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r-DERIVATIVES AND THEIR APPLICATIONS
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Abstract. In this paper we offer very general Opial-type inequalities involving
higher order r-derivatives. From these inequalities we then deduce extended and improved
versions of several recent results. Some applications which dwell upon the importance
of the obtained inequalities are also included.

1. Introduction. OpiaΓs inequality, in its improved form, states that if u(t) is
absolutely continuous on [α, τ] with w(α) = 0, and \τ

a(u\t))2dt <oo, then

(1.1) [\u{t)u\t)\dt<(^- [\u\t))2dt.
J a.

This simple inequality has motivated a large number of research papers giving its
successively simpler proofs, providing various generalizations, and finding discrete
analogs. (See [1], [3] and [16] for an extensive bibliography consisting of 83 articles.)
Among the generalizations, there is a class of inequalities which instead of the first
derivative involves the n-th (n> 1) order derivative of the given function u(t). The first
such result is due to Willett [27], who used this generalization to establish uniqueness
results for the «-th order linear ordinary differential equations. For practical application
purposes Willett's result in recent years has been improved as well as generalized in
several different directions [4]-[10], [13], [17], [18], [20], [23], [28]. In this paper
we shall provide very general Opial-type inequalities involving higher order r-derivatives.
The obtained results are shown to be sharper and more general than several recent
results. We shall also demonstrate the usefulness of our results in the field of ordinary
differential equations involving r-derivatives.

2. Inequalities involving one function. Let — oo<α<τ<β<oo. Further, let
rt (ί)>0, /= 1, . . . , n—\ and x(t) be sufficiently smooth functions on [α, τ]. Then, for
x(t) the r-derivatives are defined as follows
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D(

r

0)x = x

(2.1) ) \ k=l9. . . , Λ - ~

Since the class of operators D^ properly contains disconjugate linear operators
L = D(n) + Yj

n. = 1ai(t)Din~ι\ the theory of ordinary differential equations involving
r-derivatives is of increasing interest, e.g., [11], [12], [21], [22], [24], [25], [26]. To
obtain Opial-type inequalities involving r-derivatives we note that if D(

r

ι)x(cή = 0,
0<k<i<n~\ then on changing the variables several times it follows that

(2.2) D(k)x{t)=\ Hn_k(t,s)D{;)x(s)ds, 0<k<n-l
J a

where

Hn_k(t,s)=\ dtk^ I dtk;2 •••[ Λ'-* , 0<k<n-2

and

It is clear that when r f(ί)=l, /=1,...,«—1 for each 0<k<n the r-derivative
D^ is simply the ordinary derivative D(k) and Hn_k(t, s) = (t-s)n~k~1/(n-k-1)!,
0<k<n— 1. Thus, in this case (2.2) reduces to the well known relation

(2.3) = - 7

1—— ί\t-
{n-k-\)\ Jα

Let on [α, τ], D^x(t), 0<i<n — l be continuous, D^~1]x{t) absolutely continu-
ous, and D(

r

n)x(t) does not change sign. Then, in view of Hn_k(t, s)>0, α < s < / < τ the
relation (2.2) implies that

(2.4) \D^x(t)\= ίHn_k(t,s)\D^x(s)\ds = gk(t), 0<k<n-l .^x(t)\= ίtHn_k(t,s)\D^
Jα

Now let the functions p(t), q(t) be non-negative and measurable on [α, τ], and
0<k<n— lbea fixed integer. Then, from Holder's inequality with indices p and p/(p — 1)
equation (2.4) gives

(2.5) I D^x(t)I = Hn_k(t,

p{s)\D^x{s)\pds\ ,



SHARP OPIAL-TYPE INEQUALITIES 569

where

(2.6) Pk(t)=

In (2.5) it is clear that < holds if ρ> 1 and > holds if p<0 or 0<p< 1. We set

(2.7)

so that

and hence for any pn it follows that

(2.8)

Thus, if pk > 0 we have

(2.9)

where < holds if p> 1 and > holds i f p < 0 o r 0 < p < l . On the other hand, if pk<0

we have

(2.io)

where > holds if p> 1 and < holds i f p < 0 or

We now restrict ρk and ρn so that ((pfc + ρn)/ρn) > 0, and therefore (y(oc))ipk+pn)/pn = O.

Next, we integrate (2.9) or (2.10) over [α, τ], and apply Holder's inequality with indices

p/pn and ρ/(ρ-ρn), to obtain

(2.11)

where

(2.12)

i\(t)\D^x(t)n D^x(t) \p»dt | Coϊ f ̂ (O

Γ ft Ί(p

= top(0/?"PM(0)1/(p"Prι)(Λ(ί)Γ(p"1)/(p~Pn)^

Therefore, it follows that either

ί
* Γ ft Ί(Pk + P

^(oι/)ί f e ) 4ί)ri^^(or^<cj /<OI/>?MOIP*
or



570 R. P. AGARWAL

k + Pn)/P

(2.14) !\(t)\ D^x(t) n D^x(t) \o»dt>Cγ Γ [Zp{t)\ D^

holds, where

( Pn \Pnlp

(2.15) C1 = C1(p, q9 { r j , pk, pn, p) = [ - — C o .

Clearly, if < holds in (2.9) or (2.10) then we require (ρ/ρn)>l and obtain (2.13), while

if > holds in (2.9) or (2.10) we require (ρ/ρn)<0, or 0<(ρ/ρn)< 1 and obtain (2.14).

In stating the various cases which arise we shall use the following notation.

PX{t)=[' p(s)\D^x(s)\"ds,
J a.

P
~Lq

Further, for Pk(τ) and PX(τ) we shall write Pk and PX.

The above analysis schows that (2.13) holds if

n ΛfΛ $ρ>l,pk>0,0<pn<p9orp<pn<09pk<0,oτ -pn<pk<0, \
(ZΛΌ) \ >

[0<pn<p<\ and Pk(t) exists for /e[α, τ], PkQ< oo, PX<oo.)

If p<0, then from Holder's inequality with indices 1 — p and (p— l)/p, we have

G
ιί \p/(p-l)

i/π_k(ί, s)| D^x(s) \ds I
and hence the existence of Pk{t) follows from that of PX(t), and of gk(t). Similarly, for

0<p< 1, Holder's inequality with indices \\p and 1/(1 —p) gives

p

Mel

and hence the existence of y(t) follows from that of Pk(t), and of gk(t).

With these remarks we note that (2.14) holds under any one of the following

conditions:

(pk>0,0<p<min(pn, l),oτpn<0<p<l,0<pk<-pH

\ and Pk (t) exists for te [α, τ], P fcβ < oo, QX< oo;
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n ,nΛ jpk<0, pn<0, p>\, or \<p<pn, -pn<pk<0and\

[Pk(t), PX(t) exist for te[μ, τ], PkQ< oo, QX< oo; j

t |p f c >0, p<0<pn, orpn<p<0, 0<pk< -pn and

1 PX{t) exists for ί e [α, τ], PkQ < oo, QX< oo.

Thus, we have proved the following:

THEOREM 2.1. Assume that

( i ) /?(ί), g(ί) are non-negative and measurable functions on [a, τ],

(ii) on [a, τ] functions rj (ί)>0, i=l, .. .,n— 1 and x(t) are sufficiently smooth

so that the r-derivatives of x(t) exist, D^x(t), 0<i<n — 2 are continuous, D^~^x{t) is

absolutely continuous, and D^n)x(t) is of fixed sign,

(iii) forO<k<n-\ {n>\), but fixed, D?x(oc) = O, k<i<n-\.

Then, the inequality (2.13) holds provided (2.16) holds, and (2.14) holds under any one

of the conditions (2.17)-(2.19).

REMARK 2.1. In those cases of (2.16) and (2.18) where p> 1, Theorem 2.1 holds

even if sgnZ>ί.π)x(ί) is not constant. Indeed, in such a case the proof is similar except

that now in place of (2.4), we have

P <*
J α

 n~kt's(2.20) \D^x(t)\< [Hn.k{t,s)\D^x{s)\ds = gk{t), 0<k<n-l .

REMARK 2.2. Equality holds in (2.13), (2.14) if and only if it holds in (2.5) and

(2.11), i.e., if and only if

(2.21) p(s)\D^x(s)\p = dMHp

n-k(t,s)p-1(s))ί^-1), 0<s<t

and

(2.22) tκo)^py(O=citep(O/>~p^

Equation (2.21) is the same as

(2.23) D^x(s) «v

and hence, from the definition of Hn_k(t, s), unless k = n— 1, Di")x(s) = 0, and if n = k+ 1,

we have

(k)γ(t\_J -1

J a

(2.24) Df)x{t) = d\ rk^1{s){p{s)yll{ί>-1)ds (rfreal).

Further, when n = k+ 1 the condition (2.23) and the definitions of Pk(t) and y(t) in (2.22)

give
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a \Pk(l-Pn)/pn

For c = 1 it is easy to compute the sharp constant

(2.26) C1

In the following three remarks we shall show how the limiting cases in inequalities
(2.13) and (2.14) are meaningful.

REMARK 2.3. Holder's inequality with indices p/pn and p/(p — pn) gives

i / ft \(P-Pn)/P/ fτ \Pn/p

(\ W{t)p-^{t)γ^-^dt\ M p(t)\D^x{t)\Pdt\

= CΛp, q, {rj, 0, pΛ9 p)( Γp(t)\ D™x(t) fάt
\ J

where < holds provided (p/pn)> 1 and < holds if (p/pn)<0, or 0<(p/pn)< 1. Thus, for
pk = 0 the inequality (2.13) holds provided 0<pn<p, or p<pn<0; and the inequality
(2.14) holds if p<0<pn, or pn<0<p, or 0<p<pn, or pn

REMARK 2.4. For the case p= 1 inequalities (2.13) and (2.14) hold by replacing
(/^(ί)^"1 by Pk(t) = Qss.supse[atΛHn_k(t, s)p~\s)]9 or Pfc(f) = ess.infse[αί][//M_fc(f,s)p~1(s)]
appropriately. Indeed, the inequality (2.13) holds with Cγ replaced by

11 " P n

provided pk>0, 0<pn<\; and with Cί replaced by

Pn—^=—YT [
Pk + Pn) LJα

provided — pn<pk<0<pn< 1. Similarly, (2.14) holds with Cί replaced by C2 provided
Pk<0, pn<0, or \<pn, —pn<pk<0; and with Cx replaced by C3 provided pn<0,

~Pn, or pk>0, \<pn.

REMARK 2.5. As in Remark 2.4 we note that for the case p = pn the inequality
(2.13) holds with C\ replaced by

C4 = (—^—) ess.supί6[α r ] ίq(t)p-ι(t)(Pk(t)r
\ P + P

~ ί (t V P it \\Pk(Pn - 1 )/PnΊ

provided pn > 1, pk > 0, or ρn < 0, pk < 0, or — pπ < pk < 0 < pn < 1. Further, the inequality
(2.14) holds with C\ replaced by
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C5 = (—^—) ess.inf,6[βi,, lq(t)p~
V P + P /

provided pk>0, 0<pn<\, or l < p π , — pn<pk<0, or 0<pk< —pn.

REMARK 2.6. For the case p(t) = q(t)=l, p = pk + pn>\ a weaker form of the

inequality (2.13) has been proved by Pachpatte [20].

REMARK 2.7. For the case p(t) = q(t) = ri(t)=l, \<i<n—l the constants Cp

1 <7<5, we rename, Cf, 1 </<5. The constant Cf can be computed and appears as

PnlP 1 / p - 1

(P - Pn)/P

(τ — (χfPk(n-k)+l]-

The constants Cf,j=2, 4, 5 corresponding to the limiting cases considered in Remarks

2.4 and 2.5 can be obtained from Cf. However, Cf does not exist. Thus, in particular

when pkpn>0, p = pk + pn>l the inequality (2.13) reduces to

(2.27) \Dik)x(t)\pk\D(n)x(t)\pndt<λn_k\ \D{n)x(t)\pk+Pndt,
Jα J α

where λn-k = λn_k(pk, pn, pk + pn) = Cί(\, 1, {1}, pk9 pH, pk + pn) is given by

n—k—v

For λ; = 0 the cases pk = pn= 1; pk + pn> 1 and pk + pn=\ or (2.27) have been separately

obtained earlier in [7].

REMARK 2.8. Let the conditions of Theorem 2.1 with Λ; = 0 be satisfied. Further,

let />1, m>0, Tj>0, 0 < / < « - l with X J T Q T ^ I . Then, in view of the elementary

inequality

(2.29) Π V < n Σ ^ A < ( Σ ^ α j Y'', (ak>0,0<k<n-\)
k=0 k=0 \k=0 /

it follows that

(2.30) [q{t)(
Jα \k = 0

Thus, if we rename C^p, q, {rj, /, mj + m) as A*_fc (it depends on A: as well), then a

combination of (2.13) and (2.30) gives the inequality
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(2.31) [q{t)(nγ{ I D^x{t) Al\D^x(t) Γdt<Σ λ*_kτk [p{t)\ D^x(t) \ι + mdt.
Jα \fe = O / fc = O J α

Forp{t) = q(t) = rt(t) = 1,1 < i<n- 1 it is clear that λ*_k = /lπ_k(/, m, / + m). This particular
case of (2.31) has been proved directly by Yang [28].

REMARK 2.9. In addition to the hypotheses in Remark 2.8 let p(t) = q(t), and
assume that q{t) is non-increasing on [α, τ]. Then, it is easy to see that
Cι(q9 q, {rj, /, m,/ + m)<C1(l, 1, {rj, /, m, l + m) = λ%*k (say). Thus, in this case the
following inequality holds

(2.32) Pq{t)(nγ{ I D^x(t) A' I D^x(t) \mdt<*Σ λ**kτk f'^(ί)| D^x(t) \ι+mdt.
J J

As in Remark 2.8 we note that for ri(t)=\, \<i<n-\, λ*ϊk = λn-k(l9m9l + m). This
particular case of (2.32) has been obtained directly by Cheung [6].

REMARK 2.10. Once again in addition to the hypotheses in Remark 2.8 let
p(t) = q(t), and assume that 0<ζ1<q(t)<ζ2, te[μ, τ]. Then, it follows that
C^q, q, {rj, Z, m, I^m)<(ζ2/ζi)

m + m)λ**k. Thus, in this case the inequality (2.32) with
the right side multiplied by (ζ2/ζι)m + m) holds. The case ri{t)=\, \<ί<n-\ of this new
inequality has been proved directly by Cheung [6].

Now let the hypotheses of Theorem 2.1 with k = Q be satisfied. Further, let pfc,
0<k<n— 1, be non-negative numbers such that cr = ££~Qpfc>0, and ((σ + pn)/pn)>0 so
that (y((x))iσ+pn)/pn = 0. Then, from (2.5) and (2.8) we have

(2.33) ^ o Γ I ^
k = O

^(ίXp(f))-"^Γ"π {Pk{t)γk(»-1)lΛΛt)rlp{y'{t)γ Ί".
\_k = 0 J

In (2.33) the < holds if p> 1 and > holds i f p < 0 o r 0 < p < l . Now, integrating (2.33)
over [α, τ] and applying Holder's inequality with indices p/pn and p/(p — pn), we obtain

τ n Γ f t -l(σ +

q(t) Π Q I D^x(t)I pkdt<C6\\ p(t)\ D^x(t) | ' Λ J

or

(2.35)

where

[τ n Γ ft

^)Πl^^(ί)r^>C6
Jα k=O LJα
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(2.36) C6 = C6(p,q,{rί},{pi}>P) = ' P"

ΓΓ -P i/(P-P)"π mip-iVip-P) 1

L J α ^ * = <> J

(P-Pn)/P

Thus, using the notation

Jα

π - 1) π
we find that the inequality (2.34) holds if

f p> 1, σ>0, 0<pn<p, and each Pk(t)

[exists for te[μ, τ], PX<co, FkQ<oo;

and (2.35) holds under any of the following conditions

fσ>0,0<p<min(pπ, 1), or pn<0<p< 1, 0 < σ < -pn

( and each Pfc(ί) exists for te [α, τ], PkQ < oo, QAr< oo;

ί σ>0, p<0<pn, or pn<p<0, 0<σ< -pn and eachj

1 i\(ί) exists for ί e [α, τ], PkQ<oo, QX<oo. j

We summarize the above result in the following:

THEOREM 2.2. Assume that the conditions of Theorem 2.1 with k = 0 are satisfied.
Further, assume that pk,0<k<n—l, are non-negative numbers such that σ = Σ£l<!)Pk>0.
Then, the inequality (2.34) holds provided (2.37) holds, and (2.35) holds under any one of
the conditions (2.38), (2.39). Further, when (2.37) holds the inequality (2.34) holds even
when sgn D^xit) is not constant.

REMARK 2.11. For the case p(t) = q(t) = pk=l, 0<k<n, p = 2 a weaker form of
the inequality (2.34) has been proved by Pachpatte [20].

REMARK 2.12. The closest to our inequality (2.34) is a result recently obtained
by Li [13] for the case ri(t)=\, \<i<n—\, 0<ρn<p = σ + ρn, p>\. Indeed, in this

case we have

(2.40) [q{t) Π \D^x{t)rdt<CΊ [p{t)\ D^
Jα k=O J α

where
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(2.41) CΊ = C6(p,q,{l},{pi},σ + Pn) ?) 77

(2.42)

and

Q'τ n-1 -\σ/(σ + pn)

{q(tψ+Pn)lσ{p{t)ypnlσ Π {Pt(t))Pkiσ+Pn~1)lσdt
α k = 0 J

^ ( 0 = {t-s){n-k-1){σ+pMσ+pn-1\p{s))-ll{σ+pn-1)ds
J a

Ω=nf\i(n-k-i)\γ«.

REMARK 2.13. Once again let ^.(^=1, \<i<n— 1, 0<pn<ρ = σ + pn, ρ>\ and

= q(t\ where q(t) is non-increasing on [α, τ]. Then, it follows that

Γ Γτ ,
(f — Q^lUoP

-Pn)/P

n - l Γ 1 / n_\ \(p-ί)/p ~\p

Π I — — ) (τ-α)"-M

k

ιJol(n-k-ί)l\p(n-k)-lJ J
Further, in view of (2.29), we have

" Σ — in-kteUl

k=o σ k=o

and hence

1 n~

(,43, ^ ^ r

= C 9 , v1 = r " 1 .

Therefore, the following inequality holds
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(2.44) q(t)f\\D{k)x(t)\f>kdt<C9\ q(t)\D(n)x(t)\σ+pndt.

This inequality not only extends the range of pk, 0<k<n, it is also sharper than (2.32)

for the case r f (ί)=l, \<i<n— 1. To show this it suffices to note that for pk = lτk,

0<k<n-\, Σ£Ioτfc=1> Pn = ™> w e have σ = l, v1=(l-\-m)~1 = ξ, and thus (2.29) gives

c Q = n-k-ξ

n - l n - 1

= Π Kk-k(h m, l + m)< X λn_k(l m, l + m)τk.
k=0 fc=O

REMARK 2.14. Letr ί (ί)=l, 1 < / < Λ - 1 , p > l , σ>0, 0<ρn<p and let p(t) = q(t\

where ^(ί) satisfies 0<Ci <^(ί)<C25 ίe[α, τ]. Then, as earlier it follows that

- l / Λ _ 1 \σk(p-ί)/p

k = o\p(n — k)—l

\{p-Pn)IP

Therefore, the following inequality holds

Γτ Λ Γ Γτ

(2.45) q{t)Y\\D(k)x{t)\p*dt<C11\
Jα k=0 LJα

When p = σ + pn the above inequality reduces to

Γτ n / y \σ/ρ Γi

(2.46) q(t)Y[\D(k)x(t)\Pkdt<C9i — \
Jot. fc = 0 \ SI / Jα

As in Remark 2.13 we note that this inequality not only extends the range of pk, 0 < k < n,

it is also sharper than the corresponding result of Cheung [6] (cf. Remark 2.10).

For p f c =l, 0<k<n, p = 2 and q(t)= 1 the inequality (2.45) reduces to

Γτ n Γ Γτ η(n+l)/2
(2.47) Π \D(k)x(t)\dt<Cl2\ \D(n)x(t)\2dt

Ja k=0 LJα J

where C 1 2 is given by

(2.48) C 1 2 = - -
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This result has been directly proved by Pachpatte [18].

Next, from (2.4) we note that gk + ι(t) = rk + 1(t)gk(t)9 0<k<n — 2 and #fc(α) = 0,

0 < k < n - 1 . We define gn(t) = rn{t)g'n_ x(t), where rn(t) = 1. Thus, if ((pk + pk + t)/pfc + J > 0 ,

in view of Holder's inequality with indices l/pfe+i and 1/(1 — p f c + 1 ), it follows that

(2.49)
J a

= \

J a

(gk(t))pk/Pk+ιg'k(t)d/k+ί

( O \Pk+i/ Γτ \l-Pk+

= k + 1

In (2.49) the inequality < holds if ( l /p k + 1 )> 1, and > holds if (l/pfc + 1 ) < 0 , or

From Holder's inequality with indices p and p/(l — p), we also have

Γ Γτ Ί 1 / p

(2.50) ^ τ ) | ^ - 1 ) / p M p{t)\D^x{t)\pdt\ ,

where < holds if p > 1 and > holds if p < 0, or 0 < p < 1.

Hence, either

f \ k + Pk+i)/p

( 2 . 5 i ) J ^ J J

or

ft Γ Γτ η ( /

(2.52) q{t)\D™x(t)\p*\D? + 1)x{t)\pk^dt>C13\ pit^D^x^^dt \
Ja LJα J

holds, where the constant C13 = C13(p, q, {rf}, pk, pk+1, p) is

(2.53) C 1 3 = μk+1 (^ίK k

+ V(0) 1 / ( 1 " P k + l ) Λ ^ ( P "

Thus, using the notation

•f
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we find that the inequality (2.51) holds if

(2.54)
), β < o o , PX<ao,

and (2.52) holds under any of the following conditions

( 2 5 5 ) / p > l , p k + 1 < O , p k + p k + 1 < O , a n d

ί 2 5 6 ) fp<0,orO<p<l,

{and Pk<co, Q<co, QX<co.

We summarize the above consideration in the following:

THEOREM 2.3. Assume that the conditions of Theorem 2.1 are satisfied. Then, the

inequality (2.51) holds provided(2.54) holds, and(2.52) /zα/ύk wwder α«y 0«e of the conditions

(2.55), (2.56). Further, when sgn/)^π)x(ί) is not constant the inequality (2.51) remains valid

provided in addition to (2.54), p k > 0 ; and the inequality (2.52) holds provided (2.55) holds

with ρk<0.

REMARK 2.15. Following the methods of Remarks 2.3-2.5 the limiting cases in

the inequalities (2.34), (2.35), (2.51) and (2.52) can be discussed by replacing appropriate

quantities by their ess.sup or ess.inf.

REMARK 2.16. For pk = pk + 1=p(t) = q(t) = ri(t) = 1, \<i<n— 1 the inequality

(2.51) reduces to

Γτ Γ Γτ -Ύllp

(2.57) \D(k)x(t)Dik+1)x(t)\dt<C1A \D(n)x(t)\pdt \ ,
Ja LJα J

where the constant C 1 4 = C 1 3 (1, 1, {1}, 1, 1, p) is

(2.58) C 1 4 = ^ — ^ —, p' = p/(p-\).
2 ( ( / l ) ! ) 2 [ ( / l ) / + l ] 2 / ^

The inequality (2.57) is a recent contribution of Fink [9].

REMARK 2.17. The only overlapping case of Theorems 2.1 and 2.3 is when

k = n— 1. Further, in this case both the inequalities (2.13) and (2.51) with ρk =

=p(t) = q(t) = ri(t)=l, \<i<n-\ «(ί) = ̂ ( " " 1 ) ( 0 reduce to (1.1).

REMARK 2.18. Letr I(ί)>0, /= 1,...,« — 1 and x(t) be sufficiently smooth functions

on [τ, β~] so that for x(t) the r-derivatives exist. If D(

r

i}x(β) = 0, 0<k<i<n-l then it

follows that

Γβ

(2.59) D<f)x(t) = (-\)n-k\ Gn_k(t,s)Di;)x{s)ds, 0<k<n-\
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where

Jt rk+l(ίk+l) Jίk+i rfc +2(^ + 2) Jtn-2

and

We note that when ri(t)= 1, 1= 1,..., n — 1 for each 0<k<n the r-derivative D{k)

is simply the ordinary derivative D(k) and Gn_k(t,s) = (s-t)n~k~1/(n — k—l)\,O<k<n—\.

Thus, in this case (2.59) reduces to the known relation

= — (s-t)n-k-ίDin)(s)ds.
(n-k-l)\ Jt

(2.60)

Let on [τ, /?], D^x(t), 0<i<n—\ be continuous, Z ) ^ " 1 ^ ) absolutely continuous,

and D^]x(t) does not change sign. Then, in view of Gn_k(t, s)>0,τ<t<s<β the relation

(2.59) implies that

(2.61) \D^Mt)\=\ Gn_k{Us)\D^Ms)\ds = hk(t), 0<k<n-l .

Further, let the functions p(t), q(t) be non-negative and measurable on [τ, β], and

0<k<n— 1 be a fixed integer. Then, from (2.61) it is clear that all the above results

remain valid provided in the hypotheses the interval [α, τ], the integral {*, and the term

Hn_k(t, s) are respectively replaced by [τ, /?], Jj, and Gπ_fc(ί, 5). In particular, with such

a replacement the inequalities (2.13), (2.14), (2.34), (2.35), (2.51) and (2.52) take the

following form

ί
β Γ Γβ ~\(Pk + Pn)/P

q{t)\D^x{t)r\D^x(t)\pndt<CΛ p(t)\D^x(t)\pdt \

ί
β Γ Γfi -l(Pk + Pn)/P

q{t)\D^x{t) n D^x(t) \^dt>cA\ p(t)\ D^x(t) \>dt Iwhere

- ( o \>"lf*Y Γβ ~](p-Pn)/p

(2.62) C= \
"lf*Y Γβ ~](p-Pn)

(qp(t)p-pn(t))1/ip-pn\Qk(t)Yk(p-mp-pn)dt\
LJτ J

and

(2.63) Qk(t) =
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(2.34)'

(2.35)'

where

(2.64) C 6 =

q{t) )Mχ(t)\»dt\
+ pn)/p

q{t)
k=O

>cJ [ p{t)\D^
LJτ

x{t)\pdt
\(σ + pn)lp

σ + PnJ LJτ

~~\(P-Pn)lp

ί0(2.51)

(2.52)'

where

(2.65) C 1 3 =

Γ Γβ

<c 1 3 M

p{t)\D^x{t)\Pdt

i-pk+i

Finally, as in Remark 2.1 and Theorems 2.2 and 2.3 we note that in the inequalities

(2.13)', (2.14)', (2.34)', (2.35)', (2.51)' and (2.52)' we can separate the cases which do not

require the condition that sgnZ)^}x(ί) is constant.

REMARK 2.19. Let the functions p(t), q(t) be non-negative and measurable on the

interval [α, /}], and the numbers pk, pn, p satisfy the condition (2.16). Let r ί(ί)>0,

/= 1,...,«— 1 and x(t) be sufficiently smooth functions on [α, β~] so that for x(t) the

r-derivatives exist. Let on [α, j8], D^]x(t), 0 < i<n — 1 be continuous, D{?~ l)x{t) absolutely

continuous, and D^x{t) does not change sign. Further, let D^X(OL) = D?x(β) = 0,

0<k<i<n—l (n>l). Then, if we denote Cί = Cί(τ) and Cί = Cί(τ\ the inequalities

(2.13) and (2.13)' can be added to obtain

(2.66) Γ q(t)\ D^x(t) n D^x(t) \o»dt
J a

^QίτoίίM p{t)\D^x{t)\pdt\ + M /7(i)|Z)iw

where τ 0 is the unique solution of the equation C1(τ) = C1(τ).

In (2.66) we can use the well-known inequalities

(2.67) a,b>0, λ>\ ;
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(2.68) 2λ-\aλ +

(2.69) aλ

to obtain

(pk+Pn)/p

j(2.70)
Γβ

I

β ( Γ β \

q{t)\D^x{t) \pk\ D^x(t) rdt^JC^τAX p(t)\D^x(t) \>dt\

where L=\ if ((pk + pn)/p)> 1, and L = 2{p~pk-pn)lp if 0<((pk + pn)/p)< 1.

Similarly, if pfc, pπ, p satisfy any one of the conditions (2.17)—(2.19), then the

inequalities (2.14) and (2.14)' can be added to obtain

(2.71)

where J=\ if 0<((ρk + ρn)/ρ)<\, and j=2ip~Pk~Pn)/p if ((ρk + ρn)/ρ)<0, or ((ρk + ρn)/ρ)>l

We also note that the inequalities (2.34), (2.34)', (2.35), (2.35)'; (2.51), (2.5iy, and

(2.52), (2.52)' can be added to obtain inequalities analogous to (2.70) and (2.71). This

leads to several new inequalities as well, and some of these extend and improve the

corresponding known results of Cheung [6], Das [7] and Yang [28].

3. Inequalities involving two functions. Let the functions p(t\ q(t), rt (ί)>0,

/= 1,...,«— 1 and x = x1(t) and x = x2(t) satisfy the conditions of Theorem 2.1 except

that D^x^t) and Di")

X2(t) need not be of fixed sign. Then, in view of Remark 2.1 it is

clear that for / = 1 , 2 and 0<k<n— 1

(3.1)

Hence, as earlier from Holder's inequality with indices p> 1 and p/(p— 1), we have

ex o\ i r)(^)v- ίt\ i <̂  Γ P (t\~\(p~ I)/PΓM ίt\~\^IP

where Pk(t) is the same as in (2.6), and

Γ
(3.3) yM= p(s)\Dyl)

X.{s)\pds

L
so that

(3.4) y'j(t)=p(t)\Di")xί(t)\p, yι((x) = 0.

Thus, forA:<μ<v<«—1, but fixed, and pμ9 pv>0 it follows that

(3.5) q{t)\D^Xl

where
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(3.6) μ

Next, we integrate (3.5) over [α, τ], and apply Holder's inequality with indices {p/pn)>\

and p/(p — pn), to obtain

J a

(3.7) I q(t)\ D^Xl(t) I'"I D^x2(t) H D<?Xί(t) \"dt

where

(3.8) K0 = K0{p,q,{ri},pμ,pv,pn,p) = \\ {f(t))"l^^dt\

Similarly, we find that

(3.9) [q{t)\ D^Xiff)\"Λ D[μ)x2{t) n D^x2(t) \»»dt[q{t)\ D^Xi
J a.

From (3.7) and (3.9) we shall obtain a number of interesting results. For this we will

repeatedly use the inequalities (2.67) and (2.68).

When p v = 0 an addition of (3.7) and (3.9) in view of (2.67) and (2.68) gives

(3.10) [q(t)U D^Xί(t) \*>\DtoXl(t) \'" + \ D

J a

<K0(p, q, {rt}, pμ, 0, pn,

Γ Λ»<K

where

(3.11) * ! = * ! ( ? , q, {r,}, pμ, pn9 p) =

ΓΓ -P 1/(P-P) P(P-1)/(P-P) 1

LJα q tP ^ J

\(P-Pn)/P

and
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f2 D +O <0
(3.12) e^β^pp)-]2 ' P Λ P n - p

We summarize this case in the following:

THEOREM 3.1. Assume that

( i ) pμ > 0, pn > 0, p > 1, p > pn are given numbers,

(ii) p(t), q{t) are non-negative and measurable functions on [α, τ],
(iii) on [α , τ ] functions r ί ( ί ) > 0 , i=l, .. ,,n— 1 αwd X!( ί ) , ^ 2 ( 0 flre sufficiently

smooth so that the r-derivatives of xλ{t\ x2(t) exist, D^x^t), D^x2{t), 0<i<n — 2 are
continuous, D^'^x^t), D<?~1)x2(t) are absolutely continuous, and the integrals
UpWD^x^dt, \lp(t)\DWχ2(t)\odt exist,

(iv) for 0<μ<n-l (n>\), but fixed, Di

l!
)x1(oc) = Di;)x2(oc) = 0, μ<i<n-\.

Then, the inequality (3.10) holds.

When pμ = 0 an addition of (3.7) and (3.9) in view of (2.67) provides

(3.13) f * ^(ί )C I />iv>^2(ί )lP v I Λ ^ i ί t ) lp" +1 ^>ίv)^i(ί) lPv I ^ί"^2(ί) IP"D Λ
Jα

< V p , q, {r,}, 0, pv, pn, p)P"l" ,

where

/ =

Let

Then, from (2.67) and (2.68) we have

Γ
Jα

2\
τ(y1

J a
<θ2\(y1(t)+y2(t)r""'(y1(t)+y2(t)ydt

Pv + Pn
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= — — — [ 0 2 θ Ί ( τ ) +yi W) ( P v + pn)lpn - (yi(τψv+p»>IP» - (y2(τψ"+pn)IPn~]

Pv + Pn

(βΛp^pn-\\n

(3.14) <

(3.15) <-

where

(3.16)

On combining (3.13) and (3.15), we obtain the inequality

(3.17) Γ q(t)l\ D^
Jα

Γ ft

| J
where

(3.18) K2 = K2(p, q, {rt}9 pv9 pn9 p) =

Γ Γτ Ύ
I I ίnPίt\r%~ Pn(f\\l/(P ~ Pn)( D (f\\Pv(p ~~ 1)/(P ~" Pn) Af

LJα J

-Pn)/P

Thus, we have proved the following:

THEOREM 3.2. Assume that in Theorem 3.1 fλe integer μ and the number pμ are

replaced by v and pv, respectively. Then, the inequality (3.17) holds.

REMARK 3.1. For the case p(t) = q(t) = pv = ρn=l, ρ = 2 a weaker form of the

inequality (3.17) has been proved by Pachpatte [20].

Theorems 3.1 and 3.2 can be combined. For this, we use the arithmetic-geometric

means inequality and (2.67) in the right side of (3.7), to obtain

(3.19)
Jα

Pn/P
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Pnlp

and similarly, from (3.9) we find

(3.20) q(t)\ D^x^t) M D(

r

μ)x2(t) \p»\ D(

ί

n)x2(t) \pndt

P n l p ί Γτ \Pnlp

( i )
An addition of (3.19) and (3.20) in view of (2.67) gives

(3.21) S= P<7(ί)[l D^Xl(t) |'« I fl("x2(i) Π DWjCiίί) I"

Λ(pμ + Pv + Pn)/P\ _|_ 2 (P ~ Pπ)/P|

n/pΊ

Now following as in (3.10) and (3.17), we get

(3.22) S<K3

where K3 = K0M0(p),

(3.23) M0(p

Γ f τ
3\

and 04 = ̂ i(Pμ + Pv? P», P), Θ5 = θ3(pμ + pv, pn).
Thus, a result which unifies Theorems 3.1 and 3.2 is the following:

THEOREM 3.3. Assume that 0<μ<v<n-l (n>\) and p ρv>0, ρn>0, ρ>\,
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p>ρn are given numbers. Further, assume that the functions p(t), q(t), x^t), x2(t), r^t),
\<i<n—\ are as in Theorem 3.1. Then, the inequality (3.22) holds.

REMARK 3.2. From the arithmetic-geometric means inequality we note that

S<—^— \q(t)U D
Pμ + Pv Jα

+ —̂ — [
Pμ + Pv Ja

q{t)l\ D^x2(t) r + ^ | D™Xl(t)

Thus, from Theorems 3.1 and 3.2 it follows that in the inequality (3.22) the constant
K3 can be replaced by K4, where

Λ P> q> {nh pμ+Pv P» P)+ PV K2(P> ^ {M> pμ+p» P»» P)

P + P
4 Λ P> q> { n h p μ P v P» P)

Pμ+Pv Pμ + P

From the above considerations (cf. (3.7) with pμ = y>0, pv = y + η, pn = η>0, and
a similar inequality), and (2.67), we have

f
J a.

, = fφ)\D?>xί(t)Dί'>x2(t)r[\D?)X2(t)D™x1(t)\'1

(3.24)
Γ w

L7 + /̂

1
-
2

Thus, the following inequality holds

(3.25)

where

(3.26) ^ 5 = 2 ( P - ^ - 3 , ) / P ^ ^ ^ o ( p ? ^ { r j ? ? ? y + ^ ? ^ ? p ) β

Vy + ^7/

We present the above case in the following:

THEOREM 3.4. Assume that 0<μ<v<n—l (n> 1) andγ>0, η>0, p> 1,
numbers. Further, assume that the functions p(t), q(t), Xl(t), x2(t), rf(ί), ! < / < « — !



588 R. P. AGARWAL

are as in Theorem 3.1. Then, the inequality (3.25) holds.

All the above results require that pn>0. To prove a result without such a

requirement, from (3.1) we note that gijk + 1{t) = rk+1(t)gr

ik(t\ 0<k<n — 2 and gitk(oι) = 0,

0<k<n-l. We define gi,n(t) = rn(t)g'n_1(t), where rn(t)=l. Thus, if pk>0, 0<pk + ι<\,

in view of Holder's inequality with indices l/pk+1 and 1/(1 — pfc + 1), it follows that

(3.27)

Similarly, we find that

(3.28) P
Jα

Now an addition of (3.27) and (3.28) in view of (2.67) gives

S3 = Γ q(t)ϋ D^Xι(t)\ »
J

Thus, from (3.14) with pv = ρk, ρn = Pk+ι and (2.68) it follows that

(3.29)

where

\ l - p k + i /

(3.30)
V Jα

and Θ6 = θ3(pk,pk+1).

Since from (3.1) and (3.2) for p> 1 we have
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(3.31) 9i,^)^ίP^)T~1)lpLyMVlp, i= 12

from (3.29) and (3.31), we obtain

(3.32) S3<K7l(y1(τ)){Pk+p^i)/p + (y2(τ)){pk+Pk + ι)/p-],

where

(3.33) KΊ = K6{Pk{τ)fpk+ί>k+i){p-1)lp.

Finally, an application of (2.67) and (2.68) in (3.32) gives the inequality

\(Pk+Pk+ι)/p

(3.34) J ? ^ ^ ^

where Ks = K7θί(pk9 pk + ί, p).

Thus, we have established the following:

THEOREM 3.5. Assume that 0<k<n—\ (n>\) and pk>0, 0<pk+i<\, p>\ are

given numbers. Further, assume that p(t), q(t), Xχ(ί), Xi{t\ ^(ί), l < i < n — 1 are as in

Theorem 3.1. Then, the inequality (3.34) holds.

4. Some applications. The inequalities obtained in Sections 2 and 3 will be used

here to study some qualitative properties of solutions of ordinary differential equations

involving r-derivatives.

Uniqueness of initial value problems: Consider the differential equation

(4.1) Z><">w=/(

together with the initial conditions

(4.2) D^)u{oι) = ωi, Q<i<n-\

where the function / is continuous on [α, τ] x Rn. As an application of the inequality

(2.13) we shall show that the problem (4.1), (4.2) has at most one solution on [α, τ] .

For this, we assume that the function / satisfies the Lipschitz condition on [α, τ] x Rn,

i.e., for all (ί, uθ9..., un-x\ (ί, ΰθ9..., MM_x)G[a, τ] x Rn,

n-l

(4.3) I f(t, u0, . . . , un_ i ) - / ( ί , ύ0, . . . , ί/π_i) I < Σ qk(t)\ uk-ύk \ ,
k = 0

where the functions qk(t)>0, 0<k<n—l are continuous on [α, τ] . If u(t) and ΰ(t) are

two solutions of (4.1), (4.2) then the function x(t) = u(t) — ΰ(t) is a solution of the problem

(4.4) D

(4.5)

Multiplying (4.4) by Z)^}x(ί), using (4.3), and then integrating the resulting inequality
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from α to t, we obtain

(4.6) ΓI D^x(s) \2ds < "Σ Γ qk{s)\ D^x(s) \ \ D^x(s) \ds .

For each term on the right side of (4.6) we apply the inequality (2.13) with p(t)= 1,

pk=\9 pn=ί9 p = 2, to get

(4.7) ΓI D^x(s) \2ds<(Ϋ Cm) ΓI D{Ms) \2ds ,

where Cf(ί) = C1(l, qk, {rj, 1, 1, 2)| τ = ί. Since C£(α) = 0, 0<k<n-l there exists a

point tγ>aL such that maxα^ t^ f i(ΣϊlJC2 t(ί))<l. Thus, (4.7) implies that D{

t!
l)x(t) = 0,

te[μ,t{\ almost everywhere. However, this in view of (4.5) leads to D(f)x(t) = 0,

0<i<n—l, ίe[α, t{]. If tx<τ we can repeat the above arguments to obtain x(t) = 0,

/G[α, τ]. Hence, it follows that u(t) = ΰ(t), ίe[α, τ].

The above uniqueness criterion is not available in the collection [2].

Next, we shall consider the following system of differential equations

(4.8) DMuj = fj(t, D^ul9..., / > ? - % , £>ίO)"2, , £ > r % ) , J= 1, 2

together with the initial conditions

(4.9) D®uj(a) = ωjfi9 7 = 1 , 2 ,

where the functions fj are continuous on [α, τ~\x Rnx Rn and satisfy the Lipschitz

condition

(4.10) I fj(t, U
ίt0
, . . . , «!,„_!, U

2t0
, '-,

 U
2,n-l)-fjiU U

ίt0
, . . . , «

l f Π
_
 l9
 «

2>
0> >

 W
2,«- 1

If the problem (4.8), (4.9) has two solutions (u^t), u2{t)\ (u^t), u2(t)) then for the

functions xj(t) = uj(t) — Uj(t),j= 1, 2 it follows that

Summing these two inequalities, and integrating from α to t, we obtain

Jα

n-1 Γt

k = OJa

- 1 /*ί

•)(")v ^o\ I _|_ I Π ( f c ) v Γ^ I I D ( / ι ) v ίV
n-ί Γt
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where qk(t) = maxa^s<t(quuk(s), q2^k(s)) and qϊ(t) = mίix(χ^t(q2Λfk{s), qlt2tk{s)).

For each 0 < k < n — 1 in the first summation on the right side of (4.11) we can use

(3.10), whereas in the second summation (3.17), to obtain the inequality

Γ [I D^xAs) I2 +1 DMχ2(s) Πds<K(t) Γ [| DMXl
J a J a

where K(t) is a function with the property that K(oc) = O. The above inequality implies

that ui(t) = ΰ1(t), u2(t) = ΰ2(t), te[μ, τ]. Hence, the solutions of the problem (4.8), (4.9)

are unique.

Upper bounds on the solutions: Consider the differential equation

together with the initial conditions

(4.13) D^x{<x) = 0, 0 < i< n - 1 , Z><π)(α) = ω

where the function / is continuous on [α, τ] x Rn + ί, and satisfies the growth condition

n-l

fc = 0

where again the functions qk(t)>0, 0<k<n—l are continuous on [α, τ]. Let x(t) be a

solution of (4.12), (4.13). Multiplying (4.12) by Z> <π)x(ί), integrating the resulting equation

from α to t, and then using (4.14), we obtain

π - l Γt

yH. 1 J) I Ur X\l) I Ss I Cϋ I ~τ L 2_j I ^kW/i^r X\y)\\^r X\β)\uS •

As earlier, for each 0<k<n— 1 in the summation on the right side of (4.15) we apply

the inequality (2.13) with p(t)= 1, pk= 1, pn= 1, p = 2, to get

(4.16) I D^x{t) | 2 < I ω | 2 + C**(ί) Γ | Dr

wx(s) \2ds ,

where C**(i) = 2^^~QC^(i). Thus, in view of GronwalΓs inequality it follows that

(4.17) \DWχ(t)\2<\ω\[\+C**(t) | exp( | C^isjdsλds =φ(t).

This estimate we can use in the right side of (2.20), to find

(4.18) \D(

t

k)x(t)\<\ Hn_k(t,s)φ(s)ds 0<k<n-l .
J a

Hence, as an application of the inequality (2.13) we obtain upper bounds on all the

r-derivatives of the solutions of (4.12), (4.13).
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If instead of (4.14) the function / satisfies the growth condition

\f(t,Xo, . ,xn)\<Φ)\xk\
Pk\xk + l r + ι , 0<k<n-\ (but fixed)

where the function q(t)>0 is continuous on [α, τ], then for any solution of (4.12), (4.13)

we have

(4.19) \D{

r

n)x(t)\<\ω\+ q(s)\Di,k)x(s)\pk\Di

ί

k + 1)x(s)\Pk+1ds.
J a

In the right side of (4.19) we apply the inequality (2.51) withp(t)= 1, p = pk + pk+15 to get

(4.20) I Din)x(t) I < I ω I + C(t) Γ | D™x(s) \Pk+ί>k+ίds ,
Jα

where C ( ί ) = C 1 3 ( l , <?, {rj, pk, p k + 1 , p k + p f c+i)| τ = f.

From (4.20) an upper bound on | Z><n)jc(ί) | can be obtained rather easily. Once again

this bound we can use in the right side of (2.20). Thus, this time as an application of

the inequality (2.51) we obtain upper bounds on all the r-derivatives of the solutions

of (4.12), (4.13).

Finally, we remark that the bounds obtained above can be used to study the

asymptotic behavior of the solutions of (4.12), (4.13).
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