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HILBERT SPACES RELATED TO HARMONIC FUNCTIONS
KEeiko Fuiita
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Abstract. We construct a Hilbert space with a reproducing kernel by using a
measure which is not positive. The space is unitarily isomorphic to a Hilbert space on
the spherical sphere under the Fourier transformation. Then we study Poisson transform
of Sobolev space on the n-dimensional unit sphere.

Introduction. In the study of harmonic functions on the Euclidean space R"*?,
the complex light cone M={ze C"*'; z2=22 4224 - - +22,, =0} plays an important
role. Let

M={z=x+iye M; x| =1/2}

be the spherical sphere, where | x| is the Euclidean norm.
We define the Fourier transformation # on L%(M) by

F:. f |—>.97f(x)=J f(z)exp(z - x)dM(z) ,

where dM is the normalized O(n + 1)-invariant measure on M.
We denote by o/,(R"*?) the space of harmonic functions on R"*!. We define a
sesquilinear form (, )gn+: by

(f, Prn+ 1= J(X)g(x)du(x) ,
RN+ 1
where the measure du is constructed by means of the function p, which is introduced
in Ii [2] and Wada [7]. Note that du is not a positive measure.
In this paper, we assume n > 2 and we shall show that the sesquilinear form (, )gn+:
is a non-degenerate inner product on

L2 \(R"* ) ={feds(R""1); || f|Rns 1 =(f; frn+: <0},

although the measure du is not positive and that (L2a/,(R"*?), (, )gn+1) is a Hilbert
space with a reproducing kernel. Then we construct the reproducing kernel concretely.

We denote by O(M[1]) the space of holomorphic functions in a neighborhood of
M[1]={z=x+iye M;|lx|| <1/2} and by L>0O(M) the closure of O(M[1])in L%(M). The
second aim of this paper is to show that L?@(M) is unitarily isomorphic to L2a/,(R"*?)
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under the Fourier transformation %. The outline of the above results was announced
in [1].

Let S=S" be the n-dimensional unit sphere. We know that the Poisson
transformation %, maps L%(S) into L2@(M). In the last section, we shall determine the
image of L*(S) under %, as a “Hardy-Sobolev” space. This result describes a result of
Lebeau [3] more precisely.

The author would like to thank Professor Mitsuo Morimoto of Sophia University
for useful advice.

1. A Hilbert space of harmonic functions. We denote by ZX(R"*!) the space of
k-homogeneous harmonic polynomials on R"*! and by N(k,n) the dimension of
PER"" ). We know

Nk, n)=Qk+n—1)k+n—2)!/(k'(n—1))=0K""1).
The following lemma is known:

LEmMMA 1.1. Let f,e ZR"*") and g, PYR"* ). If k #1, then
J J@)gi(w)dS(@)=0 .
N

We denote by /,(R"*!) the space of harmonic functions on R"*! equipped with
the topology of uniform convergence on compact sets. Let P, ,(¢) be the Legendre
polynomial of degree k and of dimension n+ 1. Define the k-homogeneous harmonic
component f, of feo/,(R"*!) by

X
/x2

where x*y=x,y,+X,¥,+ " +X,+1Vn+1 and dS is the normalized O(n + 1)-invariant
measure on S. Then, the following lemma is also known:

(M fx)= Nk, n)(y/x? )"f f (t)Pk,,,< . r>dS(‘r) ,  xeR"*1,
S

LEMMA 1.2. Let fe o/,(R"*?") and f, the k-homogeneous harmonic component of f
defined by (1). Then the expansion Y. ;"_  fi converges to f in the topology of o/(R"*1).

We denote the modified Bessel function by
Kv(r)zf exp(—rcosh t)coshvedt , veR, 0<r<ow.
0

Ii [2] and Wada [7] introduced the function
(n—1)/2

/
Y aurtt K (), if nisodd,
=0

Pl)=1 .
Y aur'TPK 1 5(r),  if niseven,
1=0
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where the constants a,,, /=0, 1,2, ..., [n/2], are defined uniquely by
@ J‘” N(k, n)k!I'(k + (n+1)/2)2%

2k+n—1 —
o P [(n+1)2)

(see [7, Lemma 2.2]). Note that p,(r) is not positive but there is R,> 0 such that p,(r)>0
for r> R,. The function p, is estimated as follows:

{|p,,(r)]sﬁP(,,_l)/z(r)exp(—r) , if nisodd,
Pu(r)= Py5(r)exp(—r), if niseven,

Clk,n), k=0,1,2,...

3)

where P,_,),(r) and P, ,(r) are polynomials of degree [n/2] (see [7, p. 429]).
We define a measure du on R"*! by

f Sx)dp(x) = J f Sro)dS(w)r" ™ p,(r)dr
Rn+1 0 S
and a sesquilinear form (, )gn+1 by

(f, Press= | Sg(x)dulx) .

Rnt1

Although p,(r) is not positive, the sesquilinear form ( , )g«+: is an inner product on
L2 \R" ) ={feds(R"*); || fllgn+1=(fs fgn+1 <0}
by the following proposition:

PROPOSITION 1.3. Let f=) fie d\(R"*"). Then

(s fgne :i or e

=f20 Clk, n) f S fd@)dS@)=0
= s

i.e., either both sides are infinite or both sides are finite and equal.

PrOOF. For R>0 we put Cglk, n)={gr2**" 1p (r)dr and

IR)=| | f(0)]*dux),

B(R)

where B(R)={xeR"*'; | x|l < R}. Since p,(r)>0 for r> R,, I(R) is monotone increasing
for R>R, and (f, f)gn+1=limg_, , I(R). By Lemmas 1.2 and 1.1,

I(R)=k§o Crlle, m)/Cl, m)fos f)ns

Choose sufficiently large R> R, so that Cg(k,n)>0, k=0, 1,2, ..., and take the limit.
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Then by Fatou’s lemma we have

lim 5% Cylk, )/ Clh MW fos g1 = 3 (o Flenes

R k=0
q.e.d.
LEMMA 1.4. Let fe Lo \(R"""). Then we have

L)</ T((n+1D)/2) exp(l|x /2| f | g1 -

ProOF. By Lemma 1.2, feo/,(R"*') can be expanded as follows:
Jfx)= Z Nik, n)IIXH"J fk(w)Pk,,< i )dS(w)-
Since N(k, n)f¢ (P (@ * x/||x])))*dS(w)=1, we have

s S Nkt |

fe )P""<u I “’)}ds(w)

0 1/2
< 3 Il /N €k n)(C(k, n)f | fuw) Fds«o))
ST f;} x|t/ NGk, m)/Clk, n)

<JT((n+1)2) llfllmnk}jo 1N/ 1 2%)
=/ T((n+1)/2) exp(|x[|/2)ll f | gn+ 1 -

q.e.d.

THEOREM 1.5. (L2oA\(R"*Y), (, )gn+1) is a Hilbert space.
Proor. We have only to prove the completeness of the pre-Hilbert space
L2o/,(R"*1Y). Let { fy} be a Cauchy sequence in L2s/,(R"**). Then by Lemma 1.4 and

the Poisson integral formula, {fy} converges uniformly on every compact set to a
function feoZ,(R"""). Choose sufficiently large R> R, so that

“4) Crlk,n)>0, k=0,1,2,....
Then divide the integral of || fy—f||zn+: into

LN)=| | f¥x)—f(0)|*du(x)

B(R)

and
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I(N)= | ful0) —f (%) () -

Rnt1 \B(R)
Since the integral domain of I;(N) is compact, | I,(N)| < oo. Since p,(r)>0 forr>R>R,,
by Fatou’s lemma and (4),

I(N)= lim inf| fy(x) —fi(x) 1> dpa(x)

R"* 1\ B(R) M-

<lim infj | fn(e) —fra(X) 1P dpu(x)
R+ 1\ B(R)

M-
< 1i)\I4Tl_}inf A8 =S a1 -

Since {fy} is a Cauchy sequence, I,(N) tends to 0 as N—oo. Therefore, | f|gn+:<
| f—fallgns 1+ | fullgn+1 <00 and || f—fyllgn+1=I(N)+ I,(N) tends to 0 as N— 0.
q.e.d.

COROLLARY 1.6. Let feL2ol,(R"*Y) and f, the k-homogeneous harmonic com-
ponent of f defined by (1). Then the expansion Y f, converges to f in the topology of
L2 "Q{A( Rn + 1) .

From this corollary, Proposition 1.3 and Lemma 1.1, we get the following theorem:
THEOREM 1.7. The Hilbert space L*s/,(R"*?Y) is the direct sum of the spaces
ZAR"1):
L2MA(Rn+1): G_) yAk(RnJrl) .
k=0
The mapping f+ f, defined by (1) is the orthogonal projection of L*s/,(R"**) onto
gAk(Rn+ 1).

By Lemma 1.4, there is a reproducing kernel on the Hilbert space L2a/,(R"*?).
Now, we construct the reproducing kernel on L2o/,(R"*1). Put

Ey(x, y)=f exp({ - x)exp(y - )dM(() .
M
Then E|(x, y) is real-valued, symmetric and satisfies
AE\(x, y)=(0%/0xT+0%[0x5+ - - - +0%/0x7 4 1)E;(x, ) =0
Put

Pz W)=/ 2 M/ w? )*Pk,n<% ' —ﬁ?> .
z w
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LemMma 1.8 ([7, Lemma 1.3]).

Ou ~
f (2w C)’dM(C)—W P z,w), zweC"',
k,n

where vy, , is the coefficient of the highest power of the Legendre polynomial P, (t):
View=2*T(k+(n+1)/2)/(N(k, n)[(n+ 1)/2)k!) .

By this lemma, F,(x, y) is expanded as follows:

) By )= 5. Nk n/Clk Py (x. )

00

Z (n+1)/2)/(k! T (k+(n+1)/2)2°9) P ,(x, y) -

Therefore, there is a constant C such that
| Ei(x, y)| < Cexp(|xll/24) exp(4llyl/2),  x,yeR""!
for any 4>0. Moreover, we have

IE1(+, p)lgns s T((n+ 1/2)o(lyI) < T((n+ 1)/2) exp(Iyll),

where J,(?) is the Bessel function of degree 0.
In particular, E,(x, *) and E,(+, y) belong to L2.o/,(R"*?).

THEOREM 1.9. E, is the reproducing kernel on the Hilbert space L?></,(R"*?); that
is, for fe L>o/,(R"*") we have

JO)=(fo Es(y, X))nm—f SXE(y, X)du(x),  yeR"™!.
R'I+l
ProoF. Since E,(y, *)e L2/, (R"*1), Corollary 1.6, (5), Lemma 1.1 and (2) imply

JE(y, x)dp(x)

Rnt+1

= J ; io Si(row) kio N(k, n)/C(k, n)r* Py ,(, y)dS(w)r"~ " p,(r)dr
si= =

0o

= Z S Ck, nyr <=2 p (r)dr

uMs °

f N=10).
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2. Complex harmonic functions. We denote by Z{C"*') the space of the
k-homogeneous complex harmonic polynomials; that is, if feZKC"*?Y), A,f(2)=
(9%/0z3 4+ -+ - +0?/0z}, 1) f(2)=0.

By definition, ZHC"* )|gn+ 1 =2 R"*1). For f,.e Z(R"*"), the harmonic extension
£, of f, is given by

(6) f;c(z) = N(k’ n)J ﬁc(T)Fk,n(za T)dS(T) s S C"+ ! .
S

The cross norm L(z) on C**?! corresponding to the Euclidean norm ||x|| is the Lie
norm given by
L(z)=L(x+iy) =[x+ Iy 12+ 2/ Ix 12 1pI1> = (x - )* 12,

and the dual Lie norm L*(z) is given by

L*(z)=sup{|z-{]; L)<1}

1
= =[x+ Iy 12+ /X012 = 1122+ 4(x - )2 12

J2
The open and the closed Lie balls of radius R with center at 0 are defined by
B(R)={zeC"*'; (z)<R}, O0O<R<w,
and by
B[R]={zeC"*'; L(z)<R}, 0<R<o,
respectively. Put
MQR)=B(R)nM, M[R]=B[R]nM.

We denote by O(B(R)) (resp. O(M(R))) the space of holomorphic functions on B(R) (resp.
M(R)) equipped with the topology of uniform convergence on compact sets. We call

OAB(R)={f€O(B(R); A.f(z)=0}, O<R<w
the space of complex harmonic functions on B(R).
The following lemmas are known:
LemMa 2.1.  The restriction mapping ay establishes the following linear topological
isomorphism;
o5: O(B(R) = y(B(R)),

where o/ ,\(B(R)) is the space of harmonic functions on B(R) equipped with the topology

of uniform convergence on compact sets.

Moreover, the inverse mapping oz is given by the Poisson integral P:
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2:f=21@) =f Sfpw)Ky(z, w]p)dS(w) ,
S

where 0 <p <R and
1—z2w?

(1+2z2w2—=2z-w)n+ 2’ Liz)L(w)< 1

Q) Ki(z, w)=

is the Poisson kernel.

LemMMA 2.2 (cf. [4]). The restriction mapping o, establishes the following linear
topological isomorphism:

tp: Op(B(R)) —~» O(M(R)) .

Moreover, the inverse mapping o;,' is given by the Cauchy integral €:
€ [—Ef (Z)=J S(pw)Ko(z, w/p)dM(w),
M

where 0 <p <R and

1+2z-w

U2z WEM HOHW=2LELT <

® Ko(z, w)=

is the Cauchy kernel.

LEMMA 2.3 (cf. [2, Lemma 1.7] and [7, Lemma 1.4]). Let f,eZHC"*') and
g€ ZYC"* ). Then

f S w)gew)dM(w) = yz J Sl@)gdw)dS(),
M s
f Sdw)gi(wydM(w)=0,  k#l.

M

3. A Hilbert space on the spherical sphere. We denote by L?(M) the space of
square integrable functions on M with the inner product

s D= f Sw)gw)dM(w) ,
M

and by 2¥M) the space of the k-homogeneous polynomials on M. Define the
k-homogeneous component f, of feL*(M) by

©) f(2)=2*N(k, n) f fw)z - wdM(w) , zeM .
M
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The harmonic extension of f; is given by
ful(z) =2*N(k, n)f Jw)(z - wrdM(w) , zeC"*t1,
M

By Lemma 2.3, %(M) and (M) are mutually orthogonal for k#/.
Let L2O(M) be the closed subspace of L*(M) generated by #¥(M), k=0, 1,2, ....
Then by definition we have the following lemma:

LEMMA 3.1. Let fe L*O(M) and f, the k-homogeneous component of f defined by
(9). Then the expansion Y. f, converges to f in the topology of L*O(M); that is, we
have the Hilbert direct sum decomposition:

L*O(M)= é PHM) .

k=0

For any function f on M(1), define the function f* on M by f'(z)=f(tz) for
0<t<1.If fe®(M(1)), then f*e L2O(M).

LemMA 3.2. If fe L2O(M), then there is feO(M(1)) such that lim,, | || f—F"|l,=0.
Conversely, if feO(M(1)) satisfies supg<, <4 || f'lly< 0, then f=lim,,; L f belongs
to L*O(M).

PrROOF. Let f=) " f,e L*O(M). Define
f(W)=J SOK( waM(@),  Lw)<l,
M

then f'e O(M(1)). Put w=tz for ze M and 0< ¢ < 1, then we have f(w)=F(z)=Y.°_, filt2).
Since || f—F 1= o (1 =92 fill3, we have lim,; ;| f—f*|,,=0 by Fatou’s lemma.

Conversely, assume that f'e O(M(1)) satisfies supo<,<; || /*ll,r < 0. Expand f* by
Y o fi Then by Fatou’s lemma, we have

co>lim | fY 3 =lm Y |F413=> ¥ lim | f4)3=I/I3%.
t11 ttl k=0 k=0tt1
q.e.d.

From this lemma, we have
L0(M)={feO(V(D); sup /< o0} .
COROLLARY 3.3. Let fe L20O(M). Then we have
f(2)=lim & f1 (t2)=1imf JWKow, tz)dM(w),  zeM,
t11 t11 M

where the limit is taken in L*(M).
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4. The Fourier transformation. We define the Fourier transform Zf of fe L*(M)
by

ff(x)=f fw)exp(x - wydM(w),  xeR"*!.
M
Then by Lemmas 3.1 and 2.3 and (9), for f=) ", fie L*0O(M) we have

1
(10) Ff(x)= kZO Wﬁc(x)a xeR" .

We call the mapping & : f+> % f the Fourier transformation.

THEOREM 4.1. The Fourier transformation & is a unitary isomorphism of L>*O(M)
onto L2of,(R"*1).

ProOF. Let Fe L?0O(M). By Lemmas 3.1 and 2.3 and (10),

>(F, F)y= f RO O0dMO)

i Clk, ) Fio) Fi(w)
K=o s Nk, n)k!12%  N(k, n)k!2*

=(FF, FF)gn+: .

dS(w)

Thus % is an isometric mapping of LZ20O(M) into L2./,(R"* ).
Now, we prove that # is surjective. Let f=Y 2 f,e L>o,(R"*"). Then Pro-
position 1.3 and Lemmas 1.1 and 2.3 imply

o> f(x)%du(x):kio C(k, n) J [ @) fil@)dS(ew)
= S

Rn+1

= i Nk, n)*k 1222+ f Fuw) fuw)dM(w)

J ( Y Nk, n)k!2* fi(w )( Y N, nl'2’f,(w)>dM(w)
M

Therefore, F(w)=Y 2, N(k, n)k!2*f,(w) belongs to L>O(M). By (10), F F(z)= f(2).
q.e.d.

Especially for feO(M[1])|y = L*0O(M), we have
F . O(M[1]) =~ Expy(R"**; [1/2]),
where

(1) ExpsR""1; [1/2])={fe L\(R"""); IB<1/2, 3C>0 s.t.| f(x)| < Cexp(Bl|x|)}
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(cf. [4]).
THEOREM 4.2. If feExp,(R""1;[1/2]), then
(12) F ()= exp(x - z) f(x)du(x),  zeM.
Rn+1

PrROOF. Because of |exp(x * z)| <exp(]|x||/2) for ze M, the integral on the right-
hand side in (12) converges absolutely by (3) and (11), which we denote by F(z). Then
by the Fubini theorem and Theorem 1.9, % F(x)= f(x). g.e.d.

For f(x)e L2Z,\(R"*") and 0<t<1, f'x)= f(tx) e Exp,(R"**,[1/2]) and
lim, ;|| f— F*llgn+1=0. Therefore, we have the following corollary:

COROLLARY 4.3. Let feL?>o/,(R"*?). Then

Z ! f(z)=lim J exp(x - 2) f(ex)du(x),  zeM,

11
where the limit is taken in L*(M).

THEOREM 4.4. Let fe L?>o/\(R"*'). Then

F 1 f(z)= lim J exp(x - 2)f(x)du(x),  zeM,
B(R)

R—- o0
where the limit is taken in L*(M).

ProOF. Let feL?s/,(R"*!) and f, the k-homogeneous harmonic component of
f. Put

ff@A=| exp(x-2)f(x)dux), zeM,

B(R)

fi2)= exp(x - 2) fix)du(x),  zeM.
B(R)

Then by using the Fubini theorem and Lemmas 1.8 and 2.3, we have

FfRw) :J J exp(x * 2)fi(x)du(x) exp(w - 2)dM(z) , x=ro,
M J B(R)

= Crlk, ")j f @ k 'Z)k Sw)dS(w) exp(w - Z2)dM(z)
MJS .

_ Cgrlk,n)
= Clen) M)

By the uniform convergence of Y ,°_ f, on B[R]={xeR"**; | x| <R}, we have
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Ffrw)= ki Cr(k, n)/C(k, n) fi(w) .

By Proposition 1.3,

00

111_{1; ||f—%f"||§,,+l=;im 2. (1= Crlk, n)/Ck, m))?|l fi gn++=0 .

—®© k=0

Since Z is a unitary isomorphism, & ~! f=limg_, , f® in L M). q.ed.

5. The Poisson transformation. Let L?(S) be the space of square integrable
functions on S with respect to the inner product

(f, 9)s= f f(@)g(w)dS() .
S

We call #%(S)={P|s; Pe Z{C"*")} the space of k-spherical harmonics. For feL*(S),
the k-spherical harmonic component f, of f is defined by

(13) J@)=N(k, n) J J(@Py (@ - 1)dS(7) .
N

Note that (13) is the restriction of (1) on S and the harmonic extension of f, € #%(S)
is given by (6). The following lemmas are known:

LEMMA 5.1. Let fe L*(S)and f, be the k-spherical harmonic component of f defined
by (13). Then the expansion Z,‘:’: o Jx converges to f in the topology of L*(S); that is, we
have the Hilbert direct sum decomposition:

L¥(S)= é HKS) .
k=0
LEMMA 5.2. Let fe L*(S). Then we have
f(60)=1iTnl1 2f(tw)=lim j SK, @, tw)dS(n),  weS,
t 11 Jg

where the limit is taken in L*(S).
Put || f|2=(f, f)s. By Lemma 2.3, for f,eZ{C"*') we have
(14) £l 3 = 2% /yinll fill e -
Thus for f=Y fi, fie #*S) we have
zirnilzIZka;c“}ZW=1iTn;lZyk.n/2k12k“i;:”§ )

where f, is the harmonic extension of f;.
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Since
(15) 2%y w= Nk, ) ((n+1)/2)k!/I(k+(n+1)/2)= O(k"~V'?)

Pf(1z) converges in L2O(M) as t1 1. Therefore, we can define the Poisson transform
Py f of feL*(S) by

Py f(z)=1lim f f(@)K,(tz, w)dS(w) , zeM ,
11 Jg

where the limit is taken in L*(M). We call the mapping %,: f+> %, f the Poisson
transformation.

To determine the image of %, more exactly, we introduce the following spaces.
Let />0 and let Ag be the Laplace-Beltrami operator on S. Considering
Asfi={—k(k+n—1)}'f, for f,e #XS), we define the Sobolev space on S by

H'(S)= {fe LX(S); ki:lo(l +EHflE < OO} ;

where f, is the k-spherical harmonic component of f defined by (13). We denote the
norm on H'(S) by || * lzs)-
Similarly, we define the “Hardy-Sobolev” space on M by

H'@(M)={fe LZ@(M);EO(I R fil2 < oo} :

where f, is the k-homogeneous component of f defined by (9). We denote the norm
on H'O(M) by | * || e Note that HO(S)=L(S) and HO(M)=L20O(M).
Because of (14) and (15), for fe L*(S) we have

(16) IIQMf(Z)IIfm—1)/4(9(M>=1i11111 DI (B 2 Lol A
tt1k=0

=lim Y 12y, 251+ k2" V4 2 < oo .
tt1k=0

Thus
Py LH(S) > H" V*O(M) .
Since || fil|2=|ageob fil2 in (16), we can define the Cauchy transform %gg of
ge H"~V4O(M) by

Esg(w)=1im J 9(2)K o(tw, 2)dM(z) , weS,
111

M

where the limit is taken in L%(S). We call the mapping %s: g+ %59 the Cauchy
transformation.
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PROPOSITION 5.3. Let [>0. Then the Poisson transformation %, establishes the
following linear topological isomorphism:

Py H(S) =, H'T = DI4o(M) .
Moreover, the inverse mapping of Py is given by €s; that is, P,y ' =%.

PrROOF. Let feH'S). By the same argument as above, %,f belongs to
H'" = Vibg(M)c H"~ Y/4@(M). Thus we can consider €50 %, f. By (7), (8), Lemma 5.2
and the Fubini theorem, we have
CsoPuf(@)=fl®), feHS).

Therefore €5 %,=1d and %, is injective.

Let ge H'*®"~V4@(M). By the same argument as above, %gg belongs to
H'(S)< L*(S). Thus we can consider %,,-%sg. By (7), (8), Corollary 3.3 and the Fubini
theorem, we have

Pruobsg(2)=g(z), geH' " VO(M).

Therefore %, is surjective.
The continuities of %, and %,; ! are clear. qg.ed.

For f=Y " | fue \(R"* "), we have

0> n o 1
= +7;+?As>f(w)=0’ x=rw, weS.

Thus A f, =Y o {—k(k+n—1)}'f, for f,e Z{R"*"). Put
H'A\(R" ) ={feds(R"); (1+As)'f, (1 +Ag)' f)gn+1< 0},

Axf(x):<

then we have the following linear topological isomorphism:

F: HOM) ~, H'o4,(R"*Y).
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