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r-DERIVATIVES AND THEIR APPLICATIONS
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Abstract. In this paper we offer very general Opial-type inequalities involving
higher order r-derivatives. From these inequalities we then deduce extended and improved
versions of several recent results. Some applications which dwell upon the importance
of the obtained inequalities are also included.

1. Introduction. Opial’s inequality, in its improved form, states that if u(t) is
absolutely continuous on [, ] with u(«)=0, and [ (u'(t))*dt < oo, then
(t—0)
2

(1.1) J |u(t)u'(t)dt < J (u'(t))?dr .

This simple inequality has motivated a large number of research papers giving its
successively simpler proofs, providing various generalizations, and finding discrete
analogs. (See [1], [3] and [16] for an extensive bibliography consisting of 83 articles.)
Among the generalizations, there is a class of inequalities which instead of the first
derivative involves the n-th (n>1) order derivative of the given function u(t). The first
such result is due to Willett [27], who used this generalization to establish uniqueness
results for the n-th order linear ordinary differential equations. For practical application
purposes Willett’s result in recent years has been improved as well as generalized in
several different directions [4]-[10], [13], [17], [18], [20], [23], [28]. In this paper
we shall provide very general Opial-type inequalities involving higher order r-derivatives.
The obtained results are shown to be sharper and more general than several recent
results. We shall also demonstrate the usefulness of our results in the field of ordinary
differential equations involving r-derivatives.

2. Inequalities involving one function. Let —oo<a<t<f<oo. Further, let
ri(t)>0, i=1,...,n—1 and x(t) be sufficiently smooth functions on [«, ]. Then, for
x(t) the r-derivatives are defined as follows
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DOx=x
d
@2.1) DWx=r (D% Vxy, k=1,...,n—1 </_§[_D)

D®x=(D" " Vyx) .

Since the class of operators D™ properly contains disconjugate linear operators
L=D"+%" a(t)D""?, the theory of ordinary differential equations involving
r-derivatives i 1s of increasing interest, e.g., [11], [12], [21], [22], [24], [25], [26]. To
obtain Opial-type inequalities involving r-derivatives we note that if D¥x(x)=0,
0<k<i<n—1 then on changing the variables several times it follows that

t
2.2) Dﬁ"’x(t)=j H,_(t, )DPx(s)ds, O<k<n-—1

where

e+ 1 n-2
t S) j dtk+1 __dtkLJ‘ iﬂ*’ 0<k<n-2

Fer1(fe+ 1) Tt 2(tk s 2) s Fu—1(ty=1)
and
H,(t,s)=1
It is clear that when rf(t)=1, i=1,...,n—1 for each 0<k<n the r-derivative

D® is simply the ordinary derivative D® and H,_(t,s)=(t—s)" * " Y(n—k—1)!,
0<k<n—1. Thus, in this case (2.2) reduces to the well known relation

1 t
2.3 DWx(t)=——— | (t—5)""* " 1DWx(s)ds .
(2.3) () n—k—1)! L( ) (s)
Let on [a, 7], D®x(t), 0<i<n—1 be continuous, D"~ Vx(t) absolutely continu-
ous, and D™x(t) does not change sign. Then, in view of H,_,(t,s)>0, a<s<t<7 the
relation (2.2) implies that

(2:4) lDi"’X(t)l=f H,_\(t,s)| D{"x(s) |ds=g,(t), ~ 0<k<n—1.

Now let the functions p(t), ¢(t) be non-negative and measurable on [«, 7], and
0<k<n—1Dbea fixed integer. Then, from Holder’s inequality with indices p and p/(p — 1)
equation (2.4) gives

(2.5) | DPx(t)] =J H,_(t, s)(p(s) " "*(p(s)'/*] D" x(s) |ds

S[PUe Y "[J'P(S)I D"x(s) I"dS]l/p ;
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where

(2.6) Pk(t)=f(Hﬁ_k(t, s)p~ X))~ Vs .

In (2.5) it is clear that < holds if p>1 and > holds if p<0 or 0<p<1. We set
@7 )= f'p(s)l Do) Pds

so that

Y'(©)=p&)|DPx)*,  yx)=0
and hence for any p, it follows that
(2.8) | Dx(t) 1P~ = (p(t) =P (y'(t))" .
Thus, if p, >0 we have
(2.9)  q()] DPx(t) |P<| DIx(t) [P S q(t ) Pue)y* ~ Ve p(t) =P (WP (y ()"
where < holds if p>1 and > holds if p<0 or 0<p<1. On the other hand, if p, <0
we have
(2.10)  g(t)| DPx() [P<| DMx(t) 1P~ Z q(e X P{E)y ~ DI ple) ~Po(p(e)y2(y' ()7
where > holds if p>1 and < holds if p<0or O<p<1.

We now restrict p, and p, so that (o, + p,)/p.) >0, and therefore (y(x))®**P/Pn=0,
Next, we integrate (2.9) or (2.10) over [a, 7], and apply Holder’s inequality with indices

plpn and p/(p—p,), to obtain

T T pnlp
(2.11) f q(t)| DPx(t) [P+ DPx(t) |~di Co[f (y(t))”"“’"y'(t)dt] ,
where
(212) C0: CO( p’ qs{ri}a pk’ pm P)

T (0 —pn)lp
= [ J (q ”(t)p - Pn(t )) 1/(p— ﬂn)(Pk(t ))pk(p =1/(p— pn)dt:l .
Therefore, it follows that either

T T (P + pn)lp
(2.13) J q(t)| DEx(t) |P<| DM x(t) [Prdt < C, [f p)| Dx(t) |"dt]

a a

or
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T T (prc+pn)/
(2.14) J q(t)wﬁ")x(t)vwDi”)x(r)lﬂ"dtzcl[ f p(t)ws"’x(t)wt] m

a a

holds, where

Pn Pnlp
(2.15) Ci=Cy(pq, {ri} P> Pu> p)=< ) Co .
pk+pn

Clearly, if < holds in (2.9) or (2.10) then we require (p/p,)>1 and obtain (2.13), while
if > holds in (2.9) or (2.10) we require (p/p,) <0, or 0<(p/p,)<1 and obtain (2.14).
In stating the various cases which arise we shall use the following notation.

PX()= f'p(s)l D®x(s)|°ds
ox= f a(0) DOX(0) 7| DOx(e) [P

PkQ:Jt(qp(t)p_Pn(t))l/(p—Pn)(Pk(t))Pk(P_ DI =pn) gy .

Further, for Py(t) and PX(r) we shall write P, and PX.
The above analysis schows that (2.13) holds if

(2.16) {”>"”k>0’0</’n<m0rp<pn<0,pk<0,or—pn<pk<0, }

0<p,<p<1and Pt)exists for te[a, 7], P,Q <0, PX< 0.

If p<0, then from Holder’s inequality with indices 1 —p and (p—1)/p, we have
t pllp—1)
Pk(t)5<f H,_\ts)| Di"’X(S)MS) (PX()'/ =7

and hence the existence of P,(t) follows from that of PX{(t), and of g,(t). Similarly, for
0<p <1, Holder’s inequality with indices 1/p and 1/(1—p) gives

W< < f H,_,(t, 5)| D{x(s) |ds>p(Pk(t )

and hence the existence of y(t) follows from that of P,(t), and of g,(t).
With these remarks we note that (2.14) holds under any one of the following

conditions:

@.17) {pk>0,0<p<min(p,,, 1), orp,,<0<p<1,0<pk<—pn}

and P, (t) exists for te[a, ], P,Q <00, QX < 00;
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(2.18) {Pk<°’ Pn<0,p>1,0r1<p<p,, —p,<p<0 and}
‘ Py(t), PX(t) exist for e[, 1], P,Q < 0, QX < c0;
(2.19) {Pk>°’P<0<pm or p,<p<0,0<p, < —p, and}

' PX(t) exists for te [a, 7], P,Q < 00, QX < 00.

Thus, we have proved the following:

THEOREM 2.1. Assume that

(i) p(t), q(t) are non-negative and measurable functions on [a, 7],

(1) on [a, 1] functions ri(t)>0, i=1,...,n—1 and x(t) are sufficiently smooth
so that the r-derivatives of x(t) exist, DVx(t), 0<i<n—2 are continuous, D"~ Vx(t) is
absolutely continuous, and D™ x(t) is of fixed sign,

(i) for 0<k<n—1 (n=1), but fixed, DYx(a)=0, k<i<n—1.

Then, the inequality (2.13) holds provided (2.16) holds, and (2.14) holds under any one
of the conditions (2.17)~2.19).

REMARK 2.1. In those cases of (2.16) and (2.18) where p> 1, Theorem 2.1 holds
even if sgn D™x(t) is not constant. Indeed, in such a case the proof is similar except
that now in place of (2.4), we have

t
(2.20) IDi"’X(t)le H,_(t,9)| D"x(s)|ds=gy(t),  0<k<n—1.

REMARK 2.2. Equality holds in (2.13), (2.14) if and only if it holds in (2.5) and
(2.11), i.e., if and only if

(2:21) PO DPX(s) P =dy(tXHE- ¢, sp~ )™, 0<s<t
and

(2.22) (A)Pomy (t) = ¢ (g2t )p ™ Pn(1)) 1~ PP (2 ))P<te ~ D= pm)
Equation (2.21) is the same as

(2.23) D™x(s)=d(t)(H,_t, s)p~*(s))/*~ 1, 0<s<t

and hence, from the definition of H,_,(t, s), unless k=n—1, D™x(s)=0, and if n=k + 1,
we have

t
(2.24) DWx(t)= dj Fe () p(s)~ Y@ =Yds  (d real).
Further, when n=k + 1 the condition (2.23) and the definitions of P(t) and y(¢) in (2.22)
give
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(2.25) q(t)=c(p(t»<ﬂ"-“/@-1’( f '(p(s»-“w-”dsyku_p"w" (c>0).

For ¢=1 it is easy to compute the sharp constant
p T ((prc+ pn)(p = pn)pPn)
(2.26) C, = . (j (p(s))—l/(p‘l)ds> .
Pk + Pn [

In the following three remarks we shall show how the limiting cases in inequalities
(2.13) and (2.14) are meaningful.

REMARK 2.3. Holder’s inequality with indices p/p, and p/(p—p,) gives

T T (p—pn)lp T pnlp
f f](t)lDi")x(t)l”"dé(f (qp(t)l’_”“(t))”("_”")dl> <J P(t)|D$")x(t)l”dt>

a a

T

:Cl(p’ q, {ri}s 0, Pn> p)(J\

a

Pnlp
p(t)| DPx(t) I"dt> ,

where < holds provided (p/p,)>1 and < holds if (p/p,) <0, or 0<(p/p,)<1. Thus, for
p=0 the inequality (2.13) holds provided 0<p,<p, or p<p,<0; and the inequality
(2.14) holds if p<0<p,, or p,<0<p, or 0<p<p,, or p,<p<O0.

REMARK 2.4. For the case p=1 inequalities (2.13) and (2.14) hold by replacing

(PP~ by Pt)=ess.sup, , [H, it 5)p~ ' (8)], or Pyt)=ess.inf,_, [H, ut,5)p~ ()]
appropriately. Indeed, the inequality (2.13) holds with C, replaced by

P .
C2=< Pn ) F[ (q([)p_ﬂn(t)pzk(t))l/(l—p")dt]
Pt+pn/ Lla
provided p,>0, 0<p,<1; and with C, replaced by
"I 1-pn
C3:< Pn ) \f (q(t)p_pn(t)ﬁgk(t))ll(l—p")dt]
P+ Pn L,

provided —p,<p,<0<p,<1. Similarly, (2.14) holds with C, replaced by C, provided
<0, p,<0, or 1<p,, —p,<p<0; and with C, replaced by C; provided p,<O0,
0<pr<—puw o1 p>0, 1 <p,

REMARK 2.5. As in Remark 2.4 we note that for the case p=p, the inequality
(2.13) holds with C, replaced by

Pn - -
Cy= ( > €ss.sup, ., 1 [9(t) P~ () P(1)y <P~ 1Pn]
Pk + Pn

provided p,>1, p,>0, or p,<0, p, <0, or —p,<p,<0<p,<1. Further, the inequality
(2.14) holds with C, replaced by
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Cs =< b )essinf,e[a aLa)p e P(e)yen ™ 1en]
Pk +pn '

provided p, >0, 0<p,<1,0r 1<p,, —p,<p<0, or 0<p, < —p,.

REMARK 2.6. For the case p(t)=¢q(t)=1, p=p,+p,>1 a weaker form of the
inequality (2.13) has been proved by Pachpatte [20].

REMARK 2.7. For the case p(t)=gq(t)=r(t)=1, 1<i<n—1 the constants Cj,
1<j<5, we rename, C¥, 1 <j<5. The constant CT can be computed and appears as

. ( p )pn/p 1 < p— 1 )Pk(ﬂ‘ )/p
Ct= u
o\t (n—k—1)0 \ pin—k)—1

pP—p (o=pn)lp
><< [ ( k) l]n ( )> (.L-__a)[ﬂk(n—k)+1]—(pk+p")/p .
plon—K)+1]—(pr+pa
The constants C¥, j=2, 4, 5 corresponding to the limiting cases considered in Remarks
J

2.4 and 2.5 can be obtained from C¥. However, C% does not exist. Thus, in particular
when p.p,>0, p=p,+p,=1 the inequality (2.13) reduces to

(2.27) f | D®x(t) 7| DDx(t) |Prdt < A, _, f | DOx(t) [P+ Prd

where A’n—k__—)'n—k(pk, Pns pk+pn)=cl(1’ 15 {1}’ Pis Pno pk+pn) iS giVCn by

(n—k)1—v)

Pr(1—v)
n—k—v ) (n=k)) ™ =<0 v=(p,+p,) " .

(2.28) 2= p:"”<

For k=0 the cases p,=p,=1; p,+p,>1 and p,+p,=1 or (2.27) have been separately
obtained earlier in [7].

REMARK 2.8. Let the conditions of Theorem 2.1 with k=0 be satisfied. Further,
let /I>1, m>0, 7,20, 0<i<n—1 with Z;‘;Ol 7;=1. Then, in view of the elementary
inequality

n—1 n—1 n—1 1/l
(2.29) [ax< ) rkak£< rka§‘> , (@,>0,0<k<n-—1)
it follows that

T n— 1 n— T
(2.30) j Q(t)< Hl lDi"’x(t)lt"> | D{Px(t)|"dt < Zl T | 9@)| DPx(e)['| D" x(t) "dt .
« k=0 k=0 o

Thus, if we rename C,(p, q, {r;}, I, m,1+m) as A*_, (it depends on k as well), then a
combination of (2.13) and (2.30) gives the inequality
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T n—1 1 n—1 T
(2.31) f q(t)( I11D®x() |’k> | DPx(t) |"dt < l:‘-krkf p)| DIx(t) [ ™mdt .

. k=0 k=0 ,
For p(t)=q(t)=r;(t)=1,1<i<n—1itisclear that A}_, = A4,_ (L, m, [+ m). This particular
case of (2.31) has been proved directly by Yang [28].

REMARK 2.9. In addition to the hypotheses in Remark 2.8 let p(t)=¢(t), and
assume that ¢(¢) is non-increasing on [a,t]. Then, it is easy to see that
Ciq, g, {r}, Lm 1+m<C,(1,1,{r;}, l,m I+m)=A}* (say). Thus, in this case the
following inequality holds

T n—1 1 n—1 T
(2.32) f q(t)< I1 IDi"’X(t)I"‘> | DPx(t) Imdt < Y, Ax*, J q(t)| DPx(t) " ™dt .

,,, k=0 k=0 «
As in Remark 2.8 we note that for r(t)=1, 1<i<n—1, A}* =4,_(, m, |+ m). This
particular case of (2.32) has been obtained directly by Cheung [6].

REMARK 2.10. Once again in addition to the hypotheses in Remark 2.8 let
pt)=gq(t), and assume that 0<{,<q(t)<{,, te[a,7]. Then, it follows that
Ci(q, g, {ri}, L m, 1+m)<({,/C)"*™A** . Thus, in this case the inequality (2.32) with
the right side multiplied by (¢,/¢,)/**™ holds. The case r;(t)=1, 1 <i<n—1 of this new
inequality has been proved directly by Cheung [6].

Now let the hypotheses of Theorem 2.1 with k=0 be satisfied. Further, let p,,
0<k<n-—1, be non-negative numbers such that a=Z:;(1) >0, and (6 +p,)/p,) >0 so
that (y(«)) *#»/Pn=0. Then, from (2.5) and (2.8) we have

(2.33) q(t) nl:[I | DPx(t) 17| DPx(t) |
k=0

n—1

S q(eX p(t))_""/”[ [1 Py~ 1””](y(t Ny )y

k=0

In (2.33) the < holds if p>1 and > holds iifp<0 or 0<p<1. Now, integrating (2.33)
over [a, ] and applying Holder’s inequality with indices p/p, and p/(p — p,), we obtain

239 JIQ(t) ﬁ |D£k)X(t)|pkdt$C6[Jtp(t)|Dﬁn)x(t)lpdl](”p")/p
« k=0 i

or
' . . (@+pn)lp

(2.35) J‘ q(t) l—[ | D®x(t) |Pxdt > CG[J @)l D:n)x(t)lpdtil ,
« k=0 .

where
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pPnlp
(2.36) Co=Ce(p: 4> {1}, {p,-},p)=<a i”p )

T n—1 (p—pn)lp
X [J (qp(t)p—pn(t))l/(p—pn) H (Pk(t))Pk(P‘l)/(P—ﬂn)dl] .
« k=0

Thus, using the notation
OxX= j g0) 1 1 D®x(t) [P-dt ,
@ k=0

T n—1
FkQ =J (qp(t)p—pn(t))ll(p—pn) H (Pk(t))ﬂk(p ~Dile—pn) gy ,
a k=0

we find that the inequality (2.34) holds if

{p>l,o—>0,0<p,,<p, and each P,(t) }

(2.37) i _
exists for te[a, 7], PX <00, P,Q < 0;

and (2.35) holds under any of the following conditions

2.38) {a>0,0<p<min(p,,, 1), orp,,<0<p<l,0<a<——p,,}
' and each P,(t) exists for te[a, 7], P,O <00, QX < o0;

(2.39) {0‘>0,p<0<p,,,0rp,,<p<0,0<6<—pnandeach}
' P,(t) exists for te[a, 1], P,Q <00, X< 0.

We summarize the above result in the following:

THEOREM 2.2. Assume that the conditions of Theorem 2.1 with k=0 are satisfied.
Further, assume that p,, 0 <k <n—1, are non-negative numbers such that ¢ = Z:;épk >0.
Then, the inequality (2.34) holds provided (2.37) holds, and (2.35) holds under any one of
the conditions (2.38), (2.39). Further, when (2.37) holds the inequality (2.34) holds even
when sgn D™x(t) is not constant.

ReEMARK 2.11. For the case p(t)=¢q(t)=p,=1, 0<k<n, p=2 a weaker form of
the inequality (2.34) has been proved by Pachpatte [20].

REMARK 2.12. The closest to our inequality (2.34) is a result recently obtained
by Li [13] for the case r{t)=1, 1<i<n—1, 0<p,<p=0+p,, p>1. Indeed, in this
case we have

(2.40) f g [T 1D%x(0) Prar < C, f D) DOx(e) oo
a k=0 a

where
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p >ﬂn/(a +on) 1
n

(2.41) C,=Ce(p, g, {1}, {pi},6+pn)=<a+pn a

Q

! nd 5/(a + pn)
* [j (g(e))* Pl p(e)) =l T (PEE)P et o™ "/”dt} ,
« k=0

(2_42) P;f(t)='[t(t—s)("_"_”(""'p")/(‘””"'”(p(s))_1/("+”"_”ds
and
n—1
Q=[] [(n—k—1)17.
k=0

REMARK 2.13. Once again let r,(t)=1, 1<i<n—1, 0<p,<p=0c+p,, p>1 and
p(t)=q(t), where ¢(t) is non-increasing on [a, t]. Then, it follows that

Cs=Ce(a. q. {1}, {p:}, p),  p=0+p,

Pnlp n—1 _ (p=1)/p7)PK
S ===
p k=0l (n—k—1)! \ p(n—k)—1
T (p—pn)lp
X [J ([_a)zi';éﬂk[p("—k)—1]/(p~ﬂ,,)dt:|
< Pn )m./p( pP—p, >(p—pn)/p
\p Py pln—k)

n—1 1 p_l (p—1)/p B n—k:lpk
x,‘ljol:(n—k—l)! (P(n—k)—1> (t—a) .

Further, in view of (2.29), we have

n—1 n—1

Y P n—k)> [ (n—kppee
k=0 0O k=0
and hence
1 n—1 " 1/p _ (p—1)/p Pk
(2.43) css—(pm"/"n[(" 9 ( Pl ) (r—a)"'*]
p k=0l (n—k—1! \ p(n—k)—1
n—1 1 (n—k)(l—v1)>“'”" _ ]Pk
—_ PnVi Ak
VP kl:lo[(n—k)!< n—k—v, (r—a)
=C9, V1=r_1.

Therefore, the following inequality holds
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(2.44) f g0 T 1D®x(0) Prai < C, f )] Dx(e) |7 e
k=0

a a

This inequality not only extends the range of p,, 0<k <n, it is also sharper than (2.32)
for the case ri(t)=1,1<i<n—1. To show this it suffices to note that for p,=/t,,
0<k<n—1,Yi_ct.=1, p,=m, we have o=1, v; =(I+m)” ' =¢, and thus (2.29) gives

_n—l (émmé)l/l ((n—k)(l—é))“‘é) 3 n—k:|lrk
C"_kl]o[ (n—k)! \ n—k—¢ (=)

n—1 n—1
=[] A& ml+m< Y A, (L, m, I +m),.
k=0 k=0

REMARK 2.14. Let ri(t)=1, 1<i<n—1, p>1,06>0, 0<p,<p and let p(t)=¢(t),
where ¢(t) satisfies 0<{, <q(t)<{,, te[a, T]. Then, as earlier it follows that

Ci0=C69, 9, {1}’ {Pi}, p)

pnlp ] _ n—1 —1 ar(p—1)/p
S( Pn > _Cl—a/pg(za PP n( P )

o+p, Q k=0 \ p(n—k)—1
><< P Pn >(p_p")/p(1-_a)[pzz;épk(n—ka—a—p,.]/p
n—1
PYi—oPln—k)+p—a—p,
=C,y .-

Therefore, the following inequality holds

T n T (o +pn)lp
(2.45) I q@) 1] |D""x(t)|"“dtsC“[J q(t)lD"”x(t)l”a’t] .
a k=0 a
When p=0+p, the above inequality reduces to
T n alp (°t
(2.46) J q@) [] ID""x(t)Ip"dtng(g—Z) j q(t)| D™x(t)|°*Pndr .
a k=0 1 a

Asin Remark 2.13 we note that this inequality not only extends the range of p,, 0<k <n,
it is also sharper than the corresponding result of Cheung [6] (cf. Remark 2.10).
For p,=1,0<k<n, p=2 and ¢(t)=1 the inequality (2.45) reduces to

T on T (n+1)/2
(2.47) I |D("’x(t)|dt$C12[ f ID‘"’x(t)lzdt] ,

2 k=0

where C,, is given by

248) Gy, (=™ 0 ( (n2+ 1)n+ 1) >1/2 |

T2+ Dt D[ n—k—1)! " s2n—2k—1)
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This result has been directly proved by Pachpatte [18].

Next, from (2.4) we note that g,,,(t)=r,,(t)gi(t), 0<k<n—2 and g (x)=0,
0<k<n—1. We define g,(t)=r,(t)g,_1(t), where r,(t)=1. Thus, if (o, + Px+1)/Pr+1)>0,
in view of Hoélder’s inequality with indices 1/p,,, and 1/(1—p;,), it follows that

¢4 f 9()| DIPx() | DI+ Dx(e) [P+ i

_f e (O G OPAP

1-pr+1 T Pr+1
g(f () (e)V ~ pkn)d,) (J (gk(t))"""”‘“g;(t)dt>

— Pr+1 fent ' Pr+1 1/(1 = prc+1) P Kkt Pr+1

= (q(®)rf5'(2) dr (90 .
Prt P+t «

In (2.49) the inequality < holds if (1/p,+,)>1, and > holds if (1/p,+,)<0, or

<(1/pr+1)<l.
From Hoélder’s inequality with indices p and p/(1 —p), we also have

(2.50) g()SPY” "“’[ f tp(t)l D™x(t) |Pdth ,

where < holds if p>1 and > holds if p<0, or 0<p<1.
Hence, either
rt ek +pr+1)p

2.51) | )| DPx(t) ™| D Vx(t) |+ 1dt < Cy5 f p(t)| DPx(t) |Pdt

Ja

-

or

rr [ [t “pr+ prc+ 1)p
(2.52) q(t)| DEx(t) || DE* Vx(t) |Px+1dt > Cy 4 f p(t)| Dx(t) |°dt
LJa _

Ja

holds, where the constant C;3=C;(p, q, {r:}, Pi> Pr+1> P) 1S

1-pi+
(2.53) C13_< Pr+1 > <J (q(t r£k+ ‘(t )1/(1 Pk+l)dt> P 1P}‘(P‘1)(Pk+9k+l)]/l’ .
PrtPr+1

Thus, using the notation

Q f(qt)rpk+1t))1/(1 ﬂk+l)dt

0x= f 4(0)l DO P DI () P
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we find that the inequality (2.51) holds if

{P>1>Pk+1>0a P+t Pr+1>0, and}

(2.54)
P, <00, Q< o00, PX<00,

and (2.52) holds under any of the following conditions

(2.55) {p>1’pk+1<oapk+l’k+1<0,and}
| P,<0, Q<00, 0X<a0;

(2.56) {P<0,0r0<p<1,pk+pk+1>0’pk+1>1’}
. ande<00aQ<OO,Q~X<oo.

We summarize the above consideration in the following:

THEOREM 2.3. Assume that the conditions of Theorem 2.1 are satisfied. Then, the
inequality (2.51) holds provided (2.54) holds, and (2.52) holds under any one of the conditions
(2.55), (2.56). Further, when sgn D™x(t) is not constant the inequality (2.51) remains valid
provided in addition to (2.54), p,>0; and the inequality (2.52) holds provided (2.55) holds
with p, <0.

REMARK 2.15. Following the methods of Remarks 2.3-2.5 the limiting cases in
the inequalities (2.34), (2.35), (2.51) and (2.52) can be discussed by replacing appropriate
quantities by their ess.sup or ess.inf.

REMARK 2.16. For py=p,.,=pt)=qt)=r;(t)=1, 1<i<n—1 the inequality
(2.51) reduces to

T T 2/p
(2.57) j |D("’x(t)D‘“1’x(t)|dt£C14[ J [D""x(t)l"dt:| ,

where the constant C,,=C,3(1, 1, {1}, 1, 1, p) is
(T_a)2n~2k—2/p

- 2A(n—k—1))*[(n—k—1)p'+1]**

(2.58) Cia s p'=pllp—1).

The inequality (2.57) is a recent contribution of Fink [9].

ReEMARk 2.17. The only overlapping case of Theorems 2.1 and 2.3 is when
k=n—1. Further, in this case both the inequalities (2.13) and (2.51) with p,=
Per1=pt)=qt)=rt)=1, 1<i<n—1 u(t)=x""1(t) reduce to (1.1).

REMARK 2.18. Letr{t)>0,i=1,..., n—1and x(t) be sufficiently smooth functions
on [z, B] so that for x(t) the r-derivatives exist. If D@x()=0, 0<k<i<n—1 then it
follows that

B
(2.59) D®x(t)=(—1)y"* f G, _(t, )D™x(s)ds , 0<k<n—1

t
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where

G..-k(t,S)=f _ s ez J ey . 0<k<n-—2
t th-2

Fert(tes1) Joers Ter2(tes2) Fo—1(tn-1)
and
G, s)=1.

We note that when r;(t)=1, i=1,...,n—1 for each 0<k<n the r-derivative D®
is simply the ordinary derivative D®and G, _,(t, s)=(s— )" * Y n—k—1)!,0<k<n—1.
Thus, in this case (2.59) reduces to the known relation

_])n k

(k)
(2.60) DWx(t)= kD

J‘ (s—1)" % 1 D"(5)ds .

Let on [1, f], DPx(t), 0<i<n—1 be continuous, D"~ Vx(t) absolutely continuous,
and D™x(t) does not change sign. Then, in view of G,_,(t, s)>0, 1<t <s<  the relation
(2.59) implies that

B
(2.61) |D£")x(t)|=f G,_(t, )| D™x(s)|ds=hy(t) , 0<k<n—1.
t

Further, let the functions p(t), ¢(t) be non-negative and measurable on [z, f], and
0<k<n—1 be a fixed integer. Then, from (2.61) it is clear that all the above results
remain valid provided in the hypotheses the interval [a, ], the integral j;, and the term
H,_.(t,s) are respectively replaced by [z, ], jf , and G, _,(t, s). In particular, with such
a replacement the inequalities (2.13), (2.14), (2.34), (2.35), (2.51) and (2.52) take the
following form

8 T (f (ox+ PP
(2.31) j q(t)IDi"’x(t)[”klD£"’x(t)|”"dtsC1[J‘ P(t)lDf"’x(t)l"dl] ;

T

(oK + pn)/p
(t)] Dx(t) I”dt} ,

T

g 8
(2.14) J q(t)lDi"’X(t)I”"lDi"’X(t)I"”dIZQ[f p

where
_ p Pnlp B (p = pn)lp
2.62) C, :( n ) [f (qp(t)p_Pn(t))1/(P_Pn)(Qk(t))Pk(P_ 1)/(p—on)dt:|
pk + pn T
and

8
(2.63) Qk(t)=j (Gr-ult, )p~ ()M~ Vs ;
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B n e (o +pn)lp
(2.34y f q@) T1 IDi"’x(t)I”"dtSCG[ J p(t)IDﬁ"’x(t)I"dt] ;

: k=0 :

B n _ B (o +pn)lp
(2.35y J q@) [T 1 DEx(r) |Pdt = C6U p(t)lDi”’X(t)I"dt] ,

T k=0 T
where

_ Pnlp (p—pn)lp
(2.64) C6—< " ) [ J (g°(t)p~Pn(r))Me—ew H (0) el P"’dt] :
0T Pn

B (pr+prc+1)/p
(2.51) f lI(t)ID“"X(t)I""ID“‘“’X(t)l’"‘“dKCls[J P(t)lDf"’X(t)lpdl] ;

(prc+ PK+1)/P
(2.52) f g(t)| D®x(t) [7<| D¥* Dx(r) I""“dt>C13|jf P(t)IDf"’X(t)I"dt]
where

_ p Pr+1 B 1=pr+1
(2.65) C13=< k+1 ) <J (q(t)rflifll(t))l/(l_pk-* "dt> Q}((P—l)(l’k+0k+l)]/ﬂ
Prt P+ .
and Qi (7)=0Q.
Finally, as in Remark 2.1 and Theorems 2.2 and 2.3 we note that in the inequalities
(2.13), (2.14), (2.34)', (2.35), (2.51) and (2.52)' we can separate the cases which do not
require the condition that sgn D™x(t) is constant.

REMARK 2.19. Let the functions p(t), g(t) be non-negative and measurable on the
interval [a, f], and the numbers p,, p,, p satisfy the condition (2.16). Let r,(t)>0,
i=1,...,n—1 and x(t) be sufficiently smooth functions on [«, f] so that for x(t) the
r-derivatives exist. Let on [, ], D¥x(t), 0 <i<n— 1 be continuous, D"~ Vx(t) absolutely
continuous, and D™x(t) does not change sign. Further, let D¥x(a)=D¥x()=0,
0<k<i<n—1 (n>1). Then, if we denote C,=C,(7r) and C, =C,(z), the inequalities
(2.13) and (2.13)' can be added to obtain

8
(2.66) J q(t)| Dx(t) 1°<| D"x(t) |°dt

T (prt+ pn)lp B (pic+ pn)lp
< Cl(ro)<[ J P(t)IDﬁ”’x(t)I"dt] +U p(t)IDi"’x(t)l”dt] )

where 1, is the unique solution of the equation C,(t)=C,(1).
In (2.66) we can use the well-known inequalities

(2.67) a*+b*<(a+b*<2* Ya*+bY, a,b>0, i>1;
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(2.68) 242" Ya*+ b <(a+b)Y<a*+b*, a,b>0, 0<i<l;
(2.69) a*+b*>2'"Ha+b)*, a,b>0, 1<0,
to obtain

(2.70) fﬂ q(t)| D x(t)[”<| DM x(t) [Prdt < LCI(TO)<Jﬂp(t)| D™x(t) Ipdt>(pk+p")/p )

a a

where L=1 if (o, +p,)/p)=1, and L=2° =P if 0 <((p,+p,)/p) < 1.
Similarly, if p,, p,, p satisfy any one of the conditions (2.17)—(2.19), then the
inequalities (2.14) and (2.14)' can be added to obtain

4

2.71) f " 0] DExt0) P DY) lp"dtzJC1(To)<JﬂP(t)| Dx(t) Wt)(,,kw/,, ;

where J=1if 0<((px+p,)/p)<1, and J=2CP=20F if (p, + p,)/p) <O, or (px+p,)/p)=1.

We also note that the inequalities (2.34), (2.34), (2.35), (2.35); (2.51), (2.51)', and
(2.52), (2.52) can be added to obtain inequalities analogous to (2.70) and (2.71). This
leads to several new inequalities as well, and some of these extend and improve the
corresponding known results of Cheung [6], Das [7] and Yang [28].

3. Inequalities involving two functions. Let the functions p(t), q(t), r;(t)>0,
i=1,...,n—1 and x=x,(t) and x=x,(t) satisfy the conditions of Theorem 2.1 except
that D™x,(t) and D™x,(t) need not be of fixed sign. Then, in view of Remark 2.1 it is
clear that for i=1,2 and 0<k<n—1

(3.1 | DPx;(t)] SJ H,_(t, $)ID"x;(s) |ds =g;u(t) -

Hence, as earlier from Holder’s inequality with indices p>1 and p/(p—1), we have
(3.2) | DPx;(t) | <[Pt)]®~ PLyi(e)]",

where P,(t) is the same as in (2.6), and

(3.3) ylt)= J p(s)| DPx(s)|Pds
so that
(34 yit)=pt)| DPx, (1),  y{x)=0.

Thus, for k<p<v<n-—1, but fixed, and p,, p,>0 it follows that
(3.5)  q(t)| DWx,(1)| | DPMx,(t) 7] DPx,(2) P < f () w1 ()PP y ()P (y 1 ()

where
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(3.6) S(@)=q()(P[(£)"?~ V(P (1))~ Do p(e)) =" .
Next, we integrate (3.5) over [a, t], and apply Hélder’s inequality with indices (p/p,) > 1
and p/(p—p,), to obtain

3.7 f qe)| DPx,(t) 1°4] DPx,(t) [P DIPxy (t) [Pt

a

T pnlp
SKO[I (y1(t))"“/"“(yz(t))”””’”y’l(t)dt] ,
where

T (p = pn)lp
(38) KO =KO( D, 4, {ri}’ p,u Pvs Pns p)=|:J‘ (f(t))p/(p—p")dt:l .

Similarly, we find that

(3.9 f t q(t)| DMxy(8)] 77| DPxy(t) [P+ DPxy(t) |Pdit

a

T pnlp
<K, [J (yl(t))””/”"(yz(t))"“/”"y'z(t)dt} :

a

From (3.7) and (3.9) we shall obtain a number of interesting results. For this we will
repeatedly use the inequalities (2.67) and (2.68).
When p,=0 an addition of (3.7) and (3.9) in view of (2.67) and (2.68) gives

(3.10) J‘ q()LI DPx,(2) [P DPx(8) [P+ | D¥x,(2) |P#] DYV x,(t) 1P ]dlt

a

On pnlp
<Ko(P a4 {ri}> Pu 0, Pps p)( - ) [(py(0))ertonle 4 (y,(z))entomie]

u T Pn

T (ot pn)lp
SK1U POLIDIx,(t) P+ DMxy(t) I"]dt} ,

a

where

pn Pnlp
(31]) K1=K1(p5 q, {ri}5 pu’ Pn> p)=01< )
Put Pu

T (0 —pn)lp
| [ @op e ep e e

and



584 R. P. AGARWAL

21=Wputpn)lp) <
(3.12) 0,=01(p,r P p)={ R
1, PutpPuzp .
We summarize this case in the following:
THEOREM 3.1. Assume that

(i) p,=20, p,>0, p>1, p>p, are given numbers,

(ii) p(t), q(t) are non-negative and measurable functions on [a, 1],

(iii) on [a, 1] functions r(t)>0, i=1,...,n—1 and x(t), x,(t) are sufficiently
smooth so that the r-derivatives of x,(t), x,(t) exist, DPx,(t), DPx,(t), 0<i<n—2 are
continuous, D" Vx,(t), D" Vx,(t) are absolutely continuous, and the integrals
[ POIDOx,(0) P, [ p(0)] DPx,(0) Pt exist,

(iv) for 0<u<n—1 (n>1), but fixed, D9x,(a)=DPx,()=0, u<i<n—1.

Then, the inequality (3.10) holds.

When p,=0 an addition of (3.7) and (3.9) in view of (2.67) provides
(3.13) J q@)lI DYx(t)] 7] DPx1(8) [P+ DPx,y (2) [P DPxy(t) 171t

<2@=eleK (p, g, {r:}, 0, py, P PP,

where

I =J {(22(0)"Pmy () + (1 @)yt }dr .

Let
L, Py Py
02 = 92(/’\:’ pn): { 21 —(pvlpw) )

Then, from (2.67) and (2.68) we have

I= f IO+ ()PP (0 + ')
- f [P Pyh(6) + (o) oy (0)] i
sezf(yl(t)+y2(t»ﬂv/p"(y1(r)+y2<t))'dz

_ Pn [(y4(2))®~+oleon 4 (3, (z))ev +Pmlen]

v pn
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= P ;-):p [02(p1(7) +y2(2)) O~ T Pm/on— (p ()0 FPmlom— (,(x)) v +omlon]
0 2Pv/Pn_l
(3~14) S(Z_ﬁp-}-—pﬂ [(yl(‘[))(pv+pn)//’n+(y2(1-))(l7v+pn)/pn]
0
(3.15) < 3Pn [y,(x)+ y,(x)] v enien
vt Pn
where
2pv/pn__ 1 >
(3.16) 0,=0.(p., p..)={ . PP
L, [

On combining (3.13) and (3.15), we obtain the inequality

(3.17) J q(t)[ Dx,(t) 17| D[Py (1) 4| Dxy (01| D x,(t)] *]dt

a

T (pv+pn)lp
ﬁKz[f PO DMxy(t) [P+ DPx,y(t) l"]dt] ,

a

where

(.13) Ky =Ky(p, 4, {ri}s Prs P p)zz(p_p"vﬂ(

T (p = pn)ip
X [ j (qﬂ(t)p (¢ ))1 Ip— Pn)(Pv(t))pv(P —Dip— pn)dt] i

Thus, we have proved the following:

THEOREM 3.2. Assume that in Theorem 3.1 the integer u and the number p, are
replaced by v and p,, respectively. Then, the inequality (3.17) holds.

REMARK 3.1. For the case p(t)=q(t)=p,=p,=1, p=2 a weaker form of the
inequality (3.17) has been proved by Pachpatte [20].

Theorems 3.1 and 3.2 can be combined. For this, we use the arithmetic-geometric
means inequality and (2.67) in the right side of (3.7), to obtain

(3.19) f q(0)| Dxy(8) P Dxy(t) 17| DPx o (t) 1Pt

a

o Pu Gutol Py Gut oo |y ol
<K, (p1(e))enrer p""'T(J’z(t))p“ pulien )y (t)dt

a u v uT Py
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K [< pup )Pn/ﬂ Out oyt pul]
<K, n (y (‘1:)) putpvtpn)lp
(PutoNpu+py+p,) '

Py orle ! (Put pv)ony, orle
+ (po(2)) ™ ovomy (2)dt ,
pu+pv a

and similarly, from (3.9) we find

(3:20) J q(t)| Dx(t) 17| DPx,(2) P+ D xy(t) [Prdt

Pnlp
< K0|:< PuPn > (yz(r))(Pu+Pv+Pn)/P
(Putp NP, +py+ps)

o Y[ B+ D) om ool
+ (y1(2))Pm "y5(t)dt .
pu + Py a

An addition of (3.19) and (3.20) in view of (2.67) gives

(3.21) S =J gL Dx, () P DPx,(t) 17| DYPxy (£) 1P

a

+[DPxy(6) 17| DPx,(t) P4 DPx,(t) [P]dt

PP pnlp
<K, [ < — > ((py(x))Putovtomie
Put oo+ p,+py)

nl
+ (yZ(T))(Pu +pv+ Pn)/ﬂ) + 20— pn)/p< Py >p ’
Put Py

T pnlp
X(f {(yz(t))“’“”“””"y&(t)+(yl(t))“"‘+"“"""y'z(t)}dt> :'

Now following as in (3.10) and (3.17), we get

K (Putpvtpn)lp
(3.22) S<K, U PO DPx1(t) 1P+ DPx,(t) I"]dt} s
where K;=KoM(p),
( p )p,,/,, 109, 426 =PIR(p O )Pri]
323 M = n Pn/p +2 P —Pn)lp, v Pn/pP
(3.23) o(p) Grt PPt PrE P [o'*0, (0,05)

and 04=91(pu+pva Pns P), 05 =93(pu+pva pn)
Thus, a result which unifies Theorems 3.1 and 3.2 is the following:

THEOREM 3.3. Assume that 0<u<v<n—1 (n>1) and p,, p,20, p,>0, p>1,
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p>p, are given numbers. Further, assume that the functions p(t), q(t), x.(t), x,(¢t), r;(t),
1<i<n—1 are as in Theorem 3.1. Then, the inequality (3.22) holds.

REMARK 3.2.  From the arithmetic-geometric means inequality we note that

PuT Py

s<— P fq(t)[lDi"’xl(t)I”“*"”IDﬁ"’xl(t)l""+lDi"’Xz(t)I”“*"“IDi"’XZ(t)I""]dt

a

+- P J‘q(t)[IDﬁv’%(t)I”““’”lDi"’xl(t)l”"+|D‘,”’xl(t)l"””"lDi"’Xz(t)l""]dt-
pu Pv Ja

Thus, from Theorems 3.1 and 3.2 it follows that in the inequality (3.22) the constant
K, can be replaced by K,, where

Py

pP
K4=)”— Kl(p, q, {ri}5 pu+pv, pm P)+ KZ(ps q9 {ri}9 pu—'—pv’ pm p) .

Putpy Putpy

From the above considerations (cf. (3.7) with p,=y>0, p,=y+n, p,=n>0, and
a similar inequality), and (2.67), we have

Sy =J q(t)| DPx,()Dx,(t) 'T) Dx(t)D P4 (1) |"

a

+1DPx,(8)DPx,(t) ["]dl

. n/p
szw-""mo[ f (yl(t)yz(t))yf"(yzmya(r)+y1(r)y'2(t»dz]

n/p

(3.24) =2<P—"”"Ko[*—” (yl(r)yz(rw*"""]

y+n

n nie /1 \20+mie
< 2(p —n)/pKo <_) <_> [yl(.,:) +y2(r)]2(y +n)/p .

Y+ 2

Thus, the following inequality holds
T 2(ytn)/p
(3.25) Sy SKS[ J p(t)[lDi"’xl(t)l”+ID‘,"’xz(t)I"]dt] ,
where
n n/p
(326) K5=2(p-2y—3'])/p T) KO(pa q, {ri}’ % ’Y+’1, 17, p)‘
yrn

We present the above case in the following:

THEOREM 3.4. Assume that 0<u<v<n—1(n=1)andy=>0,n>0, p>1, p>n are
given numbers. Further, assume that the functions p(t), q(t), x,(t), x,(t), r;(t), 1 <i<n—1
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are as in Theorem 3.1. Then, the inequality (3.25) holds.

All the above results require that p,>0. To prove a result without such a
requirement, from (3.1) we note that g, ;. (t)=r,4 ((t)g;.(t), 0<k<n—2 and g, ;(a) =0,
0<k<n—1. We define g, ,(t)=r,(t)g,-1(t), where r,(t)=1. Thus, if p, >0, 0<p, <1,
in view of Holder’s inequality with indices 1/p, ., and 1/(1 —p ), it follows that

(3:27) fq(t)|Di")xl(t)v'wDi“hxz(t)th

Sj q(t)(rk+ 1(”)"’"+ 1(gl,k(t))"k(g ’Z'k(t))mu 1t

T 1—pr+1 T Pk+1
S(J (q(t)rf’i*l‘(t))”““”"“’dt> (J (gl,k(t))"""””‘g’z,k(t)dt> .
Similarly, we find that

(3.28) f 4(0)] DOx0)] | DE* O, o) e

1=pr+1 T Pl +1
( f (q(t)r"k“t))m-pk“’dz) (f (gz,k(t»"k/"“*ga,,,(r)dz> .

Now an addition of (3.27) and (3.28) in view of (2.67) gives

53=f qO)[| Dxy(£)] 7| DI Doxyt) Pt + | DPxy(t) P4 DT Dy (£) 1P+t

1-pr+1
( f(q(t)rpk+1(t )1/(1 Pk+1)dt>

x ( J {(gl,k(t»ﬂ*/ﬂ“lg;,k(t)+(gz,k(t»"*/ﬂ*+lga,k(r)}dz> o

Thus, from (3.14) with p,=p,, p,=pr+, and (2.68) it follows that

S3 SK6 [(gl k(‘c))(l’k + P+ 1)/Pr+ 1 +(g2 k(t))(ﬂk +prc + 1)/Pk+1]Pk+|

(3.29) < K[(g: 0P o5 4 (g 21T
where
1=prr1 06Pk+1 Pk +1
(330) K6_ (q(t)rpk+l t))l/(l pic+ 1) YsPr+1
Prt Pr+1

and 0¢="03(py, Pi+1)-
Since from (3.1) and (3.2) for p>1 we have
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(3.31) 9l <[P~ Py (9],  i=1,2
from (3.29) and (3.31), we obtain

(3.32) Sy < Ky [(p4(x) Pt oxe e (po(7))extoxslo] |
where
(3.33) K= K (Py(1))®x*ox+ 0~ o

Finally, an application of (2.67) and (2.68) in (3.32) gives the inequality

T (pr+ prc+ 1)/ P
(3.34) SsﬁKs[j PO DPxy(¢) |”+|D£"’x2(t)|P]dt] ,

a

where Kg=K;0,(ps, pr+ 1> P)-
Thus, we have established the following:

THEOREM 3.5. Assume that 0<k<n—1 (n>1) and p, >0, 0<p,,,<1, p>1 are
given numbers. Further, assume that p(t), q(t), x,(t), x,(t), ri(t), 1<i<n—1 are as in
Theorem 3.1. Then, the inequality (3.34) holds.

4. Some applications. The inequalities obtained in Sections 2 and 3 will be used
here to study some qualitative properties of solutions of ordinary differential equations
involving r-derivatives.

Uniqueness of initial value problems: Consider the differential equation

4.1 DPu=f(t, DPu, ..., D" Vu)
together with the initial conditions
4.2) DPy(a)=w; , 0<i<n-—1

where the function f is continuous on [a, 7] x R". As an application of the inequality
(2.13) we shall show that the problem (4.1), (4.2) has at most one solution on [a, 7].
For this, we assume that the function f satisfies the Lipschitz condition on [, T] x R",
i.e., for all (t,uq, ..., u,_4), (t, 0o, ..., 4,_1)€[a, T] X R",

(4.3) | f(t, oy -, Uy 1) — [t o, - - ., a,,_l)|s:;: a(t)| w,— ity |,

where the functions ¢,(t)>0, 0<k<n—1 are continuous on [a, t]. If u(¢t) and #(t) are
two solutions of (4.1), (4.2) then the function x(t) = u(t) — #(t) is a solution of the problem
(4.4 Dx(t)= f(t, DOult), ..., D" Vu(t))— f(t, Du(t), ..., D&~ Vi(t))

4.5) DYx(x)=0, 0<i<n—1.

Multiplying (4.4) by D™x(t), using (4.3), and then integrating the resulting inequality
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from o« to z, we obtain
t n—1 t

(4.6) J | DPx(s)Pds < Y f gi(s) DPx(s) || D x(s) |ds -
a k=0Jq

For each term on the right side of (4.6) we apply the inequality (2.13) with p(¢t)=1,
=1, p,=1, p=2, to get

4.7) J t | DPx(s) |*ds < < nil ¢ :’!‘(t)> Jr | DPx(s)|*ds ,
k=0

a a

where C¥(t)=Ci(1, g4, {r;}, 1, 1,2)|,=,. Since C}o)=0, 0<k<n—1 there exists a
point 7, >a such that max, _, _, (7;_ o C¥t)<1. Thus, (4.7) implies that D"x(t)=0,
te[a, t;] almost everywhere. However, this in view of (4.5) leads to D®x(t)=0,
0<i<n—1, te[a, t,]. If t; <1 we can repeat the above arguments to obtain x(¢)=0,
te[a, t]. Hence, it follows that u(t)=1u(t), te[o, t].

The above uniqueness criterion is not available in the collection [2].

Next, we shall consider the following system of differential equations

(4.8) DPu;=fi(t, DPuy, ..., D" Vuy, Duy, ..., D" Vu,),  j=1,2
together with the initial conditions
4.9) DPuj)=w;;, j=1,2, 0<i<n-—1

where the functions f; are continuous on [a, 7] X R"x R" and satisfy the Lipschitz
condition

(410) Ifj(t, ul,O’ ] ul,n—la u2,09 ] uz,n—l)_fj(t9 al,Oa R ﬁl,n—b 722,0’ AR aZ,n—l)I
n—1
< Z Lg1,j O uy o=ty g |+ G2 4O Uy o — iy 4 |1 -
k=0

If the problem (4.8), (4.9) has two solutions (u,(t), u,(t)), (&,(t), #,(t)) then for the
functions x;(t) =u;(t)—u;(t), j=1, 2 it follows that

n—1
| Df”’xj(t) |2 Skzo [ql,j,k(t)l Dﬁk)xl(t) [l Dﬁ")xj(t) | +q2,j,k(t)| Dﬁk)xz(t) [ Di")xj(t) 1.
Summing these two inequalities, and integrating from o to ¢, we obtain
t
(4.11) j [ Dx,(s) 1>+ DMxy(s)|*1ds

< nil J' GS) LI DPx ()11 D™x(5) |+ DPxy(s) || DM xy(s) [1ds
k=0Jq

n—1 t
+ 2 | gEOIDEx,s) || DPx,(s)] + | DPx,(s) || D™Px,(s) |1ds
k=0 Jq4
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where g,(t)=max,_,_,(q1,1(5), ¢2,2,(5)) and q(t)=max, _ _.(q2,1,5) 91,2,4(5))-
For each 0<k<n—1 in the first summation on the right side of (4.11) we can use

(3.10), whereas in the second summation (3.17), to obtain the inequality
t t
j [ D{xy(s) 1>+ D{Mx5(s)|*]ds < K(t)f [ D{x(s)|* +| D{Mxy(s) [*1ds

where K(t) is a function with the property that K{(x)=0. The above inequality implies
that u,(t) =u,(t), u,(t)=1u,(t), te[a, t]. Hence, the solutions of the problem (4.8), (4.9)
are unique.

Upper bounds on the solutions: Consider the differential equation

4.12) (DPxY = f(t, DVx, ..., DMx)
together with the initial conditions
4.13) D¥x()=0,0<i<n—1, D" w)=w
where the function f is continuous on [a, 7] x R"* !, and satisfies the growth condition
n—1
(4'14) lf(t,x07"',xn)lskz qk(t)lxk',
=0
where again the functions g,(t)>0, 0<k<n—1 are continuous on [a, t]. Let x(t) be a

solution of (4.12), (4.13). Multiplying (4.12) by D™x(t), integrating the resulting equation
from « to ¢, and then using (4.14), we obtain

n—1 [t
(4.15) | DPx(t)|* <|w|*+2 Zof a(s)| D{x(s)|| D{Px(s) |ds .
k= a

As earlier, for each 0<k<n—1 in the summation on the right side of (4.15) we apply
the inequality (2.13) with p(t)=1, p,=1, p,=1, p=2, to get

(4.16) | DOx(e) <] w|2+C**(r>f | DOx(3) s

where C**(1)=23"_ éC,’:‘(t). Thus, in view of Gronwall’s inequality it follows that
4.17) I DPx(t)|*<|w] [1 + C**(t)fexp(f C**(sl)dsl)ds]m =¢(t) .

This estimate we can use in the right side of (2.20), to find

(4.18) |D£"’x(t)lthH,,_k(t, s)p(s)ds O0<k<n-—1.

Hence, as an application of the inequality (2.13) we obtain upper bounds on all the
r-derivatives of the solutions of (4.12), (4.13).
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If instead of (4.14) the function f satisfies the growth condition
| f(2, X0s -+ s X) | S Q)] X0 7% X g o 1P4 1, 0<k<n—1 (but fixed)

where the function ¢(t) >0 is continuous on [a, 7], then for any solution of (4.12), (4.13)
we have

4.19) | D;(—n)x(t) [<|o| +j q(s)| Dﬁk)x(s) [Px| Dg’” l)x(s) P+ ids

a

In the right side of (4.19) we apply the inequality (2.51) with p(t)=1, p=p, + p; + 1, to get
t
(4.20) I D™x(t)|<|w|+C(t) f | D®x(s) [+ Pr+1ds

where C(t)=Cy5(1, ¢, {ri}s Pis Prs1s pk+pk+1)!t=1'

From (4.20) an upper bound on | D™x(t)| can be obtained rather easily. Once again
this bound we can use in the right side of (2.20). Thus, this time as an application of
the inequality (2.51) we obtain upper bounds on all the r-derivatives of the solutions
of (4.12), (4.13).

Finally, we remark that the bounds obtained above can be used to study the
asymptotic behavior of the solutions of (4.12), (4.13).
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