \mathscr{S}_{I} is defined by a data $(U, V, A, \mathscr{C}, I)$, where $U,(V, I)$ are real and complex vector spaces of finite dimension, I denoting a complex structure on $V . \mathscr{C}$ is a self-dual homogeneous cone in U (condition (i)) and A is an alternating bilinear map $V \times V \rightarrow U$ such that $A\left(v, I v^{\prime}\right)\left(v, v^{\prime} \in V\right)$ is " \mathscr{C}-positive" (see 1.1). In $\S \S 1,2$ we summarize basic definitions and properties concerning quasisymmetric domains. Here we give the condition (ii) in the form independent of the complex structure I, viewing I as a point in the parameter space $\mathscr{S}=\mathfrak{S}(V, A, \mathscr{C})$. To give a \boldsymbol{Q}-structure of \mathscr{S}_{I} is, roughly speaking, equivalent to giving a Q-structure of (U, V) such that the affine automorphism group $\operatorname{Aff} \mathscr{S}_{I}$ is defined over \boldsymbol{Q}. By virtue of the complete reducibility of quasisymmetric domains (see 2.5), our problem of determining \boldsymbol{Q}-structures of \mathscr{S}_{I} is reduced to the \boldsymbol{Q}-irreducible case. A general method of determining \boldsymbol{Q}-irreducible Q-structures of \mathscr{S}_{I} with $V \neq 0$ is given in $\S 3$. In particular, it will be shown that a Q-structure of \mathscr{S}_{I} is essentially determined by that of the enveloping algebra of the representation of Lie Aut \mathscr{C} on V, which is a (Q-simple) \boldsymbol{Q}-algebra with positive involution. Applying this method to the standard and non-standard cases, in $\S \S 4,5$,
respectively, one can easily classify all possible \boldsymbol{Q}-structures of \mathscr{S}_{I}. We also give an explicit expression of A in each case.

In the simplest case, where $\mathscr{C}=\mathscr{P}_{v_{1}}(\boldsymbol{R})$, a \boldsymbol{Q}-structure of \mathscr{S}_{I}, denoted as $\left(\mathrm{III}_{v_{1} 1 v_{2} / 2}^{(1)}\right)$, is given as follows. One takes a pair of \boldsymbol{Q}-structures of U and V, for which there exist two Q-vector spaces V_{1} and V_{2} such that one has

$$
U(\boldsymbol{Q})=\mathrm{S}\left(V_{1} \otimes V_{1}\right), \quad V(\boldsymbol{Q})=V_{1} \otimes V_{2},
$$

S denoting the symmetrizer and $\operatorname{dim}_{\mathbf{Q}} V_{i}=v_{i}(i=1,2)$. Then the alternating bilinear map A and the complex structure I are given in the form

$$
\begin{gathered}
A\left(v_{1} \otimes v_{2}, v_{1}^{\prime} \otimes v_{2}^{\prime}\right)=\mathrm{S}\left(v_{1} \otimes v_{1}^{\prime}\right) a_{2}\left(v_{2}, v_{2}^{\prime}\right) \\
\left(v_{i}, v_{i}^{\prime} \in V_{i}, i=1,2\right), \\
I=1_{V_{1}} \otimes I_{2},
\end{gathered}
$$

a_{2} denoting a non-degenerate alternating \boldsymbol{Q}-bilinear form on $V_{2} \times V_{2}$ and I_{2} denoting a "rational" point in the Siegel space $\mathfrak{S}=\mathfrak{S}\left(V_{2}(\boldsymbol{R}), a_{2}\right)$. It will be shown in $\S 4$ that, in the standard case, one can obtain all \boldsymbol{Q}-structures of \mathscr{S}_{I}, generalizing this construction to vector spaces over a division algebra over \boldsymbol{Q} with positive involution.

In the Appendix, we will show that, when the domain \mathscr{S}_{I} is symmetric, any \boldsymbol{Q}-structure of \mathscr{S}_{I} as a quasisymmetric domain can be extended (uniquely) to a Q-structure of it as a symmetric domain.

One of the motivations of this study is to construct a new kind of cusp singularities (cf. [S9]). Cusps of the arithmetic quotients of symmetric tube domains have been studied by many mathematicians. Especially, a generalization of the Hirzebruch conjecture, which relates the zero value of the zeta functions $Z_{\mathscr{C}}$ associated with the cone \mathscr{C} with some geometric invariants of the cusp, was recently established by Ogata [O2] and Ishida [I2] (see also [SO]). In the case of quasisymmetric domains with $V \neq 0$, for which Q-rank Aut \mathscr{C} is $=1$, one can obtain similar cusps, which we propose to call cusps of the second kind; in the notation of §4, this occurs only in the following three cases:

$$
\begin{gathered}
R_{F / \mathbf{Q}}\left(\mathrm{IIII}_{1 ; \mathrm{v}_{2} / 2}^{(1)}\right)_{I}, \quad R_{F / \mathbf{Q}}\left(\mathrm{IIII}_{2 ; \mathrm{V}_{2}}^{(2)}, D_{0}, h_{2}\right)_{I}, \\
R_{F / \mathbf{Q}}\left(\mathrm{I}_{\delta_{0} ;(p, q)}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}\right)_{I} \quad\left(\delta_{0} \geq 2\right) .
\end{gathered}
$$

It is expected that one can further generalize the result of Ogata and Ishida to the case of the cusps of the second kind to obtain a geometric interpretation of the values of the zeta functions $Z_{\mathscr{G}}$ at negative integers.

1. Siegel domains.

1.1. Siegel domains (of the second kind) (cf. [PS], [S6, Ch. III, §§5-6]). A Siegel domain is defined by the following data ($U, V, A, \mathscr{C}, I)$. U and V are finite-dimensional
real vector spaces and $A: V \times V \rightarrow U$ is an alternating bilinear map. \mathscr{C} is an open convex cone in U, which is "non-degenerate" in the sense that $\overline{\mathscr{C}} \cap-\overline{\mathscr{C}}=\{0\} . I$ is a complex structure on V satisfying the following condition:
(1) $A\left(v, I v^{\prime}\right)$ is symmetric and " \mathscr{C}-positive", i.e. one has

$$
A(v, I v) \in \overline{\mathscr{C}}-\{0\} \quad \text { for all } \quad v \in V, v \neq 0
$$

This implies that A is non-degenerate, i.e. if $A\left(v, v^{\prime}\right)=0$ for all $v^{\prime} \in V$, then $v=0$.
We set

$$
V(C)=V \otimes_{R} C=V_{+} \oplus V_{-}
$$

with $V_{ \pm}=\{v \in V(C) \mid I v= \pm i v\}$ and extend A in a natural manner to a C-bilinear map $V(C) \times V(C) \rightarrow U(C)$, denoted again by the same letter. Then one has $A\left(V_{+}, V_{+}\right)=$ $A\left(V_{-}, V_{-}\right)=0$ and

$$
2 i A\left(v_{-}, v_{+}^{\prime}\right)=A\left(v, I v^{\prime}\right)+i A\left(v, v^{\prime}\right)
$$

for $v, v^{\prime} \in V, v_{ \pm}$denoting the $V_{ \pm}$-part of v.
A Siegel domain $\mathscr{S}_{I}=\mathscr{P}(U, V, A, \mathscr{C}, I)$ is defined by

$$
\begin{equation*}
\mathscr{S}_{I}=\left\{(u, w) \in U(C) \times V_{+} \left\lvert\, \operatorname{Im} u-\frac{i}{2} A(\bar{w}, w) \in \mathscr{C}\right.\right\} \tag{2}
\end{equation*}
$$

When $V=\{0\}$, one obtains a tube domain $\mathscr{S}_{0}=U+i \mathscr{C}$.
We denote by $\mathfrak{S}=\mathfrak{S}(V, A, \mathscr{C})$ the set of all complex structures I on V satisfying the condition (1); by the assumption one has $\mathcal{G} \neq \varnothing$. In what follows, it will be convenient to consider the complex structure I to be a point in the parameter space \mathfrak{G}, rather than fixing it once and for all. Then the total space $\tilde{\mathscr{P}}=\left\{(u, w, I) \mid(u, w) \in \mathscr{S}_{I}, I \in \subseteq\right\}$ is a so-called "Siegel domain of the third kind".
1.2. Automorphism groups. We first define the (generalized) Heisenberg group $\tilde{V}=H(U, V, A)$. By definition \tilde{V} is the direct product $U \times V$ endowed with a multiplication

$$
\begin{equation*}
(u, v)\left(u^{\prime}, v^{\prime}\right)=\left(u+u^{\prime}-\frac{1}{2} A\left(v, v^{\prime}\right), v+v^{\prime}\right) \tag{3}
\end{equation*}
$$

for $(u, v),\left(u^{\prime}, v^{\prime}\right) \in \tilde{V}$. It is clear that with the natural homomorphisms one has an exact sequence

$$
\begin{equation*}
1 \rightarrow U \rightarrow \tilde{V} \rightarrow V \rightarrow 1 \tag{4}
\end{equation*}
$$

in which U is central. It is known that, conversely, all central extension \tilde{V} of V by U (as Lie groups) is obtained in this manner with a (uniquely determined) alternating bilinear map A. In our case, A being non-degenerate, U coincides with the center of \tilde{V}.

We set

$$
\begin{equation*}
\operatorname{Aut}(U, V, A)=\left\{g=\left(g_{1}, g_{2}\right) \mid g_{1} \in G L(U), g_{2} \in G L(V), g_{1} \circ A=A \circ g_{2} \times g_{2}\right\} \tag{5}
\end{equation*}
$$

and write $g_{i}=\rho_{i}(g)$ for $g=\left(g_{1}, g_{2}\right) \in \operatorname{Aut}(U, V, A)$. We are concerned with the following automorphism groups:

$$
\begin{gather*}
G_{1}=\operatorname{Aut}(U, \mathscr{C})=\left\{g_{1} \in G L(U) \mid g_{1} \mathscr{C}=\mathscr{C}\right\}, \\
G=\operatorname{Aut}(U, V, A, \mathscr{C})=\left\{g \in \operatorname{Aut}(U, V, A) \mid \rho_{1}(g) \in G_{1}\right\}, \tag{6}\\
G_{2}=S p(V, A)=\left\{g_{2} \in G L(V) \mid A \circ g_{2} \times g_{2}=A\right\} .
\end{gather*}
$$

Note that one has $\operatorname{Ker} \rho_{1}=1 \times G_{2}$ and $\mathfrak{S}(V, A, \mathscr{C}) \subset G_{2}$. It is known that G_{2} is a reductive algebraic group of hermitian type and $\mathfrak{G}(V, A, \mathscr{C})$ is the associated symmetric domain (see 2.3 and [S5]). Since $G \subset$ Aut \tilde{V}, one can construct a semidirect product $\tilde{G}=G \cdot \tilde{V}$.

For $v \in V$ and $w \in V_{+}$, one defines an automorphy factor by

$$
\mathscr{J}(v, w)=A\left(w+\frac{1}{2} v_{+}, v_{-}\right),
$$

which satisfies the relation

$$
\mathscr{J}\left(v+v^{\prime}, w\right)=\mathscr{J}\left(v, w+v_{+}^{\prime}\right)+\mathscr{J}\left(v^{\prime}, w\right)+\frac{1}{2} A\left(v, v^{\prime}\right) .
$$

Then the Heisenberg group \tilde{V} acts on \mathscr{S}_{I} by

$$
\begin{gather*}
(a, b)((u, w))=\left(u+a+\mathscr{J}(b, w), w+b_{+}\right) \tag{7}\\
\text {for } \quad(a, b) \in \tilde{V} \quad \text { and } \quad(u, w) \in \mathscr{S}_{I} .
\end{gather*}
$$

On the other hand, for $I \in \Xi(V, A, \mathscr{C})$, one puts

$$
\begin{gathered}
G_{I}=\operatorname{Aut}(U, V, A, \mathscr{C}, I)=\left\{g \in G \mid \rho_{2}(g) \in G L(V, I)\right\} \\
G_{2 I}=\operatorname{Aut}(V, A, I)=S p(V, A) \cap G L(V, I)
\end{gathered}
$$

Then G_{I} acts linearly on \mathscr{S}_{I}, and the semidirect product $\tilde{G}_{I}=G_{I} \cdot \tilde{V}$ acts affinely on \mathscr{S}_{I}. $G_{2 I}$ is a maximal compact subgroup of G_{2}. It is known ([PS], [S6, p. 129, Prop. 6.2]) that the affine automorphism group $\operatorname{Aff} \mathscr{S}_{I}$ of \mathscr{S}_{I} coincides with \widetilde{G}_{I}.

2. Quasisymmetric domains.

2.1. Quasisymmetric case. A Siegel domain $\mathscr{S}_{I}=\mathscr{P}(U, V, A, \mathscr{C}, I)$ is called quasisymmetric if two conditions (i), (ii) below are satisfied. (For the meaning of these conditions, see [S3, Prop. 1], or [S6, Ch. V, §§3, 4, especially, Prop. 4.1]. Here we state the condition (ii) in the form independent of the complex structure I. For the classification of quasisymmetric domains, see [S2] and [S3], or [S6, Ch. V, §5].)
(i) There exists a (positive definite) inner product \rangle on U such that, defining the dual of \mathscr{C} by

$$
\mathscr{C}^{*}=\left\{u \in U \mid\left\langle u, u^{\prime}\right\rangle>0 \text { for all } u^{\prime} \in \overline{\mathscr{C}}-\{0\}\right\},
$$

one has $\mathscr{C}=\mathscr{C}^{*}$. Moreover, the automorphism group $G_{1}=\operatorname{Aut}(U, \mathscr{C})$ is transitive on \mathscr{C}.
When this condition is satisfied, \mathscr{C} is called a self-dual homogeneous cone. One then has $G_{1}={ }^{t} G_{1}, t$ denoting the transpose with respect to $\left\rangle\right.$. This implies that G_{1} is a reductive "algebraic" group (in a weaker sense that the identity connected component G_{1}° coincides with that of the real points of a linear algebraic group defined over \boldsymbol{R}). The map $\theta_{1}: x \mapsto-^{t} x$ is a Cartan involution of the Lie algebra \mathfrak{g}_{1} of G_{1}. Let $\mathfrak{g}_{1}=\mathfrak{f}_{1}+\mathfrak{p}_{1}$ be the corresponding Cartan decomposition. Then it is known that for a suitable choice of a point e in \mathscr{C} one has

$$
\mathfrak{f}_{1}=\left\{x \in \mathfrak{g}_{1} \mid x e=0\right\} .
$$

It follows that, for each $u \in U$, there exists a uniquely determined element T_{u} in \mathfrak{g}_{1} such that ${ }^{t} T_{u}=T_{u}$ and $T_{u} e=u$; in particular, $T_{e}=1_{U}$. The map $u \mapsto T_{u}$ gives a linear isomorphism $U \simeq \mathfrak{p}_{1}$.

It is well known that the vector space U endowed with a product $u u^{\prime}=T_{u} u^{\prime}\left(u, u^{\prime} \in U\right)$ is a formally real Jordan algebra with unit element e (cf. e.g. [S6, p. 33, Th. 8.5]). In what follows, we will normalize the inner product \rangle by setting

$$
\begin{equation*}
\left\langle u, u^{\prime}\right\rangle=\operatorname{tr}\left(\kappa T_{u u^{\prime}}\right), \tag{8}
\end{equation*}
$$

where in the notation of 2.5 below $\kappa=\sum\left(r_{i} / n_{i}\right) 1_{U^{(i)}}$ with $n_{i}=\operatorname{dim} U^{(i)}$ and $r_{i}=\boldsymbol{R}$-rank $\mathfrak{g}_{1}^{(i)}$. By this relation e and $\langle>$ determine each other uniquely.
2.2. We now state the second condition:
(ii) The homomorphism $\rho_{1}: G \rightarrow G_{1}$ is "almost surjective", i.e. one has $\rho_{1}\left(G^{\circ}\right)=G_{1}^{\circ}$.

In what follows, we assume that the conditions (i), (ii) are satisfied. Then with the natural homomorphisms one has an exact sequence

$$
\begin{equation*}
1 \rightarrow G_{2} \rightarrow G \rightarrow G_{1} \rightarrow \text { (finite) } . \tag{9}
\end{equation*}
$$

Since G_{1} and G_{2} are reductive "algebraic", so is G. Hence there exists a connected normal "algebraic" subgroup G_{1}^{\prime} of G such that

$$
\begin{equation*}
G^{\circ}=G_{1}^{\prime} \cdot\left(1 \times G_{2}^{\circ}\right), \quad G_{1}^{\prime} \cap\left(1 \times G_{2}^{\circ}\right)=(\text { finite }) . \tag{10}
\end{equation*}
$$

Then the restriction of ρ_{1} on G_{1}^{\prime} gives an isogeny $G_{1}^{\prime} \rightarrow G_{1}$. (Such a subgroup G_{1}^{\prime} is uniquely determined, because G_{1}^{\prime} is of cone type and G_{2} is of hermitian type.) Note that, since I is contained in G_{2}°, one has $G_{1}^{\prime} \subset G_{I}^{\circ}$ and hence $\rho_{1}\left(G_{I}^{\circ}\right)=G_{1}^{\circ}$. It follows that the domain \mathscr{S}_{I} is affinely homogeneous.

Let $\mathfrak{g}, \mathfrak{g}_{i}(i=1,2)$, and $\mathfrak{g}_{1}^{\prime}$ denote the Lie algebras of G, G_{i}, and G_{1}^{\prime}, respectively. Then $\rho_{1} \mid \mathfrak{g}_{1}^{\prime}: \mathfrak{g}_{1}^{\prime} \rightarrow \mathfrak{g}_{1}$ is an isomorphism; we put $\beta=\rho_{2} \circ\left(\rho_{1} \mid \mathfrak{g}_{1}^{\prime}\right)^{-1}$. Then β is a representation of g_{1} on V and one has

$$
\begin{equation*}
\mathfrak{g}_{1}^{\prime}=\left\{(x, \beta(x)) \mid x \in \mathfrak{g}_{1}\right\} . \tag{11}
\end{equation*}
$$

Since $G_{1}^{\prime} \subset G_{I}, \beta$ is actually a representation of \mathfrak{g}_{1} in $\mathfrak{g l}(V, I)$.
2.3. Reformulations. For $u \in U$ and $v, v^{\prime} \in V$, we set

$$
\begin{gather*}
A_{u}\left(v, v^{\prime}\right)=\left\langle u, A\left(v, v^{\prime}\right)\right\rangle, \tag{12}\\
a\left(v, v^{\prime}\right)=A_{e}\left(v, v^{\prime}\right) . \tag{13}
\end{gather*}
$$

Clearly a is an alternating bilinear form on $V \times V$ and for $I \in \subseteq$ the bilinear form $a\left(v, I v^{\prime}\right)$ is symmetric and positive definite; in other words, if one puts

$$
h_{I}\left(v, v^{\prime}\right)=a\left(v, I v^{\prime}\right)+i a\left(v, v^{\prime}\right)
$$

then h_{I} is a positive definite hermitian form (which is C-linear in v^{\prime}) on the complex vector space (V, I). Let V^{*} and $\operatorname{Alt}(V)$ denote the dual space of V and the space of all alternating bilinear forms on $V \times V$, respectively. $\operatorname{Alt}(V)$ may be identified with the subspace of $\operatorname{Hom}_{\mathbf{R}}\left(V, V^{*}\right)$ formed of all skewsymmetric elements. We define an involution $t=\imath(a)$ of $\operatorname{End}_{\mathbf{R}} V$ by

$$
\begin{equation*}
\imath: y \mapsto a^{-1 t} y a \quad\left(y \in \operatorname{End}_{\mathbf{R}} V\right) \tag{14}
\end{equation*}
$$

Clearly, for $y \in \operatorname{End}_{\boldsymbol{R}} V$, one has $y^{i}=y$ if and only if $a y \in \operatorname{Alt}(V)$ and, for $y \in \operatorname{End}_{\boldsymbol{c}}(V, I)$, y^{l} is the adjoint of y with respect to the hermitian form h_{I}. One sets

$$
\operatorname{Her}(V, a, I)=\left\{y \in \operatorname{End}_{\boldsymbol{c}}(V, I) \mid y^{\iota}=y\right\}
$$

and denote by $\mathscr{P}(V, a, I)$ the cone of all positive definite elements in $\operatorname{Her}(V, a, I)$ with respect to h_{I}.

For $u \in U$ there corresponds uniquely an element $\varphi(u)$ in $\operatorname{End}_{\boldsymbol{R}} V$ such that

$$
\begin{equation*}
A_{u}\left(v, v^{\prime}\right)=a\left(v, \varphi(u) v^{\prime}\right) \quad\left(v, v^{\prime} \in V\right) ; \tag{15}
\end{equation*}
$$

in particular, one has $\varphi(e)=1_{V}$. Then the condition (1) is equivalent to

$$
\begin{equation*}
\varphi(U) \subset \operatorname{Her}(V, a, I), \quad \varphi(\mathscr{C}) \subset \mathscr{P}(V, a, I) . \tag{16}
\end{equation*}
$$

Note also that in this notation one has

$$
\begin{gather*}
G_{2}=S p(V, A)=\left\{g_{2} \in S p(V, a) \mid\left[g_{2}, \varphi(U)\right]=0\right\}, \\
\Im(V, A, \mathscr{C})=\Im(V, a) \cap G_{2} \tag{17}
\end{gather*}
$$

$\mathfrak{S}(V, a)$ denoting the "Siegel space" associated with $\operatorname{Sp}(V, a)$ (i.e. the space of all complex structures I on V such that $a\left(v, I v^{\prime}\right)$ is symmetric and positive definite). This implies that G_{2} is a reductive algebraic group of hermitian type with a Cartan involution

$$
\theta_{2}: g_{2} \mapsto I^{-1} g_{2} I,
$$

and $\mathfrak{S}(V, A, \mathscr{C})$ is the associated symmetric domain (cf. [S5]).

Now, in the quasisymmetric case, one has for $x \in \mathfrak{g}_{1}$

$$
x A\left(v, v^{\prime}\right)=A\left(\beta(x) v, v^{\prime}\right)+A\left(v, \beta(x) v^{\prime}\right) \quad\left(v, v^{\prime} \in V\right),
$$

or equivalently,

$$
\varphi\left({ }^{(} x u\right)=\beta(x)^{t} \varphi(u)+\varphi(u) \beta(x) \quad(u \in U) .
$$

Lemma 1. The representation $\beta: \mathfrak{g}_{1} \rightarrow \mathfrak{g l}(V, I)$ defined by (11) satisfies the relation

$$
\beta\left({ }^{t} x\right)=\beta(x)^{t} \quad \text { for } \quad x \in \mathfrak{g}_{1}
$$

where $l=\imath(a)$.
Proof. Putting $u=e$ in $(\beta 1)$ one sees that $x \in \mathfrak{f}_{1}$ implies $\beta(x) \in i \operatorname{Her}(V, a, I)$. It follows ($[\mathrm{S} 2, \mathrm{p} .127]$) that β can be written as a commutative sum of two representations β_{0}, $\beta_{1}: \mathfrak{g}_{1} \rightarrow \mathfrak{g l}(V, I)$ such that

$$
\begin{aligned}
& \beta_{0}\left(\mathfrak{g}_{1}\right) \subset i \operatorname{Her}(V, a, I), \\
& \left.\beta_{1}{ }^{t} x\right)=\beta_{1}(x)^{t} \quad\left(x \in \mathfrak{g}_{1}\right) .
\end{aligned}
$$

Since G_{1}^{\prime} is "algebraic" and $\rho_{i} \mid G_{1}^{\prime}(i=1,2)$ are rational, all eigenvalues of $\beta(x)\left(x \in \mathfrak{p}_{1}\right)$ are real. On the other hand, (*) implies that for x in \mathfrak{p}_{1} all eigenvalues of $\beta_{0}(x)$, resp. $\beta_{1}(x)$ are purely imaginary, resp. real. Hence one has $\beta_{0}\left(\mathfrak{p}_{1}\right)=0$ and, since \mathfrak{g}_{1} is generated by \mathfrak{p}_{1}, one has $\beta_{0}=0$. Thus $\beta=\beta_{1}$ satisfies ($\beta 2$).
q.e.d.

By ($\beta 1$) and ($\beta 2$) one has

$$
\begin{equation*}
\varphi\left(T_{u} u^{\prime}\right)=\beta\left(T_{u}\right) \varphi\left(u^{\prime}\right)+\varphi\left(u^{\prime}\right) \beta\left(T_{u}\right) . \tag{**}
\end{equation*}
$$

Hence putting $u^{\prime}=e$, one has

$$
\begin{equation*}
\beta\left(T_{u}\right)=\frac{1}{2} \varphi(u) \quad \text { for } \quad u \in U \tag{18}
\end{equation*}
$$

in particular, $\beta\left(1_{U}\right)=(1 / 2) 1_{V}$. Since \mathfrak{g}_{1} is generated by \mathfrak{p}_{1}, the relation (18) shows that β is uniquely determined by φ. (This gives another proof for the uniqueness of G_{1}^{\prime}.)
[Note that the relations ($* *$) and (18) imply

$$
\begin{equation*}
\varphi\left(u u^{\prime}\right)=\frac{1}{2}\left\{\varphi(u) \varphi\left(u^{\prime}\right)+\varphi\left(u^{\prime}\right) \varphi(u)\right\} \quad\left(u, u^{\prime} \in U\right) \tag{19}
\end{equation*}
$$

which means that the map φ is a unital Jordan algebra homomorphism of (U, e) into $\operatorname{Her}(V, a, I)$ (cf. [S6, loc. cit.]).]
2.4. Admissible triples. Let (U, V, A, \mathscr{C}) be a data satisfying the conditions (i), (ii). In general, a triple (e, a, β) formed of $e \in \mathscr{C}$, a non-degenerate alternating bilinear form a on $V \times V$, and a representation $\beta: \mathfrak{g}_{1} \rightarrow \mathfrak{g l}(V)$ is called an admissible triple belonging to (U, V, \mathscr{C}), if there exists a linear map $\varphi: U \rightarrow \operatorname{End}_{R} V$ with $\varphi(e)=1_{V}$ such that
the conditions $(\beta 1),(\beta 2)$ are satisfied with $l=\imath(a)$. Since these conditions imply (18), β and φ determine each other uniquely. They also imply that $a \varphi(U) \subset \operatorname{Alt}(V)$. For an admissible triple (e, a, β) one sets

$$
\begin{equation*}
\mathfrak{S}(V, a, \beta)=\left\{I \in \mathbb{S}(V, a) \mid\left[I, \beta\left(\mathfrak{g}_{1}\right)\right]=0\right\} . \tag{20}
\end{equation*}
$$

If an admissible triple (e, a, β) comes from the data (U, V, A, \mathscr{C}) as explained in 2.3, then it is said to be belonging to (U, V, A, \mathscr{C}). In that case, one has by (17)

$$
\mathfrak{S}(V, A, \mathscr{C})=\mathfrak{S}(V, a, \beta)
$$

In general, two admissible triples (e, a, β) and $\left(e^{\prime}, a^{\prime}, \beta^{\prime}\right)$ are called equivalent if $\beta=\beta^{\prime}$ and if there exists $g_{1}^{\prime} \in G_{1}^{\prime}$ such that one has $e^{\prime}=\rho_{1}\left(g_{1}^{\prime}\right) e$ and $a^{\prime}=a \circ \beta\left(g_{1}^{\prime-1}\right) \times \beta\left(g_{1}^{\prime-1}\right)$. Clearly, two admissible triples belonging to the same (U, V, A, \mathscr{C}) are equivalent.

Conversely, suppose that one has (U, \mathscr{C}) satisfying the condition (i), a real vector space V, and an admissible triple (e, a, β) belonging to (U, V, \mathscr{C}). Then, it is easy to see that, if $I \in \mathscr{S}(V, a, \beta)$, then the linear map $\varphi: U \rightarrow \operatorname{End}_{\mathbf{R}} V$ associated with β satisfies the condition (16). Hence, if one defines a bilinear map $A: V \times V \rightarrow U$ by (12) and (15), then A is an alternating bilinear map satisfying the condition (1). In this manner, one recovers the data (U, V, A, \mathscr{C}) satisfying (i), (ii), to which the triple (e, a, β) is belonging. Clearly equivalent admissible triples give rise to one and the same data (U, V, A, \mathscr{C}).

Thus we have shown that to give a data $(U, V, A, \mathscr{C})($ with $\mathscr{G}(V, A, \mathscr{C}) \neq \varnothing)$ satisfying (i), (ii) is equivalent to giving (U, \mathscr{C}) satisfying (i), a real vector space V, and an equivalence class of admissible triples (e, a, β) belonging to $(U, V, \mathscr{C})($ for which $\mathcal{S}(V, a, \beta) \neq \varnothing)$.
2.5. Complete reducibility. Let $(U, V, A, \mathscr{C}, I)$ be a data satisfying the conditions (i), (ii), and let (e, a, β) be an admissible triple belonging to it. Let

$$
\begin{equation*}
(U, \mathscr{C})=\prod_{i=1}^{l}\left(U^{(i)}, \mathscr{C}^{(i)}\right) \tag{21}
\end{equation*}
$$

be the direct decomposition of (U, \mathscr{C}) into irreducible factors. Then each $\mathscr{C}^{(i)}$ is an irreducible self-dual homogeneous cone in $U^{(i)}$. If one sets

$$
G_{1}^{(i)}=\operatorname{Aut}\left(U^{(i)}, \mathscr{C}^{(i)}\right), \quad \mathfrak{g}_{1}^{(i)}=\operatorname{Lie} G_{1}^{(i)},
$$

then one has

$$
\begin{equation*}
\mathfrak{g}_{1}=\oplus_{i=1}^{\mathfrak{l}} \mathfrak{g}_{1}^{(i)}, \quad \mathfrak{g}_{1}^{(i)}=\left\{1_{U^{(i)}}\right\}_{\boldsymbol{R}} \oplus \mathfrak{g}_{1}^{(i) s} \tag{22}
\end{equation*}
$$

where $\mathfrak{g}_{1}^{(i) s}$ (the semisimple part of $\left.\mathfrak{g}_{1}^{(i)}\right)$ is simple or reduces to $\{0\}$. One has

$$
e=\sum_{i=1}^{l} e^{(i)}, \quad e^{(i)} \in \mathscr{C}^{(i)}
$$

One also has the following decomposition of the representation space ([S2] or [S6, p. 237, Prop. 5.2]):

$$
\begin{array}{ll}
V=\oplus_{i=1}^{l} V^{(i)}, & \beta=\oplus \beta^{(i)} \tag{23}\\
a=\sum a^{(i)}, & I=\sum I^{(i)}
\end{array}
$$

where $V^{(i)}=\beta\left(1_{U^{(i)}}\right) V,\left(e^{(i)}, a^{(i)}, \beta^{(i)}\right)$ is an admissible triple belonging to $\left(U^{(i)}, V^{(i)}, \mathscr{C}^{(i)}\right)$, and $I^{(i)} \in \mathbb{S}\left(V^{(i)}, a^{(i)}, \beta^{(i)}\right)$.

It follows that one has $A=\sum A^{(i)}$ with

$$
A^{(i)}: V^{(i)} \times V^{(i)} \rightarrow U^{(i)},
$$

each $\left(U^{(i)}, V^{(i)}, A^{(i)}, \mathscr{C}^{(i)}, I^{(i)}\right)(1 \leq i \leq l)$ being a data satisfying the conditions (i), (ii), to which the triple $\left(e^{(i)}, a^{(i)}, \beta^{(i)}\right)$ is belonging.

Thus one obtains the direct decompositions of the domains:

$$
\begin{gather*}
\mathscr{P}(U, V, A, \mathscr{C}, I)=\prod_{i=1}^{l} \mathscr{S}\left(U^{(i)}, V^{(i)}, A^{(i)}, \mathscr{C}^{(i)}, I^{(i)}\right) \tag{24}\\
\Im(V, A, \mathscr{C})=\prod_{i=1}^{l} \subseteq\left(V^{(i)}, A^{(i)}, \mathscr{C}^{(i)}\right) \tag{25}
\end{gather*}
$$

which are known to be the unique irreducible decompositions of \mathscr{S}_{I} and \mathfrak{S} (as complex manifolds) ([S6, p. 237, Th. 5.3]).

3. Q-structures of a quasisymmetric domain.

3.1. Definition of a \boldsymbol{Q}-structure. Let $(U, V, A, \mathscr{C}, I)$ be a data defining a quasisymmetric domain \mathscr{S}_{I} and (e, a, β) an admissible triple belonging to it. By a \boldsymbol{Q}-structure of \mathscr{S}_{I} we mean a pair of \boldsymbol{Q}-structures of U, V, i.e., a pair of \boldsymbol{Q}-vector spaces U_{0}, V_{0} such that $U=U_{0} \otimes_{\boldsymbol{Q}} \boldsymbol{R}, V=V_{0} \otimes_{\boldsymbol{Q}} \boldsymbol{R}$, satisfying the conditions (Q1), (Q2) below.
(Q1) The Lie algebra \mathfrak{g}_{1} and the bilinear map A are defined over \boldsymbol{Q}.
This condition implies that the groups \tilde{V}, G, and $G_{i}(i=1,2)$ are defined over \boldsymbol{Q}; hence so is the "algebraic" subgroup G_{1}^{\prime} in (10). It follows that the representation $\beta: \mathfrak{g}_{1} \rightarrow \mathfrak{g l}(V)$ is also defined over \boldsymbol{Q}.

Under the condition (Q1), we can always choose e in $U_{0}=U(Q)$. Then the corresponding Cartan involution θ_{1} of \mathfrak{g}_{1} and hence $\mathfrak{f}_{1}, \mathfrak{p}_{1}$, the linear map $u \mapsto T_{u}$ (hence the normalized inner product $\left\rangle\right.$) are defined over \boldsymbol{Q}. The bilinear form $a=A_{e}$ is also defined over \boldsymbol{Q}. Conversely, if the triple (e, a, β) is defined over \boldsymbol{Q}, then so is A. Thus we can rephrase the condition (Q1) as
$\left(\mathrm{Q} 1\right.$ ') The Lie algebra g_{1} is defined over \mathbf{Q}, and the triple (e, a, β) can be taken to be defined over \boldsymbol{Q}.

Next we state the condition (Q2):
(Q2) The Cartan involution of g_{2} defined by I is \mathbf{Q}-rational.
This means that the point I in the symmetric domain $\mathfrak{S}=\mathfrak{S}(V, A, \mathscr{C})$ is "rational" (with respect to the given \boldsymbol{Q}-structure) in the sense of [S8]. It follows that G_{I} and $G_{2 I}$ are defined over \boldsymbol{Q}. [Note that (Q 2) does not necessarily imply that $G L(V, I)$ or $\operatorname{Her}(V, a, I)$ are defined over \boldsymbol{Q}, and that under $(\mathrm{Q} 1)$ there may be no rational points in \mathbb{S}.]
3.2. \boldsymbol{Q}-irreducible \boldsymbol{Q}-forms. We assume that a \boldsymbol{Q}-structure $\left(U_{0}, V_{0}\right)$ satisfying the conditions $(\mathrm{Q} 1),(\mathrm{Q} 2)$ is given. By virtue of the complete reducibility we may (hence will) further assume, without any loss of generality, that (U, \mathscr{C}) is Q-irreducible, i.e. no proper partial product in the direct decomposition (21) is defined over \boldsymbol{Q}. The \boldsymbol{Q}-structure of \mathscr{S}_{I} is then called Q-irreducible.

In the case $V=0$, the domain \mathscr{S}_{I} is a symmetric tube domain, for which our problem of classifying \boldsymbol{Q}-structures becomes trivial. Hence, in what follows, we will always assume that U is \boldsymbol{Q}-irreducible and $V \neq 0$. Then the representation β is faithful and φ is injective. Note that, if $\operatorname{dim} U^{(1)}=1$, one has $\mathfrak{g}_{1}^{(1)}=0$ and our theory becomes also trivial.

The Galois group $\mathscr{G}=\operatorname{Gal} \overline{\boldsymbol{Q}} / \boldsymbol{Q}$ acts transitively on the set $\left\{U^{(i)}(1 \leq i \leq l)\right\}$. Hence, if one puts $\mathscr{G}_{1}=\left\{\sigma \in \mathscr{G} \mid U^{(1) \sigma}=U^{(1)}\right\}$, then the field $F \subset \bar{Q}$ corresponding to \mathscr{G}_{1} by Galois theory is a totally real number field of degree l. If one sets $\mathscr{G}=\coprod_{i=1}^{l} \mathscr{G}_{1} \sigma_{i}$ with a set of representatives $\left\{\sigma_{i}\right\}\left(\sigma_{1}=1\right)$ for $\mathscr{G}_{1} \backslash \mathscr{G}$, then one has $U^{(i)}=U^{(1) \sigma_{i}}$. In the notation of 2.5, $\mathfrak{g}_{1}^{(1)}$ and $e^{(1)}$ are then defined over F. Moreover, $V^{(1)}=\beta\left(1_{U^{(1)}}\right) V$ is defined over F and hence so are also $a^{(1)}, \beta^{(1)}, A^{(1)}$, etc. and the Cartan involution of $\mathrm{g}_{2}^{(1)}$ defined by $I^{(1)}$. The corresponding objects $\mathfrak{g}_{1}^{(i)}$, etc. for $2 \leq i \leq l$ are obtained from these by the conjugation σ_{i}. By abuse of notation, we sometimes express this situation by writing $\mathfrak{g}_{1}=R_{F / \mathbf{Q}}\left(\mathfrak{g}_{1}^{(1)}\right)$, etc. Note that if $\operatorname{dim} U^{(1)}>1, \mathfrak{g}_{1}^{\text {s }}$ (the semisimple part of \mathfrak{g}_{1}) is \boldsymbol{Q}-simple and "pure" (i.e. all \boldsymbol{R}-simple factors $\mathfrak{g}_{1}^{(i) s}$ are mutually \boldsymbol{R}-isomorphic). The representations $\beta^{(i)}$ are also mutually \boldsymbol{R}-equivalent in an obvious sense.

By the above observation, we see that the problem of determining all Q-structures of \mathscr{S}_{I} satisfying the conditions $(\mathrm{Q} 1),(\mathrm{Q} 2)$ can be solved in the following steps.

0 . Fix a totally real number field F of degree l.

1. Find all F-structures of $\left(U^{(1)}, V^{(1)}\right)$ such that $g_{1}^{(1)}$ and the faithful representation $\beta^{(1)}$ are defined over F. Such an F-structure of $\left(U^{(1)}, V^{(1)}\right)$ will be called admissible. Then we set $U=R_{F / \mathbf{Q}} U^{(1)}, \mathfrak{g}_{1}=R_{F / \mathbf{Q}}\left(\mathfrak{g}_{1}^{(1)}\right)$, and $(V, \beta)=R_{F / \mathbf{Q}}\left(V^{(1)}, \beta^{(1)}\right)$. The $\left(U^{(i)}, V^{(i)}\right)(i \geq 2)$ are given the conjugate admissible $F^{\sigma_{i} \text {-structures. }}$
2. Choose $e \in \mathscr{C} \cap U(Q)$ and find a non-degenerate alternating bilinear form $a^{(1)}$ on $V^{(1)} \times V^{(1)}$ defined over F such that ($\left.e^{(1)}, a^{(1)}, \beta^{(1)}\right)$ is admissible. Then all the conjugates $\left(e^{(1) \sigma_{i}}, a^{(1) \sigma_{i}}, \beta^{(1) \sigma_{i}}\right)(2 \leq i \leq l)$ are automatically admissible.

In this way one obtains an admissible triple (e, a, β) defined over \boldsymbol{Q}, which determines an alternating bilinear map A defined over \boldsymbol{Q}. Thus one has a \boldsymbol{Q}-structure of \mathscr{S}_{I} satisfying (Q1).
3. Finally, find all rational points I in the symmetric domain $\mathfrak{S}=\mathfrak{G}(V, A, \mathscr{C})$ with respect to the given \boldsymbol{Q}-structure.

The solution of the step 3 was already given in [S8]. We give solutions of the steps 1 and 2 in the succeeding sections.
3.3. The \boldsymbol{R}-primary case. For simplicity, in the rest of this section, we assume that the representation $\left(V^{(1)}, \beta^{(1)}\right)$ is \boldsymbol{R}-primary, i.e. a direct sum of mutually equivalent \boldsymbol{R}-irreducible representations. Actually, it is known ([S2]) that this is the case except for the case where $\mathscr{C}^{(1)}$ is a quadratic cone $\mathscr{P}\left(1, n_{1}-1\right)$ with $n_{1} \equiv 2(\bmod 4)$.

In what follows, a division R-algebra D_{1} is always endowed with its standard involution $\xi \mapsto \bar{\xi}$. We denote by δ_{1} and d_{1} the degree of D_{1} over its center and the degree of the center over \boldsymbol{R}, respectively; i.e., $\delta_{1}=1$ for $D_{1}=\boldsymbol{R}, \boldsymbol{C}$ and $\delta_{1}=2$ for $D_{1}=\boldsymbol{H}$, and $d_{1}=1$ for $D_{1}=\boldsymbol{R}, \boldsymbol{H}$ and $d_{1}=2$ for $D_{1}=\boldsymbol{C}$.

Let $\left(V_{1}^{(1)}, \beta_{1}^{(1)}\right)$ be an \boldsymbol{R}-irreducible representation of $\mathfrak{g}_{1}^{(1)}$ contained in $\left(V^{(1)}, \beta^{(1)}\right)$ and put $V_{2}^{(1)}=\operatorname{Hom}_{\mathrm{g}_{1}^{(1)}}\left(V_{1}^{(1)}, V^{(1)}\right)$. Then there exists a uniquely determined division \boldsymbol{R}-algebra D_{1} such that $V_{1}^{(1)}$ is a right D_{1}-module and the $\mathfrak{g}_{1}^{(1)}$-endomorphisms of $V_{1}^{(1)}$ are given by the right multiplication $\mu_{\xi}\left(\xi \in D_{1}\right)$. Then $V_{2}^{(1)}$ has a natural structure of a left D_{1}-module defined by $\xi v_{2}=v_{2} \circ \mu_{\xi}$, and one has a tensor product decomposition:

$$
\begin{gather*}
V^{(1)}=V_{1}^{(1)} \otimes_{D_{1}} V_{2}^{(1)} \tag{26a}\\
\beta^{(1)}=\beta_{1}^{(1)} \otimes 1 . \tag{26b}
\end{gather*}
$$

Suppose that $\left(U^{(1)}, V^{(1)}\right)$ is given an admissible F-structure. Then, $\left(V^{(1)}(F), \beta^{(1)}\right)$ is F-primary. Hence, in a manner similar to the above, one has an F-irreducible representation $\left(V_{1}, \beta_{1}\right)$ over $F, V_{2}=\operatorname{Hom}_{\mathrm{g}_{1}\left({ }_{1}(F)\right.}\left(V_{1}, V^{(1)}(F)\right)$, and a division F-algebra D_{0}, such that V_{1} and V_{2} are right and left D_{0}-modules, respectively, and

$$
\begin{align*}
& V^{(1)}(F)=V_{1} \otimes_{D_{0}} V_{2}, \tag{27a}\\
& \beta^{(1)} \mid V^{(1)}(F)=\beta_{1} \otimes 1, \tag{27b}
\end{align*}
$$

(cf. [S1, pp. 230-231, Prop. 1, 2], or [S6, Ch. IV, §1]).
Since \mathfrak{g}_{1}^{s} is pure, one has decompositions of $V^{(i)}=V^{(1) \sigma_{i}}$ similar to (26a) with the same D_{1} for all $1 \leq i \leq l$. To be more precise, let $c_{1}^{(i)}$ be a primitive idempotent in $D_{0}^{\sigma_{i}}(\boldsymbol{R})=D_{0}^{\sigma_{i}} \otimes_{\boldsymbol{F} \sigma_{i}} \boldsymbol{R}$ and fix an \boldsymbol{R}-isomorphism

$$
\psi_{1}^{(i)}: D_{1} \xrightarrow{\sim} c_{1}^{(i)} D_{0}^{\sigma_{i}(\boldsymbol{R})} c_{1}^{(i)} .
$$

Then the D_{1}-module $V_{1}^{(i)}=\left(V_{1}^{\sigma_{i}}(\boldsymbol{R}) c_{1}^{(i)}, \psi_{1}^{(i)}\right)$ gives an \boldsymbol{R}-irreducible representation of $\mathfrak{g}_{1}^{(i)}$ contained in $\left(V^{(i)}, \beta^{(i)}\right)$. (In particular, one may assume that $V_{1}^{(1)}$ is given in this manner.) Hence, putting $V_{2}^{(i)}=\left(c_{1}^{(i)} V_{2}^{\sigma_{i}}(\boldsymbol{R}), \psi_{1}^{(i)}\right)$, one has

$$
\begin{gather*}
V^{(i)}=V_{1}^{(i)} \otimes_{D_{1}} V_{2}^{(i)}, \tag{28a}\\
\beta^{(i)}=\beta_{1}^{(i)} \otimes 1 \quad(1 \leq i \leq l) . \tag{28b}
\end{gather*}
$$

One denotes the degree of D_{0} over its center Z by δ_{0}, and the D_{0}-rank of V_{j} $(j=1,2)$ by v_{j}. Let $D_{0}(\boldsymbol{R}) \simeq M_{s_{1}}\left(D_{1}\right)$; then one has $\delta_{0}=\delta_{1} s_{1}$ and

$$
\begin{equation*}
\operatorname{dim}_{\boldsymbol{R}} V_{j}^{(i)}=v_{j} s_{1} \delta_{1}^{2} d_{1}, \quad \operatorname{dim}_{\boldsymbol{R}} V^{(i)}=v_{1} v_{2} \delta_{0}^{2} d_{1} \quad(1 \leq i \leq l, j=1,2) \tag{29}
\end{equation*}
$$

Since one has $Z^{\sigma_{i}}(\boldsymbol{R})=\boldsymbol{R}$ or $\simeq \boldsymbol{C}$ simultaneously for $1 \leq i \leq l$, according as $d_{1}=1$ or $2, Z$ is either $=F$ or a totally imaginary quadratic extension of F.
3.4. The algebra \mathscr{A}_{1}. Let \mathscr{A}_{1} denote the \boldsymbol{R}-subalgebra of $\operatorname{End}_{\boldsymbol{R}} V^{(1)}$ generated by $\beta^{(1)}\left(\mathfrak{g}_{1}^{(1)}\right)$. Then \mathscr{A}_{1} is \boldsymbol{R}-simple and $\mathscr{A}_{1} \simeq \operatorname{End}_{D_{1}}\left(V_{1}^{(1)}\right) \sim D_{1}$. Moreover, \mathscr{A}_{1} is defined over F and $\mathscr{A}_{1}(F) \simeq \operatorname{End}_{D_{0}}\left(V_{1}\right) \sim D_{0} . \mathscr{A}_{1}$ is of degree $v_{1} \delta_{0} d_{1}=v_{1} s_{1} \delta_{1} d_{1}$ over \boldsymbol{R}.

Lemma 2. For each Cartan involution θ_{1} of $\mathfrak{g}_{1}^{(1)}$ there exists a uniquely determined involution t_{1} of \mathscr{A}_{1} such that one has

$$
\begin{equation*}
\beta^{(1)}\left(\theta_{1} x\right)=-\beta^{(1)}(x)^{L_{1}} . \tag{30}
\end{equation*}
$$

Such an involution l_{1} is positive.
Proof. Let θ_{1} be a Cartan involution of $\mathfrak{g}_{1}^{(1)}$. Then θ_{1} extends to a Cartan involution θ_{1}^{\prime} of $\left(\mathscr{A}_{1}\right)_{\mathrm{Li}}$, which is reductive. Then there exists a positive involution t_{1} of \mathscr{A}_{1} such that one has $\theta_{1}^{\prime} y=-y^{\iota_{1}}$ for $y \in \mathscr{A}_{1}$. This t_{1} satisfies (30). Since \mathscr{A}_{1} is generated by $\beta^{(1)}\left(g_{1}^{(1)}\right), l_{1}$ is uniquely determined.
q.e.d.

It follows that, if one has an admissible F-structure on $\left(U^{(1)}, V^{(1)}\right)$ and if $e \in \mathscr{C} \cap U(Q)$, then the involution t_{1} corresponding to θ_{1} determined by $e^{(1)}$ is defined over F, and for each i the conjugate $\imath_{1}^{\sigma_{i}}$ corresponds to the Cartan involution $\theta_{1}^{\sigma_{i}}$ of $\mathfrak{g}_{1}^{(i)}$ determined by $e^{(i)}=e^{(1) \sigma_{i}} \in \mathscr{C}^{(i)}$. Thus ι_{1} is totally positive, i.e., all the conjugates $\imath_{1}^{\sigma_{i}}$ are positive. Otherwise expressed, $R_{F / \mathbf{Q}}\left(l_{1}\right)$ is a positive involution of the simple Q-algebra $R_{F / \mathbf{Q}}\left(\mathscr{A}_{1}\right)(Q)$. It follows that D_{0} has also a totally positive involution t_{0} such that $l_{0}\left|Z=l_{1}\right| Z$.

As is well known, for the algebra D_{0} with a totally positive involution one has only the following four possibilities:
(Type 1.1) $D_{0}=F ; \delta_{0}=1, D_{1}=\boldsymbol{R}$,
(Type 1.2) $\quad D_{0}$ is a totally indefinite quaternion algebra over $F ; \delta_{0}=2, D_{1}=\boldsymbol{R}$,
(Type 2) $\quad D_{0}$ is a totally definite quaternion algebra over $F ; \delta_{0}=2, D_{1}=\boldsymbol{H}$,
(Type 3) $\quad D_{0}$ is a central division algebra over a CM-field Z with an involution of the second kind with respect to $Z / F ; \delta_{0} \geq 1, D_{1}=C$.
Note that in case $\delta_{0}=\delta_{1}$ the (unique) positive involution t_{0} of D_{0} is induced by the canonical involution of D_{1}.

We identify $\mathscr{A}_{1}(F)$ with $\operatorname{End}_{D_{0}}\left(V_{1}\right)$ and set

$$
\begin{equation*}
\varphi_{1}(u)=2 \beta_{1}\left(T_{u}\right) \quad \text { for } \quad u \in U^{(1)} . \tag{31}
\end{equation*}
$$

Then φ_{1} is a linear map: $U^{(1)} \rightarrow \operatorname{Her}\left(\mathscr{A}_{1}, l_{1}\right)$ and the pair $\left(\beta_{1}, \varphi_{1}\right)$ satisfies the relations similar to ($\beta 1$), ($\beta 2$):

$$
\begin{align*}
& \varphi_{1}(x(u))=\beta_{1}(x) \varphi_{1}(u)+\varphi_{1}(u) \beta_{1}(x)^{L_{1}}, \\
& \beta_{1}\left(\theta_{1}(x)\right)=-\beta_{1}(x)^{t_{1}}, \quad \varphi_{1}\left(e^{(1)}\right)=1 . \tag{32}
\end{align*}
$$

One notes that, given a "base point" $e^{(1)} \in \mathscr{C}^{(1)}$, the involution t_{1} and the map φ_{1} are uniquely characterized by (32). These relations also imply that φ_{1} is a Jordan algebra homomorphism of $U^{(1)}$ into $\left(\mathscr{A}_{1}\right)_{\text {Jordan }}$ and that $\varphi_{1}\left(\mathscr{C}^{(1)}\right)$ is contained in the cone of all positive elements in $\operatorname{Her}\left(\mathscr{A}_{1}, l_{1}\right)$.

Proposition 1. The normalized inner product of $U^{(1)}$ corresponding to $e^{(1)}$ is given by

$$
\begin{equation*}
\left\langle u, u^{\prime}\right\rangle=r_{1}\left(v_{1} \delta_{0} d_{1}\right)^{-1} \operatorname{tr}\left(\varphi_{1}(u) \varphi_{1}\left(u^{\prime}\right)\right) \quad\left(u, u^{\prime} \in U^{(1)}\right), \tag{33}
\end{equation*}
$$

where $r_{1}=\boldsymbol{R}$-rank $\mathrm{g}_{1}^{(1)}$ and tr denotes the reduced trace $\operatorname{tr}_{\mathscr{A}_{1} / \mathbf{R}}$.
Put $\left\langle u, u^{\prime}\right\rangle^{\prime}=\operatorname{tr}\left(\varphi_{1}(u) \varphi_{1}\left(u^{\prime}\right)\right)$. Then by (32) one has

$$
\left\langle x u, u^{\prime}\right\rangle^{\prime}=-\left\langle u, \theta_{1}(x) u^{\prime}\right\rangle^{\prime} \quad \text { for } \quad x \in \mathfrak{g}_{1}^{(1)}
$$

Hence one has $\left\rangle^{\prime}=c\langle \rangle\right.$ with a real constant c. Putting $u=u^{\prime}=e^{(1)}$, one has by (8) $c=r_{1}^{-1} \operatorname{tr}(1)=r_{1}^{-1} v_{1} \delta_{0} d_{1}$, as desired.
3.5. We shall now show that, conversely, one can obtain admissible F-structures of $\left(U^{(1)}, V^{(1)}\right)$ from an F-algebra structure of \mathscr{A}_{1}.

Theorem 1. Let \mathscr{A}_{1} be the subalgebra of $\operatorname{End}_{\mathbf{R}} V^{(1)}$ generated by $\beta^{(1)}\left(\mathfrak{g}_{1}^{(1)}\right)$. Then an F-algebra structure of \mathscr{A}_{1} gives rise to an admissible F-structure of $\left(U^{(1)}, V^{(1)}\right)$ if and only if the following conditions (a), (b), (c) are satisfied:
(a) $\quad \beta^{(1)}\left(\mathfrak{g}_{1}^{(1)}\right)$ is a linear subspace of \mathscr{A}_{1} defined over F.
(b) There exists a totally positive involution t_{1} of $\mathscr{A}_{1}(F)$ leaving $\beta^{(1)}\left(\mathfrak{g}_{1}^{(1)}\right)(F)$ invariant.
(c) Let $\mathscr{A}_{1}(F) \sim D_{0}, \mathscr{A}_{1} \sim D_{1}$ and let δ_{0} and δ_{1} be the degree of D_{0} and D_{1} over the center. Then the multiplicity of the \boldsymbol{R}-irreducible representation $\beta_{1}^{(1)}$ in $\beta^{(1)}$ is divisible by $s_{1}=\delta_{0} / \delta_{1}$.

Proof. The "only if" part is clear from what we said in 3.4. To prove the "if" part, we construct an admissible F-structure of $\left(U^{(1)}, V^{(1)}\right)$, starting from an F-algebra structure of \mathscr{A}_{1} satisfying the conditions (a), (b), (c).

Take a primitive idempotent c_{1} in $\mathscr{A}_{1}(F)$ and fix an F-isomorphism

$$
\psi_{1}: D_{0} \xrightarrow{\sim} c_{1} \mathscr{A}_{1}(F) c_{1} .
$$

Then $V_{1}=\left(\mathscr{A}_{1}(F) c_{1}, \psi_{1}\right)$ is a (right) D_{0}-module of rank ν_{1} and one can make an identification $\mathscr{A}_{1}(F)=\operatorname{End}_{D_{0}}\left(V_{1}\right)$. By the condition (a) one has an F-Lie algebra structure on $\mathfrak{g}_{1}^{(1)}$ such that $\beta_{1}=\beta^{(1)} \mid \mathfrak{g}_{1}^{(1)}(F)$ is an F-linear representation of $\mathfrak{g}_{1}^{(1)}(F)$ in $\mathscr{A}_{1}(F)=\operatorname{End}_{D_{0}}\left(V_{1}\right)$. Then, defining $V_{j}^{(1)}(j=1,2)$ as explained in 3.3, one obtains the
decomposition (26a), (26b). By the condition (c), the multiplicity of $\beta_{1}^{(1)}$ in $\beta^{(1)}$ can be written as $v_{2} s_{1}$, and one has the relation (29) for $i=1$.

Now an F-structure of $V^{(1)}$ is defined as follows. Fix an R-isomorphism $D_{0}(\boldsymbol{R}) \simeq M_{s_{1}}\left(D_{1}\right)$ and the matrix units $\left(e_{i j}^{(1)}\right)_{1 \leq i, j \leq s_{1}}$ in $D_{0}(\boldsymbol{R})$ such that $c_{1}^{(1)}=e_{11}^{(1)}$. Then there exist injective $\mathfrak{g}_{1}^{(1)}$-equivariant linear maps

$$
\phi_{i}: V_{1}(\boldsymbol{R})=\bigoplus_{k=1}^{s_{1}} V_{1}^{(1)} e_{1 k}^{(1)} \rightarrow V^{(1)} \quad\left(1 \leq i \leq v_{2}\right)
$$

such that one has $V^{(1)}=\oplus \phi_{i}\left(V_{1}(\boldsymbol{R})\right)$. Hence one can define an F-structure on $V^{(1)}$ so that

$$
V^{(1)}(F)=\bigoplus_{i=1}^{v_{1}} \phi_{i}\left(V_{1}\right)
$$

Then, in the manner explained in 3.3, one obtains the decomposition (27a), (27b).
An F-structure of $U^{(1)}$ is defined as follows. Take a totally positive involution t_{1} of $\mathscr{A}_{1}(F)$ leaving $\beta_{1}\left(\mathfrak{g}_{1}^{(1)}(F)\right)$ invariant. Let θ_{1} be a Cartan involution of $\mathfrak{g}_{1}^{(1)}$ defined by (30) and let $e^{(1)}$ be the corresponding point in $U^{(1)}$ (determined up to a scalar multiplication). One defines an F-structure of $U^{(1)}$ so that

$$
U^{(1)}(F)=\left\{u \in U^{(1)} \mid T_{u} \in \mathfrak{p}_{1}^{(1)}(F)\right\}
$$

Then, clearly, $U^{(1)}(F)$ is invariant under $\mathfrak{g}_{1}^{(1)}(F)$, and one has $e^{(1)} \in U^{(1)}(F)$, $\varphi_{1}\left(U^{(1)}(F)\right) \subset \operatorname{Her}\left(\mathscr{A}_{1}(F), t_{1}\right)$. Thus one obtains an admissible F-structure of $\left(U^{(1)}, V^{(1)}\right)$.

> q.e.d.

In the above notation, since $\theta_{1}^{(i)}=\theta_{1}^{\sigma_{i}}$ is a Cartan involution of $\mathfrak{g}_{1}^{(i)}$, one may, replacing $e^{(1)}$ by $\alpha e^{(1)}$ with $\alpha \in F^{\times}$if necessary, assume that $e^{(i)}=e^{(1) \sigma_{i}} \in \mathscr{C}^{(i)}$ for all $1 \leq i \leq l$, i.e. $e=\sum e^{(i)} \in \mathscr{C}$.

Remark. The F-algebra structure of \mathscr{A}_{1} satisfying (a) is uniquely determined by that of $\mathfrak{g}_{1}^{(1)}$. The admissible F-structure of $\left(U^{(1)}, V^{(1)}\right)$ compatible with a given F-structure of $\mathfrak{g}_{1}^{(1)}$ is uniquely determined up to $\mathfrak{g}_{1}^{(1)}$-automorphisms of $\left(U^{(1)}, V^{(1)}\right)$.
3.6. Determination of $a^{(1)}$. Let $\varepsilon \in\{ \pm 1\}$. In general, by a ($\left.D_{0}, t_{0}\right)-\varepsilon$-hermitian form h_{1} on a right D_{0}-module V_{1} we mean an F-bilinear map $h_{1}: V_{1} \times V_{1} \rightarrow D_{0}$ satisfying the following conditions:

$$
\begin{gathered}
h_{1}\left(v_{1}, v_{1}^{\prime} \xi\right)=h_{1}\left(v_{1}, v_{1}^{\prime}\right) \xi, \quad h_{1}\left(v_{1}^{\prime}, v_{1}\right)=\varepsilon h_{1}\left(v_{1}, v_{1}^{\prime}\right)^{t_{0}} \\
\\
\text { for } v_{1}, v_{1}^{\prime} \in V_{1}, \quad \xi \in D_{0} .
\end{gathered}
$$

The dual V_{1}^{*} of V_{1} (as an F-vector space) is viewed as a left D_{0}-module in a natural manner. Then the hermitian form h_{1} may be identified with an ε-symmetric (D_{0}, l_{0})-semilinear map $h_{1}: V_{1} \rightarrow V_{1}^{*}$ by the relation

$$
\begin{equation*}
\operatorname{tr}_{D_{0} / F}\left(h_{1}\left(v_{1}, v_{1}^{\prime}\right)\right)=\left\langle v_{1}, h_{1}\left(v_{1}^{\prime}\right)\right\rangle \tag{34}
\end{equation*}
$$

Similarly, a $\left(D_{0}, l_{0}\right)$ - ε^{\prime}-hermitian form h_{2} on a left D_{0}-module V_{2} (satisfying this time $h_{2}\left(\xi v_{2}, v_{2}^{\prime}\right)=\xi h_{2}\left(v_{2}, v_{2}^{\prime}\right)$, etc.) is identified with an ε^{\prime}-symmetric ($\left.D_{0}, l_{0}\right)$-semilinear map $h_{2}: V_{2} \rightarrow V_{2}^{*}$ by a relation similar to (34), V_{2}^{*} being viewed as a right D_{0}-module.

Now suppose one has an admissible F-structure on $\left(U^{(1)}, V^{(1)}\right)$ and $e \in \mathscr{C} \cap U^{(1)}(\mathscr{Q})$. Let l_{1} be the totally positive involution of $\mathscr{A}_{1}(F)=\operatorname{End}_{D_{0}}\left(V_{1}\right)$ corresponding to $e^{(1)}$ in the sense of Lemma 2. Then t_{1} can be written in the form

$$
\begin{equation*}
t_{1}=l_{1}\left(h_{1}\right): y \mapsto h_{1}^{-1 t} y h_{1} \tag{35}
\end{equation*}
$$

with a $\left(D_{0}, l_{0}\right)$ - η-hermitian form h_{1} on $V_{1}(\eta= \pm 1)$ uniquely determined up to a scalar multiplication of F^{\times}. (In the case of Type 3, one may, hence will, assume that $\eta=1$.)

The hermitian form h_{1} can be taken to be "totally positive (definite)". To be more precise, let $c_{1}^{(i)}, \psi_{1}^{(i)}, V_{1}^{(i)}$ be as defined in 3.3 and extend $\tau_{0}^{\sigma_{i}}$ to an \boldsymbol{R}-linear involution of $D_{0}^{\sigma_{i}}(\boldsymbol{R})$. Then as is easily seen, there exist $b_{1}^{(i)} \in D_{0}^{\sigma_{i}}(\boldsymbol{R})^{\times}(1 \leq i \leq l)$ such that one has

$$
\begin{equation*}
\psi_{1}^{(i)}(\xi)^{t_{0}^{\sigma_{i}}}=b_{1}^{(i)-1} \psi_{1}^{(i)}(\bar{\xi}) b_{1}^{(i)} \quad\left(\xi \in D_{1}\right) ; \tag{36}
\end{equation*}
$$

in particular, one has

$$
c_{1}^{(i)^{\tau_{0}{ }^{i}}}=b_{1}^{(i)^{-1}} c_{1}^{(i)} b_{1}^{(i)}
$$

The elements $c_{1}^{(i)} b_{1}^{(i)}=b_{1}^{(i)} c_{1}^{(i))^{\sigma_{i}}}$ are uniquely determined by the $c_{1}^{(i)}$ up to scalar multiplications of $Z(\boldsymbol{R})^{\times}$. In particular, one has

$$
\begin{equation*}
b_{1}^{(i))_{0}^{\delta_{i}}} c_{1}^{(i)^{i_{i}^{f_{i}}}}=\eta_{i} c_{1}^{(i)} b_{1}^{(i)} \quad \text { with } \quad \eta_{i}= \pm 1 \tag{37}
\end{equation*}
$$

(In the case of Type 3, one chooses $b_{1}^{(i)}$ so that $\eta_{i}=1$.) Then there exist $D_{1}-\eta \eta_{i}$-hermitian forms $h_{1}^{(i)}$ on $V_{1}^{(i)}$ determined by the relation

$$
\begin{equation*}
\psi_{1}^{(i)}\left(h_{1}^{(i)}\left(v_{1} c_{1}^{(i)}, v_{1}^{\prime} c_{1}^{(i)}\right)\right)=c_{1}^{(i)} b_{1}^{(i)} h_{1}^{\sigma_{i}}\left(v_{1}, v_{1}^{\prime}\right) c_{1}^{(i)} \quad \text { for } \quad v_{1}, v_{1}^{\prime} \in V_{1}^{\sigma_{i}} . \tag{38}
\end{equation*}
$$

Since t_{1} is totally positive, one has $\eta \eta_{i}=1(1 \leq i \leq l)$ and the $h_{1}^{(i)}$'s are definite. Hence one has $\eta=-1$ for Type 1.2 and $\eta=1$ for all other cases. For the given choice of $b_{1}^{(i)}$'s one may choose h_{1} in such a way that all the $h_{1}^{(i)}$ are positive definite.

Remark. The above definition of the "positivity" of h_{1} depends on the choice of the $b_{1}^{(i)}$'s, which is usually made in the following manner. Fix isomorphisms $M^{(i)}: D_{0}^{\sigma_{i}}(\boldsymbol{R}) \xrightarrow{\simeq} M_{s_{1}}\left(D_{1}\right)$ and the matrix units $\left(\varepsilon_{j k}^{(i)}\right)_{1 \leq j, k \leq s_{1}}$ in $D_{0}^{\sigma_{i}}(\boldsymbol{R})$ in such a way that

$$
M^{(i)}\left(\psi_{1}^{(i)}(\xi)\right)=\xi M^{(i)}\left(\varepsilon_{11}^{(i)}\right) \quad \text { for } \quad \xi \in D_{1} ;
$$

in particular, $\varepsilon_{11}^{(i)}=c_{1}^{(i)}$. Then one chooses $b_{1}^{(i)}$ so that

$$
\varepsilon_{k j}^{\left(i()_{j}^{\tau_{i}}\right.}=b_{1}^{(i)^{-1}} \varepsilon_{j k}^{(i)} b_{1}^{(i)} ;
$$

then by (37) one has $b_{1}^{(i))_{0}^{\sigma_{i}}}=\eta_{1} b_{1}^{(i)}$. By these conditions the $b_{1}^{(i)}$ are uniquely determined up to scalar multiplications of \boldsymbol{R}^{\times}. Now, for Type 1.1 and 2 one has $s_{1}=1, c_{1}^{(i)}=1$, so that one may put $b_{1}^{(i)}=1$. For Type 1.2 , one has $s_{1}=2, \eta_{i}=-1$, and one takes $b_{1}^{(i)}$ so that

$$
M^{(i)}\left(b_{1}^{(i)}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

For Type 3, one chooses $b_{1}^{(i)}$ so that $M^{(i)}\left(b_{1}^{(i)}\right)$ is positive definite. We also note that in this notation (38) is equivalent to saying that

$$
M^{(i)}\left(b_{1}^{(i)} h_{1}^{\sigma_{i}}\left(v_{1}, v_{1}^{\prime}\right)\right)=\left(h_{1}^{(i)}\left(v_{1} \varepsilon_{j 1}^{(i)}, v_{1}^{\prime} \varepsilon_{k 1}^{(i)}\right)\right)_{1 \leq j, k \leq s_{1}} \quad \text { for } \quad v_{1}, v_{1}^{\prime} \in V_{1}^{\sigma_{i}}
$$

(cf. [S6, Ch. IV, §3]).
Theorem 2. Suppose that $\left(U^{(1)}, V^{(1)}\right)$ is given an admissible F-structure, $e \in \mathscr{C} \cap U^{(1)}(Q)$, and h_{1} is a totally positive $\left(D_{0}, l_{0}\right)-\eta$-hermitian form on V_{1} such that $l_{1}=l_{1}\left(h_{1}\right)$ is the involution corresponding to $e^{(1)}$. Then $\left(e^{(1)}, a^{(1)}, \beta^{(1)}\right)$ is an admissible triple belonging to $\left(U^{(1)}, V^{(1)}, \mathscr{C}^{(1)}\right)$ defined over F if and only if $a^{(1)}$ is of the form
(39) $a^{(1)}\left(v_{1} \otimes_{D_{0}} v_{2}, v_{1}^{\prime} \otimes_{D_{0}} v_{2}^{\prime}\right)=\operatorname{tr}_{D_{0} / F}\left(h_{1}\left(v_{1}, v_{1}^{\prime}\right)^{t_{0}} h_{2}\left(v_{2}, v_{2}^{\prime}\right)\right)$ for $v_{j}, v_{j}^{\prime} \in V_{j}, j=1,2$,
where h_{2} is a $\left(D_{0}, l_{0}\right)-(-\eta)$-hermitian form on V_{2}.
(Cf. [S1, p. 234, Prop. 3], or [S6, Ch. IV, §2].)
Proof. Assume that $\left(e^{(1)}, a^{(1)}, \beta^{(1)}\right)$ is an admissible triple defined over F. Then by ($\beta 2$) and (30) the involution $l=\imath\left(a^{(1)}\right)$ leaves \mathscr{A}_{1} invariant and $\imath \mathscr{A}_{1}=l_{1}$. Since one has

$$
\operatorname{End}_{F}\left(V^{(1)}(F)\right)=\operatorname{End}_{D_{0}}\left(V_{1}\right) \otimes_{Z} \operatorname{End}_{D_{0}}\left(V_{2}\right),
$$

there exists an involution t_{2} of $\operatorname{End}_{D_{0}}\left(V_{2}\right)$ such that $t_{2}\left|Z=t_{0}\right| Z$ and

$$
\left(y_{1} \otimes_{Z} y_{2}\right)^{t}=y_{1}^{\iota_{1}} \otimes_{Z} y_{2}^{t_{2}} \quad\left(y_{j} \in \operatorname{End}_{D_{0}}\left(V_{j}\right), \quad j=1,2\right)
$$

Hence, making the natural identification $V^{(1)}(F)^{*}=V_{2}^{*} \otimes_{D_{0}} V_{1}^{*}$, one has a $\left(D_{0}, l_{0}\right)-(-\eta)$ hermitian map $h_{2}: V_{2} \rightarrow V_{2}^{*}$ such that

$$
a^{(1)}\left(v_{1} \otimes_{D_{0}} v_{2}\right)=h_{1}\left(v_{1}\right) \otimes_{D_{0}} h_{2}\left(v_{2}\right),
$$

which is equivalent to (39). The converse is clear.
q.e.d.

With the same notation as in Theorem 2, let $\left(e^{(i)}, a^{(i)}, \beta^{(i)}\right)=\left(e^{(1)}, a^{(1)}, \beta^{(1)}\right)^{\sigma_{i}}$ $(1 \leq i \leq l)$; then they are admissible triples belonging to $\left(U^{(i)}, V^{(i)}, \mathscr{C}^{(i)}\right)$ defined over $F^{\sigma_{i}}$. Let $c_{1}^{(i)}, \psi_{1}^{(i)}, b_{1}^{(i)}$ be as above. Then for each $1 \leq i \leq l$ there is D_{1}-skew-hermitian form $h_{2}^{(i)}$ on the left D_{1}-module $V_{2}^{(i)}$ determined by the relation

$$
\begin{equation*}
\psi_{1}^{(i)}\left(h_{2}^{(i)}\left(c_{1}^{(i)} v_{2}, c_{1}^{(i)} v_{2}^{\prime}\right)\right)=c_{1}^{(i)} h_{2}^{\sigma_{i}}\left(v_{2}, v_{2}^{\prime}\right) b_{1}^{(i)-1} c_{1}^{(i)} \quad \text { for } \quad v_{2}, v_{2}^{\prime} \in V_{2}^{\sigma_{i}}, \tag{40}
\end{equation*}
$$

and one has

$$
\begin{gather*}
\left.a^{(i)}\left(v_{1} \otimes_{D_{1}} v_{2}, v_{1}^{\prime} \otimes_{D_{1}} v_{2}^{\prime}\right)=\operatorname{tr}_{D_{1 / R}} \overline{\left(h_{1}^{(i)}\left(v_{1}, v_{1}^{\prime}\right)\right.} h_{2}^{(i)}\left(v_{2}, v_{2}^{\prime}\right)\right) \tag{41}\\
\text { for } v_{j}, v_{j}^{\prime} \in V_{j}^{(i)}, j=1,2
\end{gather*}
$$

(cf. [S6, Ch. IV, §3]).
3.7. The description of $\mathfrak{\subseteq}$. Let

$$
\begin{gathered}
I \in \mathbb{S}=\mathfrak{S}(V, a, \beta), \quad I=\sum_{i=1}^{l} I^{(i)}, \\
I^{(i)} \in \Im^{(i)}=\mathfrak{S}\left(V^{(i)}, a^{(i)}, \beta^{(i)}\right) .
\end{gathered}
$$

Then, since $I^{(i)}$ is $\beta^{(i)}\left(g_{1}^{(i)}\right)$-invariant, one has

$$
\begin{equation*}
I^{(i)}=1 \otimes_{D_{1}} I_{2}^{(i)} \quad(1 \leq i \leq l), \tag{42}
\end{equation*}
$$

with a complex structure $I_{2}^{(i)} \in \operatorname{End}_{D_{1}}\left(V_{2}^{(i)}\right)$, which by (41) satisfies the condition

$$
\begin{equation*}
h_{2}^{(i)}\left(v_{2}, I^{(i)} v_{2}^{\prime}\right) \quad\left(v_{2}, v_{2}^{\prime} \in V_{2}^{(i)}\right) \quad \text { is } D_{1} \text {-hermitian and positive definite } . \tag{43}
\end{equation*}
$$

Let $\mathfrak{S}\left(V_{2}^{(i)}, h_{2}^{(i)}\right)$ denote the space of D_{1}-linear complex structures on $V_{2}^{(i)}$ satisfying the condition (43). Then one has

$$
\begin{equation*}
\Im\left(V^{(i)}, a^{(i)}, \beta^{(i)}\right) \simeq \Im\left(V_{2}^{(i)}, h_{2}^{(i)}\right) \tag{44}
\end{equation*}
$$

This implies, in particular, that for any Q-rational admissible triple (e, a, β) one has

$$
\mathfrak{S}(V, a, \beta) \simeq \prod_{i=1}^{l} \Im_{\left(V_{2}^{(i)}, h_{2}^{(i)}\right) \neq \varnothing ~}^{\text {. }}
$$

The symmetric domain \mathcal{S} (with the given \boldsymbol{Q}-structure) is denoted as $R_{F / \mathbf{Q}} \subseteq\left(V_{2}, D_{0}, h_{2}\right)$. In the case where D_{0} is of Type 1.1 , Type 1.2 , and Type $2, \mathfrak{S}$ is also written as $R_{F / \mathbf{Q}}\left(\mathrm{III}_{v_{2} / 2}^{(1)}\right), R_{F / \mathbf{Q}}\left(\mathrm{IIII}_{v_{2}}^{(2)}, D_{0}, h_{2}\right)$, and $R_{F / \mathbf{Q}}\left(\mathrm{II}_{v_{2}}^{(2)}, D_{0}, h_{2}\right)$, respectively.

Note that the corresponding group G_{2} has no compact factors (and hence determined uniquely by $\mathbb{S})$ except for the following two cases. The group G_{2} corresponding to $R_{F / \mathbf{Q}}\left(\mathrm{II}_{1}^{(2)}, D_{0}, h_{2}\right)$ is compact, so that the corresponding domain \mathfrak{G} reduces to a point. The group G_{2} corresponding to $R_{F / \mathbf{Q}}\left(\mathrm{II}_{2}^{(2)}, D_{0}, h_{2}\right)$ (under the assumption that \mathfrak{S} has rational points) is isogenous to the direct product of two Q-simple groups $G_{2}^{\prime}, G_{2}^{\prime \prime}$, one of which is compact and the other is isomorphic to the group corresponding to $R_{F / \mathbf{Q}}\left(\mathrm{III}_{1}^{(1)}\right)$. (These cases are usually excluded from the classification.)
3.8. In the case where D_{0} is of Type 3, one has to determine furthermore the signature of $h_{2}^{(i)}$. For that purpose, let σ_{i}^{\prime} and $\sigma_{i}^{\prime \prime}$ denote two imbeddings of the center Z of D_{0} into \boldsymbol{C} extending $\sigma_{i}: F \rightarrow \boldsymbol{R}$; then one has $\sigma_{i}^{\prime \prime}=\sigma_{0} \circ \sigma_{i}^{\prime}, \sigma_{0}$ denoting the complex conjugation of \boldsymbol{C}. We determine $\psi_{1}^{(i)}$ and $\left(\sigma_{i}^{\prime}, \sigma_{i}^{\prime \prime}\right)$ in such a way that

$$
\begin{equation*}
\psi_{1}^{(i)}\left(\alpha^{\sigma_{i}^{\prime}}\right)=\bar{\psi}_{1}^{(i)}\left(\alpha^{\sigma_{i}^{\prime \prime}}\right)=\alpha^{\sigma_{i}} c_{1}^{(i)} \quad(\alpha \in Z) . \tag{45}
\end{equation*}
$$

Then we say that the $\psi_{1}^{(i)}$ are compatible with the "CM-type" $\left(\sigma_{i}^{\prime}\right)$ of the CM-field Z.
In this case, since $D_{1}=\boldsymbol{C}$ is commutative, we don't distinguish left and right \boldsymbol{C}-vector spaces. Then, the $\left(V_{j}^{(i)}, \psi_{j}^{(i)}\right)$ being C-vector spaces, one has direct decompositions

$$
\begin{equation*}
V_{j}^{(i)} \otimes_{R} C=V_{j}^{(i) \prime} \oplus V_{j}^{(i) \prime \prime}, \quad V_{j}^{(i) \prime \prime}=V_{j}^{(i)) \sigma_{0}}, \quad(1 \leq i \leq l, j=1,2), \tag{46}
\end{equation*}
$$

where

$$
\begin{aligned}
& V_{j}^{(i) \prime}=\left\{v \in V_{j}^{(i)} \otimes_{\boldsymbol{R}} \boldsymbol{C} \mid v \psi_{1}^{(i)}(\xi)=\xi v \text { for } \xi \in \boldsymbol{C}\right\} \\
& V_{j}^{(i) \prime \prime}=\left\{v \in V_{j}^{(i)} \otimes_{\boldsymbol{R}} \boldsymbol{C} \mid v \psi_{1}^{(i)}(\xi)=\bar{\xi} v \text { for } \xi \in \boldsymbol{C}\right\},
\end{aligned}
$$

and $\operatorname{dim}_{c} V_{j}^{(i) \prime}=\operatorname{dim}_{c} V_{j}^{(i) \prime \prime}=v_{j} \delta_{0}$.
Let $\beta_{1}^{(i) \prime}$ and $\beta_{1}^{(i) \prime \prime}=\beta_{1}^{(i) / \sigma_{0}}$ denote the restrictions to $V_{1}^{(i) \prime}$ and $V_{1}^{(i) \prime \prime}$ of the natural extension of the representation $\beta_{1}^{(i)}$ to $V_{1}^{(i)} \otimes_{R} C$. Then they are absolutely irreducible and the primary decomposition of $\left(V^{(i)} \otimes_{\boldsymbol{R}} C, \beta^{(i)}\right)$ is given by

$$
\begin{equation*}
V^{(i)} \otimes_{\boldsymbol{R}} C=V_{1}^{(i) \prime} \otimes_{\boldsymbol{c}} V_{2}^{(i) \prime} \oplus V_{1}^{(i) \prime \prime} \otimes_{\boldsymbol{c}} V_{2}^{(i) \prime \prime} \tag{47}
\end{equation*}
$$

Now, for the given complex structure $I^{(i)}$ on $V^{(i)}$, set

$$
V_{+}^{(i)}=\left\{v \in V^{(i)} \otimes_{\mathbf{R}} C \mid I^{(i)} v=\sqrt{-1} v\right\} .
$$

Then $V_{+}^{(i)}$ is $\beta^{(i)}\left(\mathfrak{g}_{1}^{(i)}\right)$-invariant, and the primary decomposition of it is of the form

$$
\begin{equation*}
V_{+}^{(i)}=V_{1}^{(i) \prime} \otimes_{\boldsymbol{c}} W_{2}^{(i) \prime} \oplus V_{1}^{(i) \prime \prime} \otimes_{\boldsymbol{c}} W_{2}^{(i) \prime \prime} \tag{48}
\end{equation*}
$$

where $W_{2}^{(i) \prime}$ and $W_{2}^{(i) \prime \prime}$ are complex subspaces of $V_{2}^{(i) \prime}$ and $V_{2}^{(i) \prime \prime}$ of dimension p_{i} and q_{i}, respectively. Since one has

$$
V^{(i)} \otimes_{R} \boldsymbol{C}=V_{+}^{(i)} \oplus V_{+}^{(i) \sigma_{0}},
$$

one has

$$
\begin{equation*}
V_{2}^{(i)^{\prime}}=W_{2}^{(i)^{\prime}} \oplus W_{2}^{(i) \prime \prime \sigma_{0}} \tag{49}
\end{equation*}
$$

in particular, $p_{i}+q_{i}=v_{2} \delta_{0}(1 \leq i \leq l)$. Thus one has

$$
\begin{equation*}
\left(V^{(i)}, I^{(i)}, \beta^{(i)}\right) \simeq\left(V_{+}^{(i)}, p_{i} \beta_{1}^{(i)} \oplus q_{i} \beta_{1}^{(i) \prime \prime}\right) \tag{50}
\end{equation*}
$$

Otherwise expressed, one has

$$
\begin{align*}
& V^{(i)}=R_{\boldsymbol{C} / \mathbf{R}}\left(V_{1}^{(i) \prime} \otimes_{\boldsymbol{c}} V_{2}^{(i)^{\prime}}\right), \\
& I^{(i)}=R_{\boldsymbol{C} / \mathbf{R}}\left(1 \otimes_{\boldsymbol{C}} I_{2}^{(i)^{\prime}}\right) \tag{51}
\end{align*}
$$

where $I_{2}^{(i) \prime}$ is a complex structure on $V_{2}^{(i) \prime}$, defined by

$$
I_{2}^{(i) \prime}=\left\{\begin{align*}
\sqrt{-1} & \text { on } \quad W_{2}^{(i) \prime} \tag{51a}\\
-\sqrt{-1} & \text { on } \quad W_{2}^{(i) \prime \prime \sigma_{0}}
\end{align*}\right.
$$

Let $h_{j}^{(i) \prime}$ denote the $(-1)^{j-1}$-hermitian forms on $V_{j}^{(i) \prime}$ obtained from $h_{j}^{(i)}$ by the \boldsymbol{C}-isomorphism $\left(V_{j}^{(i)}, \psi_{1}^{(i)}\right) \simeq V_{j}^{(i)}$; then $h_{2}^{(i)}\left(w_{2}, w_{2}^{\prime}\right)\left(w_{2}, w_{2}^{\prime} \in V_{2}^{(i)}\right)$ is \boldsymbol{C}-linear in w_{2}. For the sake of consistency, we set

$$
\tilde{h}_{2}^{(i)}\left(w_{2}, w_{2}^{\prime}\right)=\overline{h_{2}^{(i)}\left(w_{2}, w_{2}^{\prime}\right)},
$$

to obtain a skew-hermitian form which is \boldsymbol{C}-linear in w_{2}^{\prime}. Then by (41) one has

$$
\begin{equation*}
a^{(i)}\left(v_{1} \otimes_{\boldsymbol{c}} v_{2}, v_{1}^{\prime} \otimes_{\boldsymbol{c}} v_{2}^{\prime}\right)=2 \operatorname{Re}\left(h_{1}^{(i)}\left(w_{1}, w_{1}^{\prime}\right) \tilde{h}_{2}^{(i)}\left(w_{2}, w_{2}^{\prime}\right)\right), \tag{52}
\end{equation*}
$$

where

$$
v_{j}=w_{j}+\bar{w}_{j}, \quad v_{j}^{\prime}=w_{j}^{\prime}+\bar{w}_{j}^{\prime}, \quad v_{j}, v_{j}^{\prime} \in V_{j}^{(i)}, \quad w_{j}, w_{j}^{\prime} \in V_{j}^{(i) \prime} \quad(1 \leq i \leq l, j=1,2),
$$

and the symbol $\otimes_{\boldsymbol{c}}$ in (52) stands for the tensor product over $\psi_{1}^{(i)}(\boldsymbol{C})$. Since $a^{(i)} I^{(i)}$ and the hermitian form $h_{1}^{(i)}$ are positive definite, one has by (51), (51a) and (52) that the hermitian form $\sqrt{-1} \tilde{h}_{2}^{(i)}$ on $V_{2}^{(i) \prime}$ is of signature $\left(p_{i}, q_{i}\right)$. In this sense, we say that h_{2} (or I_{2}) is of signature $\left(p_{i}, q_{i}\right)_{1 \leq i \leq l}$ with respect to the given "CM-type" $\left(\sigma_{i}^{\prime}\right)$. In this case \mathfrak{G} is written as

$$
\begin{equation*}
\mathfrak{S}=\prod \mathfrak{S}\left(V_{2}^{(i)}, \tilde{h}_{2}^{(i)^{\prime}}\right)=R_{F / \mathbf{Q}} \Im\left(V_{2}, D_{0} / Z, h_{2}\right) \tag{53}
\end{equation*}
$$

For the given skew-hermitian form h_{2}, the CM-type $\left(\sigma_{i}^{\prime}\right)_{1 \leq i \leq l}$ can be so chosen that one has $p_{i} \geq q_{i}$ for $1 \leq i \leq l$. When \mathfrak{G} has rational points, the reductive group G_{2} is (strictly) pure, so that there exist integers p, q such that $p_{i}=p, q_{i}=q(1 \leq i \leq l)$. Then the symmetric domain \mathfrak{S} in (53) is denoted as

$$
R_{F / \mathbf{Q}}\left(I_{p, q}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}\right) .
$$

The corresponding group G_{2} has no compact factors, except for the case $q=0$, in which case the group G_{2} itself is compact. Note also that the group corresponding to $R_{F / \mathbf{Q}}\left(\mathrm{I}_{3,1}^{(1)}, Z, h_{2}\right)$ is \boldsymbol{Q}-isogenous to the one corresponding to $R_{F / \mathbf{Q}}\left(\mathrm{II}_{3}^{(2)}, D_{0}, h_{2}^{\prime}\right)$ for a suitable totally definite quaternion algebra D_{0} over F and a D_{0}-skew-hermitian form h_{2}^{\prime} of 3 variables.

Remark. When $p>q$, there exist rational points in \mathcal{S} if and only if one has $\delta_{0} \mid q$ and \boldsymbol{Q}-rank $G_{2}=q / \delta_{0}$. If this is the case, I is rational, if and only if there exists a D_{0}-submodule W_{2} of V_{2} of rank q / δ_{0} such that

$$
W_{2}^{(i) \prime}=\left(W_{2}^{\perp}\right)^{\sigma_{i}^{\prime}(}(C) \cap V_{2}^{(i) \prime}, \quad W_{2}^{(i) \prime \prime}=W_{2}^{\sigma_{i}^{\prime \prime}}(\boldsymbol{C}) \cap V_{2}^{(i) \prime \prime}
$$

${ }^{\perp}$ denoting the orthogonal complement with respect to h_{2}. When $p=q$, the situation is a little more complicated ([S8]).

4. The standard case.

4.1. Admissible F-structures of $\left(U^{(1)}, V^{(1)}\right)$. According to the classification theory of irreducible self-dual homogeneous cones, $\mathscr{C}^{(1)}$ is isomorphic to one of the following cones:

$$
\mathscr{P}_{r_{1}}(\boldsymbol{R})\left(r_{1} \geq 1\right), \quad \mathscr{P}_{r_{1}}(\boldsymbol{C})\left(r_{1} \geq 2\right), \quad \mathscr{P}_{r_{1}}(\boldsymbol{H})\left(r_{1} \geq 3\right), \quad \mathscr{P}\left(1, n_{1}-1\right)\left(n_{1} \geq 3\right) .
$$

We call the first three cases standard and the fourth non-standard or quadratic. Note that $\mathscr{P}_{1}(\boldsymbol{R})$ is the unique case for which $r_{1}=n_{1}=1$ and that the quadratic case is characterized by $r_{1}=2$; in particular, one has the isomorphisms $\mathscr{P}_{2}(\boldsymbol{R}) \simeq \mathscr{P}(1,2)$,
$\mathscr{P}_{2}(\boldsymbol{C}) \simeq \mathscr{P}(1,3)$. (For convenience, we exclude $\mathscr{P}_{2}(\boldsymbol{H}) \simeq \mathscr{P}(1,5)$ from the standard case. Because of the assumption $V \neq 0$, the exceptional case $\mathscr{P}_{3}(\boldsymbol{O})$ is also excluded.)

In the standard case, one has

$$
\begin{align*}
& \mathfrak{g}_{1} \simeq\left(\mathfrak{g}_{1}^{(1)}\right)^{l}, \quad \mathfrak{g}_{1}^{(1)}=\left\{1_{U^{(1)}}\right\}_{\boldsymbol{R}} \oplus \mathfrak{g}_{1}^{(1) \mathrm{s}}, \tag{54}\\
& \mathfrak{g}_{1}^{(1) \mathfrak{s}} \simeq \mathfrak{s l}_{r_{1}}\left(D_{1}\right), \quad D_{1}=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H} .
\end{align*}
$$

We know ([S2]) that the representation $\left(V^{(1)}, \beta^{(1)}\right)$ is \boldsymbol{R}-primary. In (26a, b) $V_{1}^{(1)}$ is a D_{1}-module of rank r_{1} and $\beta_{1}^{(1)}$ is a Lie algebra isomorphism

$$
\begin{equation*}
\beta_{1}^{(1)}: \mathfrak{g}_{1}^{(1)} \xrightarrow{\sim}\left\{y \in \operatorname{End}_{D_{1}}\left(V_{1}^{(1)}\right) \mid \operatorname{tr} y \in \boldsymbol{R}\right\}, \tag{55}
\end{equation*}
$$

tr denoting here the reduced trace of $\operatorname{End}_{D_{1}}\left(V^{(1)}\right)$ over its center. Thus one has $\mathscr{A}_{1} \simeq \operatorname{End}_{D_{1}}\left(V_{1}^{(1)}\right) \simeq M_{r_{1}}\left(D_{1}\right)$ and $r_{1}=v_{1} \delta_{0} / \delta_{1}$.

It follows that, if one has an F-algebra structure on \mathscr{A}_{1} with a totally positive involution t_{1}, then the conditions (a), (b) in Proposition 2 are automatically satisfied. Hence, in the standard case, an F-algebra structure of \mathscr{A}_{1} gives rise to an admissible F-structure of $\left(U^{(1)}, V^{(1)}\right)$ if and only if there exists a totally positive involution t_{1} of $\mathscr{A}_{1}(F)$ and the condition (c) in Proposition 2 is satisfied.

Now, suppose one has an F-algebra structure on \mathscr{A}_{1} satisfying these conditions and fix an admissible F-structure of $\left(U^{(1)}, V^{(1)}\right)$ compatible with it. Then one has (27a, b) with

$$
\begin{equation*}
\mathscr{A}_{1}(F)=\operatorname{End}_{D_{0}} V_{1}, \tag{56}
\end{equation*}
$$

$$
\beta_{1}: \mathfrak{g}_{1}^{(1) s}(F) \xrightarrow{\sim} \mathfrak{s l}\left(V_{1} / D_{0}\right) .
$$

Hence in this case one has F-rank $\mathfrak{g}_{1}^{(1)}=v_{1}$.
Remark. Our argument shows that, in our case, the F-forms of $\mathfrak{g}_{1}^{(1)}$ corresponding to the unitary groups do not occur. (In fact, for such an F-form the representation $\beta^{(1)}$ is not defined over F).

On the other hand, one has

$$
\begin{equation*}
U^{(1)}=\mathrm{S}\left(V_{1}^{(1)} \otimes_{D_{1}} V_{1}^{(1)}\right) \tag{57}
\end{equation*}
$$

where S denotes the symmetrizer and the second factor $V_{1}^{(1)}$ in the right hand side is viewed as a left D_{1}-space by $\xi v_{1}=v_{1} \bar{\xi}\left(v_{1} \in V_{1}^{(1)}, \xi \in D_{1}\right) . U^{(1)}$ is also identified with the space of all symmetric D_{1}-semilinear maps : $V_{1}^{(1) *} \rightarrow V_{1}^{(1)}$. Then the action of $\mathrm{g}_{1}^{(1)}$ on $U^{(1)}$ is given by

$$
\begin{equation*}
x(u)=\beta_{1}^{(1)}(x) \circ u+u \circ \circ^{t} \beta_{1}^{(1)}(x) \tag{58}
\end{equation*}
$$

for $x \in \mathfrak{g}_{1}^{(1)}$ and $u \in U^{(1)}$.

From (57) one also has an F-structure of $U^{(1)}$ such that

$$
\begin{equation*}
U^{(1)}(F)=\mathrm{S}_{\eta}\left(V_{1} \otimes_{D_{0}} V_{1}\right), \tag{59}
\end{equation*}
$$

S_{η} denoting the η-symmetrizer $\mathrm{S}_{\eta}=(1 / 2)(1+\eta \tau)$, where τ is the transposition and $\eta=-1$ if D_{0} is of Type 1.2 and $\eta=1$ otherwise. Thus $U^{(1)}(F)$ is identified with the space of all η-symmetric $\left(D_{0}, l_{0}\right)$-semilinear maps : $V_{1}^{*} \rightarrow V_{1}$. Then the action of $\mathrm{g}_{1}^{(1)}(F)$ on $U^{(1)}(F)$ is given by a formula similar to (58).
4.2. Now let $e \in \mathscr{C} \cap U(\boldsymbol{Q}), e=\left(e^{(i)}\right)$, and consider $e^{(1)}$ as a ($\left.D_{0}, l_{0}\right)$-semilinear isomorphism $V_{1}^{*} \xrightarrow{\sim} V_{1}$. Then its inverse $e^{(1)^{-1}}: V_{1} \rightarrow V_{1}^{*}$ may be viewed as a $\left(D_{0}, l_{0}\right)$ - η-hermitian form on V_{1}, which we denote by h_{1}, i.e.,

$$
\begin{equation*}
\operatorname{tr}_{D_{0} / F}\left(h_{1}\left(v_{1}, v_{1}^{\prime}\right)\right)=\left\langle v_{1}, e^{(1)^{-1}} v_{1}^{\prime}\right\rangle \quad\left(v_{1}, v_{1}^{\prime} \in V_{1}\right) . \tag{60}
\end{equation*}
$$

Proposition 2. Let φ_{1} and i_{1} be as defined in 3.4. Then, for $u \in U^{(1)}(F)$ and $y \in \mathscr{A}_{1}(F)$, one has

$$
\begin{gather*}
\varphi_{1}(u)=u \circ e^{(1)^{-1}} \tag{61}\\
y^{t_{1}}=e^{(1)} \circ t \not y \circ e^{(1)^{-1}} . \tag{62}
\end{gather*}
$$

(Thus one has $l_{1}=l_{1}\left(h_{1}\right)$, i.e., our notation is consistent.)
Proof. For the proof, we denote the right hand sides of (61) and (62) by $\varphi_{1}^{\prime}(u)$ and $y^{t_{1}^{\prime}}$, respectively. Then it is clear that one has $\varphi_{1}^{\prime}(u) \in \operatorname{Her}\left(\mathscr{A}_{1}, l_{1}^{\prime}\right)$ and, for $x \in \mathfrak{g}_{1}^{(1)}(F)$,

$$
\varphi_{1}^{\prime}(x(u))=\left(\beta_{1}(x) \circ u+u \circ^{t} \beta_{1}(x)\right) \circ e^{(1)^{-1}}=\beta_{1}(x) \circ \varphi_{1}^{\prime}(u)+\varphi_{1}^{\prime}(u) \circ \beta_{1}(x)^{L_{1}^{\prime}} .
$$

Hence φ_{1}^{\prime} is an F-isomorphism $U^{(1)} \simeq \operatorname{Her}\left(\mathscr{A}_{1}, t_{1}^{\prime}\right)$ satisfying the first and the third equations in (32). In particular, one has

$$
x\left(e^{(1)}\right)=0 \Longleftrightarrow \beta_{1}(x)+\beta_{1}(x)^{t_{1}}=0,
$$

which shows that the map $y \mapsto-y^{{L_{1}^{\prime}}_{1}}\left(y \in \mathscr{A}_{1}\right)$ induces the Cartan involution θ_{1} of $\mathfrak{g}_{1}^{(1)}$ corresponding to $e^{(1)}$. Thus the second equation in (32) is also satisfied. Hence by the uniqueness of t_{1} and φ_{1} one has $\varphi_{1}^{\prime}=\varphi_{1}, \iota_{1}^{\prime}=l_{1}$.
q.e.d.

By (19) and (61) the Jordan product in $U^{(1)}$ is given by

$$
u u^{\prime}=\frac{1}{2}\left(u \circ e^{(1)^{-1}} \circ u^{\prime}+u^{\prime} \circ e^{(1)^{-1}} \circ u\right),
$$

and by (33) the normalized inner product on $U^{(1)}$ corresponding to $e^{(1)}$ is given by

$$
\begin{equation*}
\left\langle u, u^{\prime}\right\rangle=\left(\delta_{1} d_{1}\right)^{-1} \operatorname{tr}_{\mathscr{A}_{1} / \mathbf{R}}\left(u e^{(1)^{-1}} u^{\prime} e^{(1)^{-1}}\right) . \tag{63}
\end{equation*}
$$

Finally one obtains the following
Proposition 3. Suppose we are in the standard case. Let $\left(e^{(1)}, a^{(1)}, \beta^{(1)}\right)$ be an admissible triple defined over F belonging to $\left(U^{(1)}, V^{(1)}, \mathscr{C}^{(1)}\right), h_{1}=e^{(1)^{-1}}$, and let h_{2} be a
$\left(D_{0}, t_{0}\right)-(-\eta)$-hermitian form on V_{2} satisfying (39). Then the corresponding alternating bilinear map $A^{(1)}: V^{(1)} \times V^{(1)} \rightarrow U^{(1)}$ is given as follows:

$$
\begin{gather*}
A^{(1)}\left(v_{1} \otimes_{D_{0}} v_{2}, v_{1}^{\prime} \otimes_{D_{0}} v_{2}^{\prime}\right)=\eta \delta_{1} d_{1} \mathrm{~S}_{\eta}\left(v_{1} h_{2}\left(v_{2}, v_{2}^{\prime}\right) \otimes_{D_{0}} v_{1}^{\prime}\right) \tag{64}\\
\text { for } v_{1}, v_{1}^{\prime} \in V_{1} \text { and } v_{2}, v_{2}^{\prime} \in V_{2} .
\end{gather*}
$$

Proof. For $u \in U^{(1)}(F)$ one has

$$
\begin{aligned}
\left\langle u, A^{(1)}\right. & \left.\left(v_{1} \otimes_{D_{0}} v_{2}, v_{1}^{\prime} \otimes_{D_{0}} v_{2}^{\prime}\right)\right\rangle=A_{u}\left(v_{1} \otimes_{D_{0}} v_{2}, v_{1}^{\prime} \otimes_{D_{0}} v_{2}^{\prime}\right) \\
= & a^{(1)}\left(v_{1} \otimes_{D_{0}} v_{2},\left(u e^{(1)^{-1}}\right) v_{1}^{\prime} \otimes_{D_{0}} v_{2}^{\prime}\right) \\
& =\operatorname{tr}_{D_{0} / F}\left(h_{1}\left(v_{1},\left(u e^{(1)^{-1}}\right) v_{1}^{\prime}\right)^{t_{0}} h_{2}\left(v_{2}, v_{2}^{\prime}\right)\right) \\
& =\operatorname{tr}_{D_{0} / F}\left(h_{1}\left(v_{1} h_{2}\left(v_{2}, v_{2}^{\prime}\right),\left(u e^{(1)^{-1}}\right) v_{1}^{\prime}\right)\right) \\
& =\left\langle v_{1} h_{2}\left(v_{2}, v_{2}^{\prime}\right),\left(e^{(1)^{-1}} u e^{(1)^{-1}}\right) v_{1}^{\prime}\right\rangle \\
& =\eta \operatorname{tr}_{\mathscr{A}(F) / F}\left(\left(v_{1} h_{2}\left(v_{2}, v_{2}^{\prime}\right) \otimes_{D_{0}} v_{1}^{\prime}\right) e^{(1)^{-1}} u e^{(1)^{-1}}\right) \\
= & \eta \delta_{1} d_{1}\left\langle u, S_{\eta}\left(v_{1} h_{2}\left(v_{2}, v_{2}^{\prime}\right) \otimes_{D_{0}} v_{1}^{\prime}\right)\right\rangle
\end{aligned}
$$

whence follows (64).
q.e.d.
4.3. Classification. In the classification theory, the quasisymmetric domain \mathscr{S}_{I} with a Q-structure described above is expressed by the following symbols, according as D_{0} is of Type 1.1, 1.2, 2 , or 3 .

$$
\begin{aligned}
& R_{F / Q}\left(\mathrm{III} \mathrm{II}_{v_{1}, v_{2} / 2}^{(1)}\right)_{I}, \quad R_{F / \mathbf{Q}}\left(\mathrm{III} I_{2 v_{1} ; v_{2}}^{(2)}, D_{0}, h_{2}\right)_{I}, \\
& R_{F / Q}\left(\mathrm{II}_{v_{1} ; v_{2}}^{(2)}, D_{0}, h_{2}\right)_{I} \quad\left(v_{1} \geq 3\right), \\
& R_{F / \mathbf{Q}}\left(\mathrm{I}_{v_{1} \delta_{0} ;(p, q)} \delta_{0}, D_{0} / Z, h_{2}\right)_{I} \quad\left(v_{1} \delta_{0} \geq 2\right) .
\end{aligned}
$$

In the standard case, the total space $\tilde{\mathscr{S}}$ is always symmetric. For $R_{F / \mathbf{Q}}\left(\mathrm{III}_{v_{1} ; v_{2} / 2}^{(1)}\right)_{I}$, the space $\tilde{\mathscr{S}}$ may be identified with the Siegel domain (of the third kind) expression of $R_{F / \mathbf{Q}}\left(\mathrm{IIII}_{v_{1}+v_{2} / 2}^{(1)}\right)$ over the v_{1}-th rational boundary component $\subseteq=R_{F / \mathbf{Q}}\left(\mathrm{IIII} v_{v_{2} / 2}^{(1)}\right)$. In the case of $R_{F / \mathbf{Q}}\left(\mathrm{III}_{2 v_{1} ; v_{2}}^{(2)}, D_{0}, h_{2}\right)_{I}$, resp. $R_{F / \mathbf{Q}}\left(\mathrm{II}_{v_{1} ; v_{2}}^{(2)}, D_{0}, h_{2}\right)_{I}\left(v_{1} \geq 3\right)$, let h_{2}^{\prime} denote a D_{0}-hermitian, resp. D_{0}-skew-hermitian, form of $2 v_{1}+v_{2}$ variables in the same Witt class as h_{2}. Then $\tilde{\mathscr{S}}$ may be identified with the Siegel domain expression of $R_{F / \mathbf{Q}}\left(\mathrm{III}_{2 v_{1}+v_{2}}^{(2)}, D_{0}, h_{2}^{\prime}\right)$, resp. $R_{F / \mathbf{Q}}\left(\mathrm{II}_{2 v_{1}+v_{2}}^{(2)}, D_{0}, h_{2}^{\prime}\right)$ over the v_{1}-th rational boundary component $\mathbb{S}^{=}=R_{F / \mathbf{Q}}\left(\mathrm{IIII}_{v_{2}}^{(2)} . D_{0}, h_{2}\right)$, resp. $R_{F / \mathbf{Q}}\left(\mathrm{II}_{v_{2}}^{(2)}, D_{0}, h_{2}\right)$. In particular, $R_{F / \mathbf{Q}}\left(\mathrm{II}_{v_{1} ; 1}^{(2)}\right.$, $\left.D_{0}, h_{2}\right)_{I}\left(v_{1} \geq 3\right)$ is identified with the symmetric domain $R_{F / \mathbf{Q}}\left(\mathrm{II}_{2 v_{1}+1}^{(2)}, D_{0}, h_{2}^{\prime}\right)$. In the case $R_{F / \mathbf{Q}}\left(\mathrm{I}_{v_{1} \delta_{0} ;(p, q)}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}\right)_{I}\left(v_{1} \delta_{0} \geq 2, p+q=v_{2} \delta_{0}\right)$, let h_{2}^{\prime} denote a $\left(D_{0}, l_{0}\right)$-skew-hermitian form of $2 v_{1}+v_{2}$ variables in the same Witt class as h_{2}. Then the total space $\tilde{\mathscr{S}}$ may be identified with the Siegel domain expression of $R_{F / Q}\left(I_{v_{1} \delta_{0}+p, v_{1} \delta_{0}+q}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}^{\prime}\right)$ over the v_{1}-th rational boundary component $\subseteq=R_{F / \mathbf{Q}}\left(\mathrm{I}_{p, q}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}\right)$. In particular, $R_{F / \mathbf{Q}}\left(\mathbf{I}_{v_{1} \delta_{0} ;\left(v_{2} \delta_{0}, 0\right)}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}\right)_{I}$ is identified with the symmetric domain $R_{F / \mathbf{Q}}\left(\mathbf{I}_{\left(v_{1}+v_{2}\right) \delta_{0}, v_{1} \delta_{0}}^{\left(\delta_{0}\right)}\right.$,
$\left.D_{0} / Z, h_{2}^{\prime}\right)$.
In general, it is known that, for any boundary point p of an irreducible symmetric domain \mathscr{D}, the "fiber" over p, i.e., the union of all geodesic lines in \mathscr{D} tending to p, is an irreducible quasisymmetric domain and, if p belongs to the first boundary component, it is of type $\left(\mathrm{III}_{1 ; v_{2} / 2}^{(1)}\right)_{I}$. For instance, for the symmetric domain $\tilde{\mathscr{S}}=R_{F / \mathbf{Q}}\left(\mathrm{II}_{2+v_{2}^{\prime}}^{(2)}, D_{0}, h_{2}^{\prime}\right)$, resp. $R_{F / \mathbf{Q}}\left(\mathrm{I}_{1+p, 1+q}^{(1)}, Z, h_{2}^{\prime}\right)\left(p+q=v_{2}^{\prime}\right)$, the fiber over a rational point I in the first rational boundary component $\mathcal{S}=R_{F / \mathbf{Q}}\left(\mathrm{II}_{v_{2}^{2}}^{(2)}, D_{0}, h_{2}\right)$, resp. $R_{F / \mathbf{Q}}\left(\mathrm{I}_{p, q}^{(1)}, Z, h_{2}\right)$ is of type $R_{F / \mathbf{Q}}\left(\mathrm{IIII}_{1 ; v_{2} / 2}^{(1)}\right)_{I}\left(v_{2}=2 v_{2}^{\prime}\right)$. [But, because of the existence of compact factors in $G L_{1}(\boldsymbol{H})$ and $G L_{1}(C)$, the automorphism group of the fiber induced by the paraboric subgroup is, in general, smaller than $\operatorname{Aff}\left(R_{F / \mathbf{Q}}\left(\mathrm{III}_{1 ; v_{2} / 2}^{(1)}\right)_{I}\right.$.] In particular, the domain $R_{F / \mathbf{Q}}\left(\mathrm{III}_{1 ; v_{2} / 2}^{(1)}\right)_{I}$ can be identified with the symmetric domain $R_{F / \mathbf{Q}}\left(\mathrm{I}_{1+v_{2}^{\prime}, 1}^{(1)}, Z, h_{2}^{\prime}\right)$ (along with the automorphism group), where Z, h_{2}^{\prime} are determined as follows. Let a_{2} be a non-degenerate alternating bilinear form on $V_{2}=V^{(1)}(F), I \in R_{F / \mathbf{Q}} \mathscr{S}\left(V_{2}, a_{2}\right)$, and let Z be the CM-field attached to I, i.e., $Z=F\left(\sqrt{-\alpha_{1}}\right)$, where α_{1} is a totally positive element in F such that $\sum \sqrt{\alpha_{1}^{\sigma_{i}}} I^{(i)}$ is \boldsymbol{Q}-rational. Then h_{2} is a Z-skew-hermitian form on V_{2} given by

$$
h_{2}\left(v, v^{\prime}\right)=a_{2}\left(v, v^{\prime}\right)-\sqrt{-1} a_{2}\left(v, I^{(1)} v^{\prime}\right),
$$

which is totally positive with respect to the CM-type (σ_{i}^{\prime}) determined by $\sqrt{-\alpha_{1}} \sigma_{i}^{\prime}=$ $\sqrt{-1} \sqrt{\alpha_{1}^{\sigma_{i}}}$, and h_{2}^{\prime} is a Z-skew-hermitian form of $2+v_{2}^{\prime}$ variables in the same Witt class as h_{2}.

5. The quadratic case.

5.1. F-structures of $\left(U^{(1)}, \mathfrak{g}_{1}^{(1)}\right)$. We keep the notation of $\S 3$. In the quadratic case, one has

$$
\begin{gather*}
\mathscr{C}^{(1)} \simeq \mathscr{P}\left(1, n_{1}-1\right)=\left\{\left(\xi_{i}\right) \in \boldsymbol{R}^{n_{1}} \mid \xi_{1}^{2}-\sum_{i=2}^{n_{1}} \xi_{i}^{2}>0\right\}, \\
\mathfrak{g}_{1} \simeq\left(\mathfrak{g}_{1}^{(1)}\right)^{l}, \quad \mathfrak{g}_{1}^{(1) s} \simeq \mathfrak{s o}\left(1, n_{1}-1\right), \tag{65}
\end{gather*}
$$

where $n_{1}=\operatorname{dim} U^{(1)} \geq 3$. In this case, $r_{1}=R$-rank $\mathfrak{g}_{1}^{(1)}=2$.
One obtains all F-forms of $\mathrm{g}_{1}^{(1)}$ in the following manner. F is a totally real number field of degree l. Suppose that $U^{(1)}$ is given an F-structure and $S^{(1)}$ is a symmetric bilinear form on $U^{(1)} \times U^{(1)}$ defined over F. Put $(U, S)=R_{F / \mathbf{Q}}\left(U^{(1)}, S^{(1)}\right)$. We assume that all $S^{(i)}=S^{(1)^{\sigma_{i}}}(1 \leq i \leq l)$ are of signature ($1, n_{1}-1$). Then one has an F-structure of $\mathfrak{g}_{1}^{(1)}$ given by

$$
\mathfrak{g}_{1}^{(1)}(F)=\mathfrak{s o}\left(U^{(1)}(F), S^{(1)}\right)=\left\{\left.x \in \mathfrak{g l}\left(U^{(1)}(F)\right)\right|^{t} x S^{(1)}+S^{(1)} x=0\right\}
$$

For convenience, one fixes an F-rational orthogonal basis $\left\{e_{i}\right\}$ of $U^{(1)}$ such that

$$
S^{(1)} \sim \operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n_{1}}\right)
$$

where α_{1} is totally positive and $\alpha_{2}, \ldots, \alpha_{n_{1}}$ are totally negative.
Remark. When n_{1} is even, there is a possibility of F-forms of $\mathfrak{g}_{1}^{(1)}$ defined by a quaternion skew-hermitian form h of $n_{1} / 2$ variables with respect to a totally indefinite quaternion algebra over F. However, since h should give rise to a symmetric bilinear form of signature $\left(1, n_{1}-1\right)$ at every real place, an easy observation of the root diagrams shows that $\mathfrak{g}_{1}^{(1)}$ is F-anisotropic. By a theorem of Kneser ([Sc, Lem. 10.3.5, Th. 10.4.1]), this can happen only for $n_{1} \leq 6$. For $n_{1}=4$, by virtue of the isomorphism $\mathscr{P}(1,3) \simeq \mathscr{P}_{2}(C)$, the F-forms of this type were already treated in $\S 4$, so that we may exclude them from the general discussion of the quadratic case. For $n_{1}=6$, such F-forms come from a central division algebra of degree 4 , which can not have positive involutions. Hence F-forms of this type do not occur. For $n_{1}=8$, there is also a possibility of F-forms of $\mathfrak{g}_{1}^{(1)}$ coming from the triality. But, for the reason similar to the one given in [S1, p. 270], such F-forms do not occur either.
5.2. The Clifford algebras. Let $C=C\left(U^{(1)}, S^{(1)}\right)$ denote the Clifford algebra of $S^{(1)}$ and let C^{+}denote its even part. C and C^{+}are semisimple \boldsymbol{R}-algebra defined over F. Put

$$
\begin{gather*}
\tilde{e}=e_{1} \cdots e_{n_{1}} \in C(F), \\
\Delta=\tilde{e}^{2}=(-1)^{n_{1}\left(n_{1}-1\right) / 2} \alpha_{1} \cdots \alpha_{n_{1}} \in F^{\times} \tag{66}
\end{gather*}
$$

(the discriminant of $S^{(1)}$).
By our assumption, Δ is totally positive (resp. totally negative) for $n_{1} \equiv 1,2$ (resp. $\equiv 0$, 3) $(\bmod 4)$.

When n_{1} is odd, C^{+}is a central simple \boldsymbol{R}-algebra of degree $2^{\left(n_{1}-1\right) / 2}$ defined over F. When n_{1} is even, the center of C^{+}is $\{1, \tilde{e}\}_{\boldsymbol{R}}$. Hence, if $n_{1} \equiv 0(\bmod 4)$, the center Z of $C^{+}(F)$ is a totally imaginary quadratic extension of F, isomorphic to $F(\sqrt{\Delta})$ with $\Delta \ll 0$ (totally negative). Thus C^{+}is simple and of degree $2^{n_{1} / 2-1}$ over its center $Z(\boldsymbol{R}) \simeq \boldsymbol{C}$. If $n_{1} \equiv 2(\bmod 4)$, one has $\Delta \gg 0$ (totally positive) and

$$
\begin{equation*}
C^{+}=C_{1}^{+} \oplus C_{2}^{+}, \quad \frac{1}{2}\left(1+(-1)^{i-1} \sqrt{\Delta}^{-1} \tilde{e}\right) \in C_{1}^{+} \tag{67}
\end{equation*}
$$

with central simple \boldsymbol{R}-algebras $C_{i}^{+}(i=1,2)$ of degree $2^{n_{1} / 2-1}$. (The ordering of C_{1}^{+}, C_{2}^{+} may be determined by the orientation of $U^{(1)}$.) If, moreover, $\Delta \sim 1$ over F (i.e., $\Delta \in\left(F^{\times}\right)^{2}$), then each C_{i}^{+}is defined over F and one has $C_{1}^{+}(F) \simeq C_{2}^{+}(F)$ (by the map $x \mapsto e_{1}^{-1} x e_{1}$). If $n_{1} \equiv 2(\bmod 4)$ and $\Delta \nsim 1, C^{+}(F)$ is simple with center $Z \simeq F(\sqrt{\Delta})$, which is a totally real quadratic extension of F. In this case, one has $C^{+}(F) \simeq C_{i}^{+}(F(\sqrt{\Delta}))(i=1,2)$.

Let ρ denote the canonical involution of C^{+}(i.e., one has $\left(e_{i_{1}} \cdots e_{i_{k}}\right)^{\rho}=e_{i_{k}} \cdots e_{i_{1}}$). Then it is easy to see that

$$
\begin{equation*}
\rho^{\prime}: x \mapsto e_{1} x^{\rho} e_{1}^{-1} \tag{68}
\end{equation*}
$$

is a totally positive involution of C^{+}; when n_{1} is even and $\Delta \sim 1$, we mean by this that ρ^{\prime} induces a totally positive involution on each simple factor $C_{i}^{+}(i=1,2)([S 6$, p. 282, Prop. 5.1]).

Let D_{0} be a division algebra over F such that $C^{+}(F)\left(\right.$ or $\left.C_{i}^{+}(F)\right) \sim D_{0}$. Then the degree δ_{0} of D_{0} (over its center) is ≤ 2. One has F-rank $\mathfrak{g}_{1}^{(1)}=1$ if $\delta_{0}=2$ and $n_{1} \leq 4$, and F-rank $\mathrm{g}_{1}^{(1)}=2$ otherwise. One has

$$
D_{0}(\boldsymbol{R}) \sim D_{1}=\left\{\begin{array}{lll}
\boldsymbol{R} & \text { if } & n_{1} \equiv 1,2,3(\bmod 8), \tag{69}\\
\boldsymbol{C} & \text { if } & n_{1} \equiv 0,4(\bmod 8), \\
\boldsymbol{H} & \text { if } & n_{1} \equiv 5,6,7(\bmod 8)
\end{array}\right.
$$

Thus D_{0} is of Type 1 , if $n_{1} \equiv 1,3(\bmod 8)$ or $\equiv 2(\bmod 8)$ and $\Delta \sim 1$, of Type 2 , if $n_{1} \equiv 5$, $7(\bmod 8)$ or $\equiv 6(\bmod 8)$ and $\Delta \sim 1$, and of Type 3 , if $n_{1} \equiv 0(\bmod 4)$. When $n_{1} \equiv 2(\bmod 4)$ and $\Delta \nsim 1, D_{0}$ is of Type 1 or 2 over $F(\sqrt{\Delta})$ according as $n_{1} \equiv 2$ or $6(\bmod 8)$.
5.3. F-structures of $\left(V^{(1)}, \beta^{(1)}\right)$: the case $n_{1} \not \equiv 2(\bmod 4)$. In this case $\beta^{(1)}$ is \boldsymbol{R}-primary and the \boldsymbol{R}-irreducible factor is given by the spin representation. As is well known, there exists a canonical F-isomorphism

$$
\beta_{1}: \mathfrak{g}_{1}^{(1)} \xrightarrow{\sim} \beta_{1}\left(\mathfrak{g}_{1}^{(1)}\right) \subset\left(C^{+}\right)_{\text {Lie }}
$$

such that one has

$$
\begin{gather*}
x(u)=\left[\beta_{1}(x), u\right] \quad \text { for } \quad x \in \mathfrak{g}_{1}^{(1)} \quad \text { and } \quad u \in U^{(1)}, \tag{70}\\
\beta_{1}\left(\mathfrak{g}_{1}^{(1)}\right)=\left\{y \in C^{+} \mid y+y^{\rho} \in \boldsymbol{R},\left[y, U^{(1)}\right] \subset U^{(1)}\right\} . \tag{71}
\end{gather*}
$$

If one denotes by κ the unique \boldsymbol{R}-irreducible representation of the simple \boldsymbol{R}-algebra C^{+}, then the spin representation of $\mathfrak{g}_{1}^{(1)}$ is given by $\kappa \circ \beta_{1}$. Therefore, identifying $\beta^{(1)}(x)$ $\left(x \in \mathfrak{g}_{1}^{(1)}\right)$ with $\beta_{1}(x)$, one may make an identification $\mathscr{A}_{1}=C^{+}$. It is then clear that the natural F-algebra strucrure of $\mathscr{A}_{1}=C^{+}$(which is the unique F-algebra structure making $\beta^{(1)}$ and β_{1} defined over F) satisfies the conditions (a), (b) in Proposition 2 with $l_{1}=\rho^{\prime}$. Hence the natural F-algebra structure of \mathscr{A}_{1} gives rise to an admissible F-structure of $\left(U^{(1)}, V^{(1)}\right)$, if and only if the condition (c) in Proposition 2 is satisfied. For simplicity, one puts $e^{(1)}=e_{1}$; then one recovers the same F-structure of $U^{(1)}$ given in 5.1.

In the notation of $\S 3$, one has

$$
v_{1} \delta_{0}=\left\{\begin{array}{ll}
2^{\left(n_{1}-1\right) / 2} \\
2^{n_{1} / 2-1}
\end{array} \quad d_{1}= \begin{cases}1 & \text { if } n_{1} \text { is odd } \\
2 & \text { if } \quad n_{1} \equiv 0(\bmod 4)\end{cases}\right.
$$

5.4. Now, fix $e^{(1)}=e_{1} \in U^{(1)}(F)$ with $\alpha_{1}=S^{(1)}\left(e_{1}, e_{1}\right) \gg 0$. Then one has

Proposition 4. For $u \in U^{(1)}(F)$ and $y \in C^{+}(F)$, one has

$$
\begin{gather*}
\varphi_{1}(u)=u e_{1}^{-1} \tag{72}\\
y^{t_{1}}=e_{1} y^{\rho} e_{1}^{-1} \tag{73}
\end{gather*}
$$

Proof. We know (73) already ([S6, Prop. 5.1]). To prove (72), define φ_{1} by (72) for a moment. Then it is enough to show that $\varphi_{1}(u) \in \operatorname{Her}\left(C^{+}, \rho^{\prime}\right), \varphi_{1}\left(e_{1}\right)=1$, and that φ_{1} satisfies the first relation in (32), because these properties characterize φ_{1}. The first two properties of φ_{1} are obvious. From (70) one has

$$
\varphi_{1}(x(u))=\left(\beta_{1}(x) u-u \beta_{1}(x)\right) e_{1}^{-1}=\beta_{1}(x) \varphi_{1}(u)+\varphi_{1}(x) e_{1} \beta_{1}(x)^{\rho} e_{1}^{-1},
$$

which proves the first relation in (32).
q.e.d.

By an easy computation, one has

$$
\frac{1}{2}\left(\varphi_{1}(u) \varphi_{1}\left(u^{\prime}\right)+\varphi_{1}\left(u^{\prime}\right) \varphi_{1}(u)\right)=S\left(e_{1}, e_{1}\right)^{-1}\left(S\left(u, e_{1}\right) \varphi_{1}\left(u^{\prime}\right)+S\left(u_{1}^{\prime}, e_{1}\right) \varphi_{1}(u)-S\left(u, u^{\prime}\right)\right)
$$

This shows that the Jordan product in $U^{(1)}$ is given by

$$
u \circ u^{\prime}=S\left(e_{1}, e_{1}\right)^{-1}\left(S\left(u, e_{1}\right) u^{\prime}+S\left(u^{\prime}, e_{1}\right) u-S\left(u, u^{\prime}\right) e_{1}\right)
$$

It follows that the normalized inner product on $U^{(1)}$ is given by

$$
\begin{equation*}
\left\langle u, u^{\prime}\right\rangle=2 S\left(u, e_{1}\right) S\left(u^{\prime}, e_{1}\right)-S\left(u, u^{\prime}\right) S\left(e_{1}, e_{1}\right) . \tag{74}
\end{equation*}
$$

On the other hand, let c_{1} be a primitive idempotent of $C^{+}(F)$ and ψ_{1} an F-isomorphism: $D_{0} \xrightarrow{\sim} c_{1} C^{+}(F) c_{1}$. Then the $\left(D_{0}, l_{0}\right)-\eta$-hermitian form h_{1} on $V_{1}=$ $\left(C^{+}(F) c_{1}, \psi_{1}\right)$ is given by

$$
\begin{equation*}
h_{1}\left(v_{1}, v_{1}^{\prime}\right)=\psi_{1}^{-1}\left(b_{1} e_{1} v_{1}^{\rho} e_{1}^{-1} v_{1}^{\prime}\right) \quad\left(v_{1}, v_{1}^{\prime} \in V_{1}\right), \tag{75}
\end{equation*}
$$

where b_{1} is an element of $C^{+}(F)^{\times}$such that

$$
\psi_{1}\left(\xi_{1}\right)^{t_{1}}=b_{1}^{-1} \psi_{1}\left(\xi_{1}^{t_{0}}\right) b_{1}, \quad b_{1}^{t_{1}}=\eta b_{1}
$$

Finally to obtain an explicit form of $A^{(1)}$, let $\left\rangle_{C^{+}}\right.$denote the inner product on C^{+}defined by

$$
\langle x, y\rangle_{C^{+}}=\operatorname{tr}_{C^{+} / \mathbf{R}}\left(x^{\iota_{1}} y\right) .
$$

For $x \in C^{+}$, let $[x]_{U}$ denote the element of $U^{(1)}$ such that $\varphi_{1}\left([x]_{U}\right)$ coincides with the $\varphi_{1}\left(U^{(1)}\right)$-component of x with respect to the inner product $\left\rangle_{c^{+}}\right.$.

Proposition 5. Suppose we are in the quadratic case with $n_{1} \not \equiv 2(\bmod 4)$. Let $\left(e^{(1)}\right.$, $\left.a^{(1)}, \beta^{(1)}\right)$ be an admissible triple with $e^{(1)}=e_{1}$ defined over F belonging to $\left(U^{(1)}, V^{(1)}, \mathscr{C}^{(1)}\right)$ and let h_{1} and h_{2} be as given in (75) and (39). Then the corresponding alternating bilinear map $A^{(1)}: V^{(1)} \times V^{(1)} \rightarrow U^{(1)}$ is given as follows:

$$
\begin{equation*}
A^{(1)}\left(v_{1} \otimes_{D_{0}} v_{2}, v_{1}^{\prime} \otimes_{D_{0}} v_{2}^{\prime}\right)=\frac{1}{2} \eta v_{1} \delta_{0} d_{1}\left[v_{1} \psi_{1}\left(h_{2}\left(v_{2}, v_{2}^{\prime}\right)\right) b_{1} v_{1}^{\prime_{1}}\right]_{U} . \tag{76}
\end{equation*}
$$

Proof. For $u \in U^{(1)}(F), v_{1}, v_{1}^{\prime} \in V_{1}=C^{+}(F) c_{1}, v_{2}, v_{2}^{\prime} \in V_{2}$, one has

$$
\begin{aligned}
A_{u}\left(v_{1} \otimes_{D_{0}} v_{2}\right. & \left., v_{1}^{\prime} \otimes_{D_{0}} v_{2}^{\prime}\right)=a^{(1)}\left(v_{1} \otimes_{D_{0}} v_{2},\left(u e_{1}^{-1}\right) v_{1}^{\prime} \otimes_{D_{0}} v_{2}^{\prime}\right) \\
& =\operatorname{tr}_{D_{0} / F}\left(h_{1}\left(v_{1},\left(u e_{1}^{-1}\right) v_{1}^{\prime}\right)^{t_{0}} h_{2}\left(v_{2}, v_{2}^{\prime}\right)\right) \\
& =\operatorname{tr}_{D_{0} / F}\left(h_{1}\left(v_{1} h_{2}\left(v_{2}, v_{2}^{\prime}\right),\left(u e_{1}^{-1}\right) v_{1}^{\prime}\right)\right) \\
& =\operatorname{tr}_{C^{+} / \mathbf{R}}\left(b_{1} \psi_{1}\left(h_{2}\left(v_{2}, v_{2}^{\prime}\right)\right)^{r_{1}} v_{1}^{L_{1}^{1}} u e_{1}^{-1} v_{1}^{\prime}\right) \\
& =\left\langle u e_{1}^{-1}, \eta v_{1} \psi_{1}\left(h_{2}\left(v_{2}, v_{2}^{\prime}\right)\right) b_{1} v_{1}^{\prime L_{1}}\right\rangle_{C^{+}} \\
& =\frac{1}{2} \eta v_{1} \delta_{0} d_{1}\left\langle u,\left[v_{1} \psi_{1}\left(h_{2}\left(v_{2}, v_{2}^{\prime}\right)\right) b_{1} v_{1}^{n_{1}}\right]_{U}\right\rangle,
\end{aligned}
$$

which proves our assertion.
q.e.d.
5.5. Classification. In the classification theory, the domains \mathscr{S}_{I} and \mathfrak{S} in the present case are denoted as

$$
R_{F / \mathbf{Q}}\left(\mathrm{IV}_{n_{1} ; v_{2}}, S^{(1)}, h_{2}\right)_{I} \quad\left(n_{1} \geq 3, \not \equiv 2(\bmod 4)\right), \quad R_{F / \mathbf{Q}} \Im\left(V_{2}, D_{0}, h_{2}\right) .
$$

(When D_{0} is of Type 1.1, i.e., when $D_{0}=F$, one omits h_{2}.)
The total space $\tilde{\mathscr{S}}$ is symmetric for the following three cases. For $n_{1}=3$, by virtue of the isomorphism $\mathscr{P}(1,2) \simeq \mathscr{P}_{2}(\boldsymbol{R})$, the domain $R_{F / \mathbb{Q}}\left(\mathrm{IV}_{3 ; v_{2}}, S^{(1)}, h_{2}\right)_{I}$ is identified with $R_{F / Q}\left(\mathrm{III}_{2, v_{2} / 2}^{(1)}\right)_{I}$ or $R_{F / Q}\left(\mathrm{III}_{2, v_{2}}^{(2)}, D_{0}, h_{2}\right)_{I}\left(D_{0}=C^{+}(F)\right)$ according as $D_{0}=F$ or not. Hence the corresponding $\tilde{\mathscr{S}}$ is the Siegel domain expression of $R_{F / \mathbf{Q}}\left(\mathrm{III}_{2+v_{2} \delta_{0} / 2}^{\left(\delta_{0}\right)}\right.$) over the $2 / \delta_{0}$-th rational boundary component $\mathfrak{S}=R_{F / \mathbf{Q}}\left(\right.$ IIII $\left._{v_{2} \delta_{0} / 2}^{\left(\delta_{0}\right)}\right)$. For $n_{1}=4$, by virtue of the isomorphism $\mathscr{P}(1,3) \simeq \mathscr{P}_{2}(C)$, the domain $R_{F / Q}\left(\mathrm{IV}_{4 ; v_{2}}, S^{(1)}, h_{2}\right)_{I}$ is identified with $R_{F / \mathbf{Q}}\left(\mathrm{I}_{2 ;(p, q)}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}\right)_{I}\left(D_{0}=C^{+}(F), Z=F(\sqrt{\Delta}), p+q=\delta_{0} v_{2}\right)$, so that the corresponding $\tilde{\mathscr{S}}$ is the Siegel domain expression of $R_{F / \mathbf{Q}}\left(\mathrm{I}_{2+p, 2+q}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}^{\prime}\right)$ over the $2 / \delta_{0}$-th boundary component $\mathfrak{S}=R_{F / \mathbf{Q}}\left(\mathrm{I}_{p, q}^{\left(\delta_{0}\right)}, D_{0} / Z, h_{2}\right)$. In particular, $R_{F / \mathbf{Q}}\left(\mathrm{IV}_{4 ; v_{2}}, S^{(1)}, h_{2}\right)_{I}$ with $q=0$ is identified with the symmetric domain $R_{F / \mathbf{Q}}\left(\mathrm{I}_{2}^{\left(\delta_{0}\right)}{ }_{v_{2} \delta_{0}, 2}, D_{0} / Z, h_{2}^{\prime}\right)$. In the case $R_{F / \mathbf{Q}}\left(\mathrm{IV}_{8 ; 1}\right.$, $\left.S^{(1)}, h_{2}\right)_{I}$, the domain \mathfrak{S} reduces to a point $I\left(I=\sum\left|\Delta^{\sigma_{i}}\right|^{-1 / 2} \tilde{e}^{(i)}\right)$ and $\tilde{\mathscr{S}}=\mathscr{S}_{I}$ is a symmetric domain of the exceptional type $(\mathrm{V})^{l}$ with a \boldsymbol{Q}-structure of \boldsymbol{Q}-rank 2.
5.6. The case $n_{1} \equiv 2(\bmod 4)$. In this case, there exist two \boldsymbol{R}-irreducible (spin) representations of $\mathfrak{g}_{1}^{(1)}$. Let π_{i} denote the projection $C^{+} \rightarrow C_{i}^{+}$and κ_{i} the \boldsymbol{R}-irreducible representation of $C_{i}^{+}(i=1,2)$. Define the injective homomorphism $\beta_{1}: \mathfrak{g}_{1}^{(1)} \rightarrow C^{+}$as in 5.3. Then the two spin representations of $\mathfrak{g}_{1}^{(1)}$ are given by $\kappa_{i} \circ \pi_{i} \circ \beta_{1}(i=1,2)$. In general, the representation $\left(V^{(1)}, \beta^{(1)}\right)$ has two R-primary components corresponding to these \boldsymbol{R}-irreducible representations.

Let \mathscr{A}_{1} denote the enveloping algebra of $\beta^{(1)}\left(\mathfrak{g}_{1}^{(1)}\right)$ in $\operatorname{End}_{\boldsymbol{R}} V^{(1)}$. Then there exists a uniquely determined (algebra) homomorphism $\lambda: C^{+} \rightarrow \mathscr{A}_{1}$ such that one has $\beta^{(1)}=\lambda \circ \beta_{1}$. Suppose that the F-structure of $\left(U^{(1)}, S^{(1)}\right)$ is extended to an admissible F-structure of $\left(U^{(1)}, V^{(1)}\right)$ (under the condition similar to the condition (c) in Theorem 1). Then C^{+}and \mathscr{A}_{1} have natural F-algebra structures such that β_{1} and λ are defined over F.

When $\Delta \nsim 1$ over F, the F-algebra $C^{+}(F)$ is F-simple, and λ gives an F-isomorphism $C^{+}(F) \simeq \mathscr{A}_{1}(F)$. The center Z of $\mathscr{A}_{1}(F)$ is a totally real quadratic extension of F, isomorphic to $F(\sqrt{\Delta})$. Hence $\beta^{(1)}$ is F-primary, but not \boldsymbol{R}-primary, and we obtain a result similar to the one given in §3 with some modifications. For instance, (27a), (26a) must be modified in the form:

$$
\begin{gathered}
V^{(1)}(F)=R_{Z \mid F}\left(V_{1} \otimes_{D_{0}} V_{2}\right), \\
V^{(1)}=V_{1}^{(1) \prime} \otimes_{D_{1}} V_{2}^{(1) \prime} \oplus V_{1}^{(1) \prime \prime} \otimes_{D_{1}} V_{2}^{(1)^{\prime \prime}},
\end{gathered}
$$

where $V_{1}, V_{1}^{(1) \prime}$, and $V_{1}^{(1) \prime \prime}$ are simple left ideals of $C^{+}(F), C_{1}^{+}$, and C_{2}^{+}, respectively. In this case, $v_{1} \delta_{0}=2^{n_{1} / 2-1}$, and one has

$$
\begin{aligned}
\operatorname{dim}_{R} V_{j}^{(i)} & =\operatorname{dim}_{\mathbf{R}} V_{j}^{(i) \prime \prime}=v_{j} s_{1} \delta_{1}^{2}, \\
\operatorname{dim}_{\mathbf{R}} V^{(i)} & =2 v_{1} v_{2} \delta_{0}^{2} .
\end{aligned}
$$

In the classification theory, the domains \mathscr{S}_{I} and \subseteq are denoted as

$$
\begin{gathered}
R_{F(\sqrt{\Delta}) / / /}\left(\mathrm{IV}_{n_{1} ; v_{2}, v_{2}}, S^{(1)}, h_{2}\right)_{I} \quad\left(n_{1} \geq 6, \equiv 2(4)\right), \\
R_{F(\sqrt{\Delta}) / Q} \subseteq\left(V_{2}, D_{0}, h_{2}\right)
\end{gathered}
$$

When $\Delta \sim 1$ over $F, C^{+}(F)$ is dècomposed as (67), in which each simple component $C_{i}^{+}(F)$ is invariant under ρ^{\prime}. Hence one has either $\mathscr{A}_{1}(F) \simeq C^{+}(F)$ or $C_{i}^{+}(F)(i=1,2)$, according as $\beta^{(1)}$ has two or one F-primary component(s). For each F-primary component (which is also \boldsymbol{R}-primary) one has formulas similar to the ones given in the F-primary case, replacing β_{1}, φ_{1} by $\pi_{i} \circ \beta_{1}, \pi_{i} \circ \varphi_{1}$. Thus in this case, (27a), (26a) should be modified as follows:

$$
\begin{gathered}
V^{(1)}(F)=V_{1}^{\prime} \otimes_{D_{0}} V_{2}^{\prime} \oplus V_{1}^{\prime \prime} \otimes_{D_{0}} V_{2}^{\prime \prime} \\
V^{(1)}=V_{1}^{(1) \prime} \otimes_{D_{1}} V_{2}^{(1)^{\prime}} \oplus V_{1}^{(1) \prime \prime} \otimes_{D_{1}} V_{2}^{(1) \prime \prime},
\end{gathered}
$$

$V_{1}^{\prime}, V_{1}^{\prime \prime}, V_{1}^{(1)^{\prime}}$, and $V_{1}^{(1) \prime \prime}$ being simple left ideals of $C_{1}^{+}(F), C_{2}^{+}(F), C_{1}^{+}$, and C_{2}^{+}, respectively. Denoting the ranks of D_{0}-modules V_{j}^{\prime} and $V_{j}^{\prime \prime}(i=1,2)$ by v_{j}^{\prime} and $v_{j}^{\prime \prime}$, one has

$$
v_{1}^{\prime}=v_{1}^{\prime \prime}=2^{n_{1} / 2-1} \delta_{0}^{-1}, \quad v_{2}^{\prime}, v_{2}^{\prime \prime} \geq 0
$$

and

$$
\begin{gathered}
\operatorname{dim}_{R} V_{j}^{(i)}=v_{j}^{\prime} s_{1} \delta_{1}^{2}, \quad \operatorname{dim}_{R} V_{j}^{(i) \prime \prime}=v_{j}^{\prime \prime} s_{1} \delta_{1}^{2} \\
\operatorname{dim}_{\boldsymbol{R}} V^{(i)}=v_{1}^{\prime}\left(v_{2}^{\prime}+v_{2}^{\prime \prime}\right) \delta_{0}^{2}
\end{gathered}
$$

In this case, the domains \mathscr{S}_{I} and \mathfrak{S} are denoted as

$$
\begin{gathered}
R_{F / \mathbf{Q}}\left(\mathrm{IV}_{n_{1} ; v_{2}^{\prime}, v_{2}^{\prime \prime}}, S^{(1)}, h_{2}^{\prime}, h_{2}^{\prime \prime}\right)_{I} \quad\left(n_{1} \geq 6, \equiv 2(4)\right), \\
R_{F / \mathbf{Q}} \subseteq\left(V_{2}^{\prime}, D_{0}, h_{2}^{\prime}\right) \times R_{F / \mathbf{Q}} \subseteq\left(V_{2}^{\prime \prime}, D_{0}, h_{2}^{\prime \prime}\right)
\end{gathered}
$$

[One may choose the orientation of $U^{(1)}$ so that $v_{2}^{\prime} \geq v_{2}^{\prime \prime}$ and, when $v_{2}^{\prime \prime}=0$, one omits the second factor $R_{F / \mathbf{Q}} \subseteq\left(V_{2}^{\prime \prime}, D_{0}, h_{2}^{\prime \prime}\right)$.]

In general, if p is a point in the second boundary component of an irreducible symmetric doamin, then the fiber over p is an irreducible quasisymmetric domain of type $\left(\mathrm{IV}_{n_{1} ; v_{2}}\right)$ or $\left(\mathrm{IV}_{n_{1} ; v_{2}, 0}\right)$. Thus, for $n_{1}=6$, by virtue of the isomorphism $\mathscr{P}(1,5) \simeq \mathscr{P}_{2}(\boldsymbol{H})$, the domain $R_{F / Q}\left(\mathrm{IV}_{6 ; v_{2}, 0}, S^{(1)}, h_{2}\right)_{I}(\Delta \sim 1)$ is identified (through the first spin representation) with the fiber over a rational point I in the second rational boundary component $\mathfrak{S}=R_{F / Q}\left(\mathrm{II}_{v_{2}}^{(2)}, D_{0}, h_{2}\right)$ in the Siegel domain expression of $\tilde{\mathscr{S}}=R_{F / \mathbf{Q}}\left(\mathrm{II}_{4+v_{2}}^{(2)}\right.$, D_{0}, h_{2}^{\prime}), where $D_{0}=C_{1}^{+}(F)$ is a totally definite quaternion algebra over F. In particular, $R_{F / \mathbf{Q}}\left(\mathrm{IV}_{6 ; 1,0}, S^{(1)}, h_{2}\right)$ is identified with the symmetric domain $R_{F / \mathbf{Q}}\left(\mathrm{II}_{5}^{(2)}, D_{0}, h_{2}^{\prime}\right)$. For $n_{1}=10$, the domain $R_{F / \mathbf{Q}}\left(\mathrm{IV}_{10 ; 2 / \delta, 0}, S^{(1)}, h_{2}\right)_{I}(\Delta \sim 1)$ is identified with the fiber over a rational point I in the second rational boundary component $\mathbb{S}=R_{F / \mathbf{Q}}\left(\mathrm{III}_{1}^{\left(\delta_{0}\right)}, D_{0}, h_{2}\right)$ in the Siegel domain expression of a symmetric domain of the exceptional type (VI) ${ }^{l}$ with a \boldsymbol{Q}-structure of \boldsymbol{Q}-rank $1+2 / \delta_{0}$.

Appendix: The symmetric case.

A.1. The condition (iii). First we introduce some notation. For $v, v^{\prime} \in V$, set

$$
\begin{equation*}
\varphi H_{I}\left(v, v^{\prime}\right)=\varphi\left(A\left(v, v^{\prime}\right)\right) I+\varphi\left(A\left(v, I v^{\prime}\right)\right) . \tag{76}
\end{equation*}
$$

Then one has

$$
I \cdot \varphi H_{I}\left(v, v^{\prime}\right)=-\varphi H_{I}\left(I v, v^{\prime}\right)=\varphi H_{I}\left(v, I v^{\prime}\right)=\varphi H_{I}\left(v, v^{\prime}\right) I .
$$

Thus $\varphi H_{I}\left(v, v^{\prime}\right)$ is \boldsymbol{C}-linear in v^{\prime} and \boldsymbol{C}-semilinear in v with respect to the complex structure of V defined by I. It follows that one has

$$
\begin{equation*}
\varphi H_{I}\left(v, v^{\prime}\right) v^{\prime \prime}=2 i\left(\varphi\left(A\left(v_{-}, v_{+}^{\prime}\right)\right) v_{+}^{\prime \prime}-\varphi\left(A\left(v_{+}, v_{-}^{\prime}\right)\right) v_{-}^{\prime \prime}\right) . \tag{77}
\end{equation*}
$$

Moreover, for $g_{2} \in G_{2}$, one has

$$
\begin{equation*}
g_{2}^{-1} \varphi H_{I}\left(g_{2} v, g_{2} v^{\prime}\right) g_{2}=\varphi H_{g_{2}^{-1} I g_{2}}\left(v, v^{\prime}\right) . \tag{78}
\end{equation*}
$$

The following result is known (cf. [S6, p. 223-224, Th. 3.5]).
Proposition 6. A quasisymmetric domain \mathscr{S}_{I} is symmetric if and only if the following condition is satisfied:

$$
\begin{equation*}
A\left(v, \varphi H_{I}\left(v^{\prime}, v^{\prime \prime}\right) v^{\prime \prime}\right)=A\left(\varphi H_{I}\left(v^{\prime \prime}, v\right) v^{\prime}, v^{\prime \prime}\right) \quad \text { for } \quad v, v^{\prime}, v^{\prime \prime} \in V, \tag{iii}
\end{equation*}
$$

or equivalently,
(iii') $\quad A\left(\bar{w}, \varphi\left(A\left(\bar{w}^{\prime}, w^{\prime \prime}\right)\right) w^{\prime \prime}\right)=A\left(\varphi\left(A\left(\bar{w}, w^{\prime \prime}\right) \bar{w}^{\prime}, w^{\prime \prime}\right) \quad\right.$ for $\quad w, w^{\prime}, w^{\prime \prime} \in V_{+}$.
Corollary. If \mathscr{S}_{I} is symmetric for one $I \in \mathbb{S}$, then \mathscr{S}_{I} is symmetric for all $I \in \mathfrak{S}$.
This follows from Proposition 9 and (78).

Remark. It is known ([S6, p. 228, Lem. 4.6]) that (iii) is equivalent to any one of the following conditions.
(iii ${ }_{1}$)

$$
\left(\mathrm{iii}_{1}^{\prime}\right)
$$

$$
\begin{gathered}
\varphi H_{I}\left(v, \varphi(u) v^{\prime}\right) v^{\prime}=\varphi(u) \varphi H_{I}\left(v, v^{\prime}\right) v^{\prime} \\
\varphi H_{I}\left(\varphi(u) v, v^{\prime}\right) v^{\prime}=\varphi H_{I}\left(v, v^{\prime}\right) \varphi(u) v^{\prime} \\
\left(v, v^{\prime} \in V, u \in U\right)
\end{gathered}
$$

By the classification, we see that an irreducible domain \mathscr{S}_{I} is symmetric if and only if either one has $g_{1}=\left\{1_{U}\right\}_{\mathbf{R}}$ or g_{2} is compact. Note that there are some discrepancy of the notation between this paper and [S6, Ch. V]. In the latter, the complex structure I on V is fixed, so that (V, I) is identified with V_{+}. One has the following dictionary (on the left hand side is the notation in [S6]):

$$
\begin{gathered}
4 H\left(v, v^{\prime}\right)=A\left(v, I v^{\prime}\right)+i A\left(v, v^{\prime}\right), \quad 2 R_{u}=\varphi(u), \\
8 R\left(H\left(v, v^{\prime}\right)\right)\left(\text { on } V_{+}\right)=\varphi H_{I}\left(v, v^{\prime}\right)\left(\text { on } V_{+}\right)=2 i \varphi\left(A\left(v_{-}, v_{+}^{\prime}\right)\right) .
\end{gathered}
$$

A.2. Infinitesimal automorphisms of \mathscr{S}_{I}. Let $\operatorname{Aut} \mathscr{S}_{I}$ denote the group of biholomorphic automorphisms of \mathscr{S}_{I} and let $\mathfrak{G}=$ Lie Aut \mathscr{S}_{I}. Then $X \in \mathfrak{G}$ can be expressed by the corresponding "infinitesimal automorphism" of \mathscr{S}_{I}, i.e. the differential operator \tilde{X} on $C^{\infty}\left(\mathscr{S}_{I}\right)$ defined by

$$
(\tilde{X} f)(u, w)=\left.\frac{d}{d t} f\left(\exp (t X)^{-1}(u, w)\right)\right|_{t=0}
$$

in notation, we write $X \leftrightarrow \tilde{X}$. Let $\left(e_{\alpha}\right)$ and $\left(e_{\lambda}^{\prime}\right)$ be bases of $U_{\boldsymbol{c}}$ and V_{+}over \boldsymbol{C}, respectively, and let $\left(u_{\alpha}\right)$ and $\left(w_{\lambda}\right)$ the corresponding complex coordinates of U_{C} and V_{+}. Then \tilde{X} is expressed in the form

$$
\begin{equation*}
\tilde{X}=\sum_{\alpha=1}^{n} p_{\alpha}(u, w) \frac{\partial}{\partial u_{\alpha}}+\sum_{\lambda=1}^{m} q_{\lambda}(u, w) \frac{\partial}{\partial w_{\lambda}} . \tag{79}
\end{equation*}
$$

Setting $p(u, w)=\sum_{\alpha=1}^{n} p_{\alpha}(u, w) e_{\alpha}, q(u, w)=\sum_{\lambda=1}^{m} q_{\lambda}(u, w) e_{\lambda}^{\prime}$, we write

$$
\tilde{X}=p(u, w) \frac{\partial}{\partial u}+q(u, w) \frac{\partial}{\partial w} .
$$

First, for the Heisenberg group \tilde{V}, the Lie algebra Lie \tilde{V} is naturally identified with $U \oplus V$ (as a vector space). Viewing Lie \tilde{V} as a subalgebra of \mathfrak{G}, one has by (7)

$$
\begin{equation*}
a+b \leftrightarrow-\left(a-A\left(b_{-}, w\right)\right) \frac{\partial}{\partial u}-b_{+} \frac{\partial}{\partial w} \quad(a \in U, b \in V) . \tag{80}
\end{equation*}
$$

Clearly one has

$$
\begin{equation*}
\left[a+b, a^{\prime}+b^{\prime}\right]=-A\left(b, b^{\prime}\right) \quad\left(a, a^{\prime} \in U, b, b^{\prime} \in V\right) \tag{81}
\end{equation*}
$$

For the linear group G_{I}, one embeds Lie $G_{I}=\mathfrak{g}_{1} \oplus \mathfrak{f}_{2}$ into $\mathfrak{g l}(U) \times \mathfrak{g l}(V)$. Then, for $\left(X_{1}, Y_{1}\right) \in \operatorname{Lie} G_{I}$, one has

$$
\begin{equation*}
\left(X_{1}, Y_{1}\right) \leftrightarrow-X_{1} u \frac{\partial}{\partial u}-Y_{1} w \frac{\partial}{\partial w} . \tag{82}
\end{equation*}
$$

Clearly one has

$$
\begin{gathered}
{\left[\left(X_{1}, Y_{1}\right), a+b\right]=X_{1} a+Y_{1} b,} \\
{\left[\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)\right]=\left(\left[X_{1}, X_{2}\right],\left[Y_{1}, Y_{2}\right]\right) .}
\end{gathered}
$$

When \mathscr{S}_{I} is symmetric, let θ be the Cartan involution of $\left(\mathfrak{G}\right.$ at $(i e, 0) \in \mathscr{S}_{I}$. Then one has a gradation of $\left(\mathfrak{5}\right.$ according to $\operatorname{ad}\left(-1_{U},(-1 / 2) 1_{V}\right)$ of the following form:

$$
\begin{gather*}
\mathfrak{G}=\sum_{v=-2}^{2} \mathfrak{G}_{v / 2}, \quad \theta \mathfrak{G}_{v / 2}=\mathfrak{G}_{-v / 2} . \tag{83}\\
\mathfrak{G}_{-1}=U, \quad \mathfrak{G}_{-1 / 2}=V, \quad \mathfrak{G}_{0}=\operatorname{Lie} G_{I}=\mathfrak{g}_{1} \oplus \mathfrak{f}_{2},
\end{gather*}
$$

and θ induces the Cartan involution $\theta_{1} \oplus \theta_{2}$ on \mathfrak{F}_{0} (cf. [M], [S6, p. 211, (A), p. 220, Prop. 3.3]). In order to describe the action of θ on U, V, it is convenient to use the following notation:

$$
\begin{gathered}
\left(u \square u^{\prime}\right) u^{\prime \prime}=\left\{u, u^{\prime}, u^{\prime \prime}\right\}=\left(u u^{\prime}\right) u^{\prime \prime}+u\left(u^{\prime} u^{\prime \prime}\right)-u^{\prime}\left(u u^{\prime \prime}\right), \\
u \square u^{\prime}=T_{u u^{\prime}}+\left[T_{u}, T_{u^{\prime}}\right] .
\end{gathered}
$$

By (18) and (19) one has

$$
\begin{gather*}
\varphi\left(\left\{u, u^{\prime}, u^{\prime \prime}\right\}\right)=\frac{1}{2}\left(\varphi(u) \varphi\left(u^{\prime}\right) \varphi\left(u^{\prime \prime}\right)+\varphi\left(u^{\prime \prime}\right) \varphi\left(u^{\prime}\right) \varphi(u)\right), \tag{84}\\
\left\{u, A\left(v, v^{\prime}\right), u^{\prime}\right\}=\frac{1}{2}\left(A\left(\varphi(u) v, \varphi\left(u^{\prime}\right) v^{\prime}\right)+A\left(\varphi\left(u^{\prime}\right) v, \varphi(u) v^{\prime}\right)\right) . \tag{85}
\end{gather*}
$$

Proposition 7. One has

$$
\begin{gather*}
\theta a \leftrightarrow-\{u, a, u\} \frac{\partial}{\partial u}-\varphi(u) \varphi(a) w \frac{\partial}{\partial w}, \tag{86}\\
\theta b \leftrightarrow-i A\left(\varphi(u) b_{-}, w\right) \frac{\partial}{\partial u}-i\left(\varphi(u) b_{+}+\varphi\left(A\left(b_{-}, w\right)\right) w\right) \frac{\partial}{\partial w} . \tag{87}
\end{gather*}
$$

This was given in [S6, p. 224, Th. 3.6]. A more direct proof can be given as follows. The symmetry at $(i e, 0)$, denoted also by θ, is given by

$$
\theta:(u, w) \mapsto\left(-u^{-1},-i \varphi(u)^{-1} w\right),
$$

where u^{-1} denotes the inverse of u in the Jordan algebra (U, e) and one has
$\varphi\left(u^{-1}\right)=\varphi(u)^{-1}$ (cf. [S6, p. 139, Exc. 3]). Hence, for $a \in U$, one has

$$
\begin{aligned}
(\exp \theta a)(u, w) & =(\theta \circ(\exp a) \circ \theta)(u, w)=\theta\left(-u^{-1}+a,-i \varphi(u)^{-1} w\right) \\
& =\left(\left(u^{-1}-a\right)^{-1}, \varphi\left(u^{-1}-a\right)^{-1} \varphi(u)^{-1} w\right)
\end{aligned}
$$

Here one has

$$
\begin{gathered}
\left(u^{-1}-a\right)^{-1}=(1-u \square a)^{-1} u=u-\{u, a, u\}+\cdots \\
\varphi\left(u^{-1}-a\right)^{-1} \varphi(u)^{-1}=1-\varphi(u) \varphi(a)+\cdots
\end{gathered}
$$

([S6, p. 26, Exc. 6] and (84)). Hence one obtains (86). The relation (87) is obtained similarly by using (iii ${ }_{1}$), (77), (85).

By direct computations from (80), (86) and (87) one obtains

$$
\begin{gather*}
{\left[a, \theta a^{\prime}\right]=\left(-2 a \square a^{\prime},-\varphi(a) \varphi\left(a^{\prime}\right)\right),} \tag{88}\\
{[a, \theta b]=-\varphi(a) I b,} \tag{89}\\
{\left[b, \theta b^{\prime}\right]=\left(-4 \Phi_{b, b^{\prime}},-4 \Psi_{b, b^{\prime}}\right),} \tag{90}
\end{gather*}
$$

where

$$
\begin{gathered}
4 \Phi_{b, b^{\prime}}: u \mapsto A\left(b, \varphi(u) I b^{\prime}\right), \\
4 \Psi_{b, b^{\prime}}: v \mapsto \frac{1}{2}\left(\varphi H_{I}\left(b^{\prime}, v\right) b-\varphi H_{I}(b, v) b^{\prime}+\varphi H_{I}\left(b^{\prime}, b\right) v\right) .
\end{gathered}
$$

(For (90) one uses (iii'). Cf. [S6, p. 231-233, Exc. 5 and Rem.])
A.3. \boldsymbol{Q}-structures of $\boldsymbol{(5}$. Now we assume that there is given a \boldsymbol{Q}-structure of the quasisymmetric domain \mathscr{S}_{I} in the sense of 3.1 . This means that one has a Q-structure of $\mathfrak{G}_{\text {Aff }}=\mathfrak{G}_{-1}+\mathfrak{G}_{-1 / 2}+\mathfrak{G}_{0}$ such that $\left(1_{U},(1 / 2) 1_{V}\right) \in \mathfrak{g}_{1}$ is \boldsymbol{Q}-rational. Then, since $I \in \mathfrak{S}$ is "rational", there exists a totally positive element $\alpha_{1} \in F$ such that $\sum_{i=1}^{l} \sqrt{\alpha_{1}^{\sigma_{i}}} I^{(i)}$ is Q-rational. [We say that I is a rational point with CM-field $F\left(\sqrt{-\alpha_{1}}\right)$, endowed with the standard CM-type $\left(\sigma_{i}^{\prime}\right)$ defined by $\sqrt{-\alpha_{1}} \sigma_{i}^{\prime}=\sqrt{-1} \sqrt{\alpha_{1} \sigma_{i}}$.] In what follows, for $\lambda_{i} \in \boldsymbol{R}$ ($1 \leq i \leq l$) and $x=\sum x^{(i)}$, we write

$$
\left(\lambda_{i}\right) \cdot x=\sum_{i=1}^{l} \lambda_{i} x^{(i)} .
$$

In this section, we don't assume that e is \boldsymbol{Q}-rational. e is called semirational if there exists a totally positive element $\alpha \in F$ such that $\left(\sqrt{\alpha^{\sigma_{i}}}\right) \cdot e$ is \boldsymbol{Q}-rational. We say that e or θ is compatible with the complex structure I if $\left(\sqrt{\alpha_{1}^{\sigma_{i}}}\right) \cdot e$ is \boldsymbol{Q}-rational.

Lemma. Let $e, e^{\prime} \in U, e^{\prime}=\left(\lambda_{i}\right) \cdot e$ and denote the symbols relative to e^{\prime} by the corresponding symbols relative to e with a prime. Then one has

$$
\begin{gathered}
T_{a}^{\prime}=\left(\lambda_{i}\right)^{-1} \cdot T_{a}, \quad \varphi^{\prime}(a)=\left(\lambda_{i}\right)^{-1} \cdot \varphi(a), \\
\left\{u, u^{\prime}, u^{\prime \prime}\right\}^{\prime}=\left(\lambda_{i}\right)^{-2} \cdot\left\{u, u^{\prime}, u^{\prime \prime}\right\}, \\
\theta^{\prime} a=\left(\lambda_{i}\right)^{-2} \cdot \theta a, \quad \theta^{\prime} b=\left(\lambda_{i}\right)^{-1} \cdot \theta b
\end{gathered}
$$

for $a, u, u^{\prime}, u^{\prime \prime} \in U, b \in V$.
The proof is straightforward.
Theorem 3. Assume that \mathscr{S}_{I} is symmetric and let θ be the Cartan involution of \mathfrak{G} at $(i e, 0) \in \mathscr{S}_{I}$. Then, there exists a unique \boldsymbol{Q}-structure of \mathfrak{G} satisfying the following conditions:
(α) It extends the given \boldsymbol{Q}-structure of $\mathfrak{G}_{\text {aff }}$.
(β) Whenever e is semirational, the restriction $\theta \mid U$ is \boldsymbol{Q}-rational.
The Cartan involution θ is \boldsymbol{Q}-rational with respect to this \boldsymbol{Q}-structure of \mathfrak{G} if and only if θ is compatible with I.

Proof. First we prove the uniqueness in the first statement. Suppose one has a \boldsymbol{Q}-structure of \mathfrak{G} satisfying the conditions $(\alpha),(\beta)$. (Note that, by the above lemma, the condition (β) is satisfied if $\theta \mid U$ is \boldsymbol{Q}-rational for one semirational e.) Then the \boldsymbol{Q} structures on the vector spaces $\boldsymbol{G}_{v / 2}$ are uniquely determined except for $v=1$. As for $\mathfrak{F}_{1 / 2}=\theta V$, one has by (89)

$$
\theta I b=-[\theta e, b] \quad(b \in V) .
$$

Hence, if $\left(\sqrt{\alpha^{\sigma_{i}}}\right) \cdot e$ is \boldsymbol{Q}-rational, then the map $b \mapsto\left(\sqrt{\alpha^{\sigma_{i}}}\right) \cdot \theta I b$ is \boldsymbol{Q}-rational. By this condition, which is independent of the choice of the semirational e by the above lemma, the \boldsymbol{Q}-structure of $\mathfrak{F}_{1 / 2}$ is also uniquely determined. Conversely, by virtue of (88), (89), (90) and the above lemma, one sees that, defining the \boldsymbol{Q}-structure of $\mathfrak{G}_{1 / 2}$ and \mathfrak{G}_{1} as indicated above, one obtains a \boldsymbol{Q}-structure of \mathfrak{G} satisfying the conditions (α), (β). From this and the definition the second statement is clear. q.e.d.

Remark. The above theorem remains valid for the case $V=0$. In that case, any Cartan involution with semirational e is \boldsymbol{Q}-rational.

References

[I1] M.-N. Ishida, T-complexes and Ogata's zeta zero values, in "Automorphic Functions and Geometry of Arithmetic Varieties", Adv. St. in Pure Math., Vol. 15, Kinokuniya \& North-Holland, 1989, pp. 351-364.
[I2] M.-N. Ishida, The duality of cusp singularities, Math. Ann. 294 (1992), 81-97.
[KMO] W. Kaup, Y. Matsushima and T. Ochiai, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math. 92 (1970), 475-497.
[M] S. Murakami, On Automorphisms of Siegel Domains, Lect. Notes in Math. 286, Springer-Verlag, 1972.
[O1] S. Ogata, Special values of zeta functions associated to cusp singularities, Tôhoku Math. J. 37 (1985), 367-384.
[O2] S. Ogata, Hirzebruch's conjecture on cusp singularities, Math. Ann. 296 (1993), 69-86.
[PS] I. I. Piatetskil-Shapiro, Geometry of Classical Domains and Theory of Automorphic Functions (Russian), Fizmatgiz, Moscow, 1961; (English transl.) Gordon and Breach, New York, 1969.
[S1] I. Satake, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math. 117 (1967), 215-279.
[S2] I. Satake, Linear imbeddings of self-dual homogeneous cones, Nagoya Math. J. 46 (1972), 121-145; Corrections, ibid. 60 (1976), 219.
[S3] I. Satake, On classification of quasi-symmetric domains, Nagoya Math. J. 62 (1976), 1-12.
[S4] I. Satake, On symmetric and quasi-symmetric Siegel domains, in "Several Complex Variables", Proc. of Symp. in Pure Math., Vol. 30, Amer. Math. Soc., 1977, pp. 309-315.
[S5] I. Satake, La déformation des formes hermitiennes et son application aux domaines de Siegel, Ann. Sci. l'Ecole Norm. Sup. 11 (1978), 445-449.
[S6] I. Satake, Algebraic Structures of Symmetric Domains, Iwanami Shoten \& Princeton Univ. Press, 1980.
[S7] I. Satake, On the rational structures of symmetric domains, I, in "Int. Symp. in Memory of Hua Loo Keng, Vol. II, Analysis" (Beijing, 1988), Science Press \& Springer-Verlag, 1991, pp. 231259.
[S8] I. Satake, On the rational structures of symmetric domains, II, Determination of rational points of classical domains, Tôhoku Math. J. 43 (1991), 401-424.
[S9] I. Satake, On \boldsymbol{Q}-structures of quasi-symmetric domains, RIMS Kokyuroku 844, 1993, pp. 138153.
[SO1] I. Satake and S. Ogata, Zeta functions associated to cones and their special values, in "Automorphic Forms and Geometry of Arithmetic Varieties", Adv. Stud. in Pure Math., Vol. 15, Kinokuniya \& North-Holland, 1989, pp. 1-27.
[Sc] W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag, 1985.

Department of Mathematics
Chuo University
1-13-27 Kasuga, Bunkyoku
Tokyo 112
Japan

