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SEXTIC CURVES WITH SIMPLE SINGULARITIES
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Abstract. Nikulin's lattice embedding theory is used to determine the structure of
reduced sextic curves.

1. Introduction. One of the classical problems for plane algebraic curves over
the complex number field is to determine all possible configurations for a given degree
d. When d< 3 the answers are trivial. When d increases the problem becomes more
complicated. The classical method can be applied to the cases d=4, 5 to determine the
combinations of singularities of irreducible curves of degree d(cf. [1]). In [6], [7] and
[8] Urabe studied the combination of simple singularities of reduced sextic curves using
the surjectivity of the period map for K3 surfaces. However the complete solution was
not reached.

In this paper, we try to work out all configurations of reduced sextic curves. As
the first step we adopt the method in [6] to determine all possible combinations of
simple singularities. Here we use the full version of Nikulin's embedding theory of even
lattices to obtain a computer-aided solution of the problem.

The second step is to determine the configurations of curves for each combination
of singularities obtained in the first step. This requires further analysis of the Picard
groups of the corresponding double sextics (double coverings of the plane branched
along sextic curves). The idea is that every irreducible component of a reduced sextic
curve determines an element in the lattice satisfying certain numerical conditions. It
turns out that in turn these numerical conditions are sufficient to determine the ir-
reducible component (cf. Theorem 3.16). Basing ourselves on this we present a practical
method to achieve our purpose. In particular, we completely worked out the most
interesting case of maximizing sextics.

We also give a proof that there exist smooth sextic curves whose corresponding
double sextics are singular K3 surfaces with arbitrarily large discriminants.

Throughout this paper we work in the category of complex analytic varieties.
We are most grateful to Professor Tohsuke Urabe for his help in the preparation

of this paper. We are also grateful to the referee for numerous comments and sugges-
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tions, especially for pointing out an essential gap in the first version of our manuscript.

We are indebted to Professor C. T. C. Wall for his helpful comments on the figures of

sextic curves.

2. Combinations of singularities. A singularity p of a reduced curve C on a

smooth surface S is called a simple singularity if p is a double point of C or p is a triple

point of C but there is no infinitely near triple point of C over p. All Dynkin graphs

in this paper are restricted to those of types At (ί> 1), D} O*>4) and Ek (fc = 6, 7, 8). They

classify simple singularities for curves and rational double points for surfaces.

A subgraph of a Dynkin graph G (not necessarily connected) is a graph which can

be obtained from G by deleting some vertices and the edges issuing from them.

Let C be a reduced sextic curve with at most simple singularities. For each non-

negative integer k and each integer />4 let ak and bx denote the numbers of simple

singularities of type Ak and type D{ on C, respectively. For m = 6, 7, 8 let cm denote the

number of simple singularities of type Em on C. Then we say that the combination of

singularities on C corresponds to the Dynkin graph G = ΣakAk + YjbιDι + YJcmEm. The

number r = r(G) = Yjakk + Yjbιl + Yjcmm is called the rank of G. Our main result in this

section is the following theorem.

THEOREM 2.1. Let G = ΣakAk + ΣbιDι + ΣcmEm be a finite Dynkin graph. The

following conditions are equivalent.

1. There exists a reduced sextic curve in P2 whose singularities are all simple and

the combination of singularities corresponds to G.

2. One of the following holds:

(a) The Dynkin graph G is a subgraph of a graph in Table 2 at the end of the

paper.

(b) The Dynkin graph G is one of the following

l9 9A2 .

There are 519 (resp. 987, 975, 782) Dynkin graphs of rank 19 (18, 17, 16) satisfying the

above conditions.

REMARK 2.2. For rank less than 16 the complete list has already been obtained

by Urabe [6]. Some Dynkin graphs for higher ranks are described in [7] and [8].

The main theorem is obtained by a complete search for solutions. Most calculations

were done by computer. A similar algorithm has been briefly explained in [9, §3]. In

the remaining of this section we explain the main points of the approach.

It is well-known that double sextics are K3 surfaces. Using the surjectivity of the

period map for X3 surfaces, Urabe [6] proved the following theorem.

THEOREM 2.3 (cf. [6]). Let G be as in Theorem 2.1 with arbitrary rank r(G). Then

the following conditions are equivalent.
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1. There exists a reduced sextίc curve in P2 whose singularities are all simple and

the combination of singularities corresponds to G.

2. Let Q = Q{G) be the negative definite root lattice of type G. Let A denote the

unimodular even lattice with signature (3, 19). Let Zλ be a free lattice of rank

one with λ2 = 2. The orthogonal sum S = ZλφQ has an embedding S^Λ satisfy-

ing the following two conditions:

(a) If ηeΛ, η * λ = 0, η2= — 2 and mηeSfor some positive integer ra, then

rjeQ
(b) If η e A, η λ = 1 and η2 = 0, then mη φ S for every positive integer m.

REMARK 2.4. The primitive hull of S in A is defined to be §= {ocεA | mocεS for

some non-zero integer m}. For every G satisfying the conditions in the theorem, the

corresponding sextic curve can be so chosen that the Picard group of the double sextic

(a K3 surface) is isomorphic to S.

Let us fix some notions in lattice theory (refer to [4] for basic definitions). Let S

be a sublattice of a lattice S'. If S'/S is a finite group, then S' is called an overlattice of S.

Let S be an even lattice. Let S* = Hon(S, Z) be the dual of S. Then S*/S is a finite

abelian group. The bilinear form and the quadratic form extend canonically to a Q-

valued bilinear form and a (J-valued quadratic form on 5*. They induce a finite bilinear

form b: S*/S x S*/S -> Q/Z and a finite quadratic form q: S*/S -> Q/2Z satisfying the

conditions:

1. q(na) = n2q(a) for all n e Z and a e S*/S.

2. q(a + a') - q(a) - q(af) = 2b(a, af) (mod 2Z) for all a, a' e S*/S.

The form q is called the discriminantal form of the lattice S.

For a finite abelian group A, let l(A) denote the minimal number of generators of

A and let | A | denote the order of A. For a prime number /?, let Ap denote the /?-Sylow

subgroup of A. For an even lattice S let qp denote the restriction of the discriminantal

form q of S to (S*/S)p.

The ring of /?-adic integers is denoted by Zp. A /?-adic lattice is a free Zp-module

of finite rank equipped with a symmetric nondegenerate bilinear form with values in

Zp. Its discriminantal form is defined in a similar manner. For every finite quadratic

form q on a finite abelian /?-group A, there exists a /7-adic lattice of rank l(A) whose

discriminantal form is isomorphic to q. Suppose T is a /7-adic lattice with this property.

The isomorphism class of T is uniquely determined by q. Choose an arbitrary basis of

T. Then a matrix is determined by applying the bilinear form on this basis. The

determinant of this matrix is denoted by discr(T), which does not depend upon the

choice of the basis up to a factor in (Z*) 2 . We define discr(g): = discr(T) up to a factor

in (Zp*)2.

The following theorem is a key result in Nikulin's theory of embeddings of even

lattices.
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THEOREM 2.5 (cf. [2, 1.12.2]). The following conditions are equivalent:

1. There exists a primitive embedding of an even lattice with signature (ί+, ί_) and

the discriminantal form q into some even unimodular lattice of signature (/+, /_).

2. There exists an even lattice with signature ( / + — ί + , / _ — ί _ ) and the discriminantal

form —q.

3. There exists an even lattice with signature ( / _ — ί _ , / + — ί + ) and the discriminantal

form q.

4. There exists an even lattice S with signature (t+,t_) and the discriminantal form

q such that the following conditions are simultaneously satisfied:

(a) / + - / _ = 0 ( m o d 8 ) .

(b) / _ - ί _ > 0 , / + - ί + > 0 , /+ + /_-ί+-ί_>/(S*/S).

(c) (-1) ( / + " ί + ) I S*/S I =discr(gp) (mod Z * 2 ) for all odd prime numbers p for

which l+ +/_ -t+ - ί _ =l((S*/S)p).

(d) I S*/S I = ±discr(42) (mod Z2*
2) if l+ + /_ - 1 + - 1 _ = l((S*/S)2) and there

do not exist 2-adic lattices 7\ and T2 such that T£\TX^Z\2Z and the

discriminantal form of Tx © T2 is isomorphίc to q2.

Suppose that a Dynkin graph G = £ akAk + £ bιDι + £ cmEm is given. Our task is

to decide whether it satisfies the condition 2 of Theorem 2.3. Let S=Zλ®Q[G). Let

q: S*/S -• Q/2Z be the discriminantal form of S. The finite group A = S*/S and the

map q can be easily computed, once G is given. There is also an associated bilinear

form b: AxA^>Q/Z. Let λ = λ/2 be the dual of λ in S*. Let m: A-• β be a function

defined in the following way: Assume that [77] e A is represented by η = nX+φ, where

0 < « < l and φeQ(G)*. Then m(M) = n2/2 + max{(φ + ιA)2|Άeβ(G)}. This function is

well-defined since the lattice Q(G) is negative definite.

LEMMA 2.6. L^/ m: A^Q be the function as defined above.

1. IfφeQ(G)*\Q(G) and m([0])Φ -2, /λέ?n (φ + ψ)2φ-2 for every φeQ(G).

2. #"ίeβ(G)* αwrf m{[λ +1])Φ0, /Ae/ι (1+ ί + ψ ) V θ / o r ^vβrj ^eβ(G).

PROOF. 1. Assume that 0 2 = m ( [ φ ] ) > - 2 . So -2<(/> 2 <0. For any ψeQ(G),

(φ + ̂ ) 2 = φ 2 + 2 0 ^ +1^ 2 . Since φψeZ and ^ 2 e 2Z, we have (φ + ̂ ) 2 e φ2 + 2Z. Hence

2. Assume that (1+1)2 = m([I+ ί]) > 0. Since (1+ 0 2 = 1/2 4- *2, we have -1/2 <

ί 2 <0. For any ψeQ(G), (Z+t + ψ)2 = l/2 + (t + ψ)2=l/2 + t2 + 2tψ + ψ2el/2 + t2 + 2Z.
Hence (Γ+/ + 1/O2 9*0. •

The next step is to find all possible subgroups H of A satisfying the following two

conditions:

1. q(x)e2Z for all xeH. This means that H is isotropic.

2. There is no non-zero element hinH satisfying any of the following conditions:

(a) h = [0] for some φ e Q(G)* and m(h) = - 2.

(b) h = [ 1 + f] with t E β(G)* and m(h) = 0.
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The set of all such H is denoted by § .

Let T be the inverse image of H under the canonical map S* -• A. Then the con-

dition 1 implies that T is an even overlattice of S. If T has a primitive embedding into

A, it induces an embedding of S into A. By Lemma 2.6 the conditions 2a and 2b imply

that this embedding satisfies the conditions 2a and 2b in Theorem 2.3. Conversely, if

S has an embedding into A satisfying the conditions 2a and 2b in Theorem 2.3, then

the primitive hull S of S in A is an even overlattice of S and S c S * . The image of S

in A = S*/S obviously satisfies the conditions 1 and 2.

We have seen that each member H in ξ> corresponds to an overlattice T of S. Let

H1 = {x e AI b{x, h) = 0 for every heH}. Then q induces a map q': Hλ/H -> β/2Z, which

is exactly the discriminantal form of the lattice T. Then we can apply Theorem 2.5 to

determine whether T has a primitive embedding into A.

Following the procedure just explained we wrote a program to generate a list of

all Dynkin graphs satisfying the conditions in Theorem 2.3. We divided the whole list

into two parts. The first part contains the Dynkin graphs of rank 19, while the second

one contains all others. Then we wrote another program to generate a third list, which

contains all proper subgraphs of the members of the first list. It turns out that all

members of the third list belong to the second one. The only Dynkin graphs which

belong to the second list but not the third are those listed in 2b of Theorem 2.1.

Upon the referee's suggestion we make a comparison between our computer-aided

results and the results in Theorem A.3 and Theorem A.4 of [8]. By Urabe's simple

principle we can generate a large list of Dynkin graphs which can be realized as a

combination of singularities on a plane sextic curve.

PROPOSITION 2.7. The Dynkin graphs with 19 vertices which can be realized as a

combination of singularities on a plane sextic curve but do not satisfy the conditions of

Theorems A.3 and A.4 o/[8] are the following nine ones:

3. Irreducible decomposition of reduced sextic curves. In this section we will solve

the following problem:

Assume that there exist reduced sextic curves in P2 whose singularities are all simple

and the combination of singularities corresponds to G = ̂ akAk-\-^ιbιDι-\-YjcmEm. Find

all possible configurations of such curves.

A configuration of a reduced sextic curve means the information concerning the

number of irreducible components, the degrees of irreducible components and the way

each irreducible component passes through the singularities.

In order to give a more precise description of the configurations of a plane curve,
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we need the concept of local components of a curve at a singularity. Let Y be a smooth

surface, C a reduced curve on Y and p a singularity of C. Let (x, y) denote the local

coordinates of Y with /? = (0, 0). Then in a neighborhood of/?, C is the zero locus of

/(x, y) = 0, where /(x, y) is a convergent power series without multiple factors. In the

local ring Θγ p the power series/(x, y) has a unique factorization/(x, y) =/i(x, y) * */r(x, }>)

up to order and invertible factors. Take a small neighborhood U of p in Y such that

/x(x, j/),... ,/r(x, y) are regular in ί/. Let Cί9..., Cr be the zero loci of/^x, y), . . . ,/r(x, y)

in £/, respectively. Then the germs of curves at/? represented by C l 5 . . . , Cr are the /octf/

components of C at /?.

We use the Roman numerals I, II, III to denote the local components of a simple

singularity of type T by the following convention:

(1) When T is A2n, E6 or E8, there is only one local component, denoted by I.

(2) When T is A 2n _ x, the local equation can be written as (y - xn)(y + xπ) = 0. There

are two local components. Let I and II denote the ones with defining equations y — xn = 0

and y + xπ = 0, respectively.

(3) When Γis D2n+1, the local equation can be written as y(x2 —y2"'1) = 0. There

are two local components. Let I and II denote the ones with defining equations y = 0

and x2—y2n~1= 0, respectively.

(4) When Γis D2n9 the local equation can be written as y(x — yn~Λ)(x + yn~Λ) = 0.

There are three local components. Let I, II and III denote the ones with defining

equations x — yn~1=Q, x + yn~ι and j^ = 0, respectively.

(5) When T is EΊ, the local equation can be written as y{y2 — x3) = 0. There are

two local components. Let I and II denote the ones with defining equations y = 0 and

y2 — x 3 = 0, respectively.

The notations is illustrated in Figure 1.

D2n(n>2): III D2n+ί(n>2):

EΊ: I

I II I

FIGURE 1. Local components of simple singularities.
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Let/7 be a singularity of type Γ, where Γis An, Dm or Ex. The set of local components

of p is denoted by srf(p) or J / ( T ) . According to Figure 1, s/(A2n) = {l}, stf{A2n_1) =

{I, II}, J / ( D 2 W ) = {I, II, III}, etc. For a subset £ of J / ( Γ ) we define a non-negative inte-

ger δ{β, T) by the following rules:

1. (5(0, Γ) = 0 for any T;

2. δ({I},A2n) = n;

= £({11, III}, D2n)= 1, <5({I, II, III}, D2n) = n+ 1;

5.

6.

7.

8.

Let C be a reduced sextic curve on P2 with simple singularities as its only sin-

gularities and P the set of singularities of C. Let C be a union of some components of

C. For each pεP, let J / C ' ( p) denote the set of all local components in J / ( p) that are

contained in C. Let d(C) denote the degree of C. Then the degree d(C) together with

the collection {^c{p)}peP are called the characteristic data of C. The characteristic data

of all irreducible components of C give the configuration of C.

Assume that C is an irreducible component of C with characteristic data (d(C'),

{^c'(P)}pep)' Then the geometric genus of C can be calculated by the well-known

formula

(1) g(C) = (d(C) - \){d{C) - 2)/2 - Σ <5(^c( P\ Ά p)),

where T(p) is the type of p.

Let π 0 : Jf0 -• P2 be the double cover of P2 branched over a reduced sextic curve

C with simple singularities as its only singularities. Let us recall the canonical resolution

of the singularities of Xo.

The construction is inductive. Let Yo denote P2 and C o denote C. Start with 7 = 0.

If Cj is a smooth curve on Yj then stop the process. Otherwise choose an arbitrary singu-

lar point Pj of Cj. Let πij be the multiplicity of the curve Cj at pj. Let σj+1\ Yj + x -• Γy be

the blowing-up of Yj at /?,• and let Ej+1 = σj+γ(p,). Then Cy+ x = σjV ^Cj ) — 2[ra / /2]^^ j

is a reduced curve, whose divisor class is even. Here [m ; /2] denotes the largest integer

not exceeding mj/2. Let πj+1: Xj+1 -> Yj+1 be the double cover of Yj+1 branched over

Cj+ί. Then there is a unique morphism τj+ί: Xj+1 -*Xj such that the diagram

~V J *• Y
Λj+1 > Λj

Ύ>
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is commutative. This process terminates after a finite number of steps (say r steps). The

smooth surface Xr is a K3 surface, known as a double sextic corresponding to the sextic

curve C. Let X=Xr, τ = τ1— τ Γ 5 / = π Γ , Y= Yr, σ = σ1 σr and η = πoτ. Then we have

a commutative diagram:

x-τ

\
(2)

Note that τ is the minimal resolution of rational double points on Xo.

DEFINITION 3.1. Let G = YJγ Gt be a Dynkin graph with rank less than or equal to

19, where Gt is An9 Dm or Ex. Assume that there is a set of data @j = (dp {s/j(G^}1^i^r)9

j= 1, . . . , s, in which dj is a positive integer and s/j(Gi) is a subset of j/(G f) for every

/ We say that these data form a virtual decomposition of G if the following conditions

are satisfied:

0) Σ = 1 4 = 6;
(2) for each i = 1, . . . , r, (^(Gf), . . . , s/s(Gd) is a partition of the set J / ( G ; ) ;

(3) for eachy= 1, . . . , s, (dj- l ) (</,-2)/2-Σ; = 1 δ(s/j(Gd, G f)>0,

(4) for each pair 1 <j<k<s, d, <4 = Σ •= x ^ ( G J ^ ( G ^ ) , where ^ ( G , ) ^ ( G ^ is

the intersection number of the local curves Σ D e ^ . ( G i ) ^ and X

DEFINITION 3.2. Let {&~(dj9 {^j(Gi)}1<i<r)}j=li_^s be a virtual decomposition

of G. For 1 < k < 6, let «fc denote the cardinality of the set {j\ 1 <j<s, dj = k}. Then the

vector (n1,..., n6) is defined to be the total degree of the virtual decomposition.

Let (wΊ,..., H'6) be the total degree of another virtual decomposition. Then we

define (n1, . . . , « 6 )<(« /

1 , . . . , ri6) if there is some 1 <m<6 such that wJ = «} for 1 <y'<

If C = CΊ + •+ Cs is a decomposition of the sextic curve, then the characteristic

data of C l 5 . . . , Cs obviously form a virtual decomposition of the Dynkin graph of

the singularities of C, but an arbitrary virtual decomposition of a Dynkin graph G

certainly need not come from the decomposition of a sextic curve.

Let G = YjiGi. For each /, let Aut(Gj) be the permutation group on srf{G>) defined

as follows: If GX = D^ then Aut(Gi) is the full symmetric group of s/(Gi) = {I, II, III};

if Gi = A2n-1 or Gi = D2n with n>2 then Aut(G^) is the group generated by the trans-

position of local components I and II; in all other cases Aut(Gt.) = {1}. Then Aut(Gj)

acts on the set of all subsets of ^ ( G f ) . This action induces an action of Aut(G) =

Yli Aut(Gf) on the set of virtual decompositions of G. If two virtual decompositions

are in the same orbit then they are said to be equal. Obviously if two equal virtual

decompositions come from two irreducible decompositions of sextic curves, then these

two sextic curves have the same configuration.
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Let p be a simple singularity on C. Let X be the double sextic constructed in the

diagram (2). The point UQ x(p) on Xo is a rational double point of Xo. The dual graph

of the exceptional divisor η~1{p) is a connected Dynkin graph of type A, D or E, as

shown in Figure 2.

o—o—o— —o—o

o—o— —ό—o

o — o — ό — o — o

I
o—o—o—o—o—o
ex e2 e3 e4 e5 e6

o—o—ό—o—o—o—o
eγ e2 e3 eA e5 e6 eΊ

FIGURE 2. Dynkin graphs of rational double points.

For each Dynkin graph G in Figure 2, the root lattice Q(G) is generated by the

vertices el9 e2,... . They correspond to the ( —2)-curves in the exceptional divisor. The

product of each et with itself is —2 and if iΦj then et ej= 1 or 0 depending on whether

there is an edge connecting et and e, . Let β be an element of Q(G) ®ZQ. Then β = YJi ciei

with CIEQ. We defined the weight of β to be the cardinality of the set {/|cf^Z}.

Obviously the weight of β is zero if and only if β e Q(G).

Let β = Σicieb βf = Σi^i with ch c[eQ. We define β>β' if and only if c{>c\ for
every \<i<r.

Let U be a small open neighborhood of/? such that the irreducible decomposition

of C n U coincides with the local decomposition of C at p. Let C be an irreducible

component of C n U. Then

(3) ι

where C' is the proper transform of C in X. The divisor ]Γ α ^ is called the associated
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divisor of the local component C at p. The associated divisors for the local components

in Figure 1 can be easily computed using the canonical resolution described before.

They are listed in Table 1. If Γis one of An, Dm and Eh and Bes/(T), then we denote

by (x(B) the associated divisor of B.

By (3) we have OL(B)/2 e Q(G)* and i(a{B)) = α(£), where i denotes the involution of

X associated with the double cover/: X-+Y.

TABLE 1. Associated divisors.

A2n I: 2(έ?1+2έ>2+ + neH + neH+1 + + 2e2n_ί+e2n)

Λ2n-i I: ex + 2e2 + +n£?M + ( n - l K + 1 + + 2e2π _ 2 + e2 π _ x

II: ^ + 2 ^ + • +nen + (n-l)en + ι+ + 2e2n,2 + e2n_ί

D2n I: e,+2e2 + +{2n-2)e2n_2+(n-l)e2n^1+ne2n

II: e i + 2 e 2 + + ( 2 n - 2 ) e 2 n _ 2 + n e 2 n _ 1 + ( H - l ) e 2 n

III: 2έ?! +2e2+ + 2 e 2 n _ 2 + e 2 n _! +e2n

^2«+i I: 2 e x + 2 β 2 + +2e2n.^e2n + e2n + ι

II: 2(

II: 4eί + 8e2 + 12e3 + 9e4 + 6e5 + 3β6 + leΊ

The following three lemmas are easy to check in terms of Table 1.

LEMMA 3.3. Let T be An, Dm or Et. Let δ be a subset of stf(T\ Let δ' = s/(T)\δ

E=ΣBe,oi(B) andE' = ΣB-e*'<<BΊ. Then

1. EE'=-2δ δ'.

2. E{E'-E) = %δ{£,T).

3. The weight of E/2 is equal to £ δ'.

4. E>E'ifδ($T)>0.

LEMMA 3.4. Let T be An, Dm or Et. Let £ and £' be subsets of srf{Ί). Assume that

Σ α(£)> Σ α(#)
BeS B<=£'

Thenδ(δ, T)>δ(£\T).

LEMMA 3.5. Let T be An, Dm or Et. Let £ and £' be subsets ofs/(T). Assume that

the following conditions are satisfied:

2 ΣB
3. Either δ(S,T) = Q or δ{S',T)>0.

Now we discuss the global decompositions of sex tic curves. In the remaining of

this section, C always denotes a reduced plane sextic curve with only simple singularities,
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p= I pu . . . 5 pr} denotes the set of singularities of C and Gt denotes the Dynkin graph

of Pi for /= 1,. . . , r. Let λ be the divisor class of the pull-back of a line in P2 under η.

Thenλ 2 = 2.LetS = Z Λ + © Γ _ g(G.) and let Q{Gi) and § denote the primitive hulls of
i — 1

Q(Gi) and S in H2(X, Z), respectively. They coincide with their primitive hulls in Picpf),

since Pic(X) is always primitive in H2(X, Z). For any divisor D on X, its canonical image

in H2(X, Z) is denoted by [D].

Assume that βeS. Then β can be expressed as dλ + YJi = 1βh where deQ and

βieQ(Gi)®zQ' Let wt be the weight of βt. The w/g/zί of β is defined to be £ ' = 1 vvf.

Let {£&j = (dp {^(Gj)} i < i<r)}j = i,...,s be a virtual decomposition of G. Then for

each j=l,...,s,Dj = d//2 - £ [ = χ Σ Λ e ^ ( G i ) α(5)/2 is an element of S*, where S* is the

dual lattice of S = Zλ+

LEMMA 3.6. Lei G = Σ i = i ^ ^ ^ e Dynkin graph corresponding to the simple

singularities of C. Let {@j = (dp {^j(Gi)}1<i^r)}j=ίttmmtS be a virtual decomposition of G.

Let Dj = Djλl2-Σr

i=ί ΣB^^A^I2^^
 ! ' ' s' Then Dl^ ~2for every*J and the

weight of Dj is equal to dj(6 — dj).

PROOF. By (3) of Definition 3.1 and Lemma 3.3 we have

= Σ(Y Σ <W)( Σ «(β'))-( Σ *

Σ «(
i=l \Bestj(Gi)

Hence

Σ
βes/j(Gi)

The second statement follows from Lemma 3.3 and the condition (4) of Defini-

tion 3.1. •

COROLLARY 3.7. Let \β~{d^ {^//(Gi)}i^i^r)}i=i,...,s be a virtual decomposition

of G = YJχGi. Let Djz=djλl2-(Yj

r

i=1YjBe^ ( G ) α(£))/2 for 7 = 1 , ...,s. If s>\, then

for i

COROLLARY 3.8. Let {^j = (dp {^, (Gi)}i<i<r)}j=i,...,s be a virtual decomposition

ofG = Yj\Gi. ^ ^ ^ r f ^ - ί Σ . ^ j i β ^ K c o ^ / 2 / ^ 1 ' - - - ' ^ / r ^ e P i c ( X ) , then

PROOF. Since D2>—2, the Riemann-Roch theorem implies that either \Ό }\Φ0

or I -Dj\Φ0. However, | ~Dj\ = 0 for D/ = dj>0. •
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LEMMA 3.9. Assume that C is an irreducible component of C with characteristic

data {d(C'\ {^c(^i)}i<ί<r) Denote the proper transform of C in X by C. Then

(4) C'~f
ΐ = l

PROOF. The definition of associated divisors for local components implies the

equality (4) immediately. •

LEMMA 3.10. Let X be the K3 surface in the diagram (2). Let Z be an effective

divisor on Xsuch that Cγ =η^(Z) is an irreducible component of C. Assume that deg(C1) =

d. Then [Z] eS and the weight of[Z] is equal to d(6 — d).

PROOF. Let Zγ be the irreducible component of Z such that η(Z1) = Cί. Then Zγ

is contained in the ramification divisor of/. So [ Z J e S . Since λ(Z — Z 1) = 0, we have

[_Z-Z{]eQ{G). Hence [ Z ] e S and the weight of Z is equal to that of Z 1 ? which is

equal to d(6-d) by the results of Lemmas 3.3 and 3.9. •

LEMMA 3.11. Let/: X-> Y be the double cover as in the diagram (2). Let i denote

the involution of X associated with the double cover. Let D = dλβ — YJ._ μ^ePic^),

whered>0andμiE Q(Gι). Assume that ι(D)~D and one of the following two conditions

is satisfied:

(1) d<3;

(2) d=3 and 4 μ ί > Σ β e ^ ( G i )
α C B ) / < 9 r s o m e L

Then ι(Z) = Z for every Zε\D\.

PROOF. Since ι(D)~D~Z, we have 2Z~Z+ι(Z) = f*(W) for some effective

divisor W on Y. Let B be the branch locus o f / o n F, and L a line on P2. By the

definition of σ: Y-*P2, there is an effective divisor A on Y with B + 2Δ ~ 6σ*L and

σ±Δ = 0 . Then

H°(X, ΘX{2Z))^H°{XJ*(ΘY(W)))^H°(Z Θ(W))®H°(Y, Θ(W-3σ*L + A)).

If d<3 then (W-3σ*L + A)σ*{L) = d-3<0. So H°{Y, Θ(W-3σ*L + A)) = 0. Let us

consider the case d = 3. Let 5 denote the proper transform of B in X. We can write

B= C + Σ [ = x Ah where C denotes the proper transform of C in X and Άi is an effective

divisor with support contained in η~1(pi). We have/*(P^ — 3σ*L + J ) ~ 2 Z — B = 2Z —

; 1 ; l ( W ; l ; 1
^ , ) w h i c h i s n o t effective by the condition (2). So H°(Y,Θ(W-

3σ*L + zl)) = 0 too. Hence H°(X, ΘX(2Z))^H°(Y, Θ(W)). This implies that every member

of 12Z| is the pull-back of a member of | W\. In particular, ι(Z) = Z. Π

LEMMA 3.12. Let C be a reduced sextic curve with simple singularities as its only

singularities. Let G be the Dynkin graph corresponding to the singularities of C. Let

}j=i,...,s be a virtual decomposition of G such that Dί = d1λ/2 —
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Σ = 1 Σ β e ^ l ( G f )

α ( β ) / 2 G P i c ( Z ) Let z^\Di l Ifl<dχ <2, then η(Z) is a curve of degree
dx contained in C.

PROOF. Let Zx be the sum of all irreducible components of Z with non-zero
intersections with λ. Then ι(Z1) = Z1, since ι(Z) = Z by Lemma 3.11. It follows that
[ Z J G S .

Let C1=η(Z) = η(Zί). If we can show that deg(C1) = d1, then Zx is contained in the
ramification divisor of/, since ι(Z1) = Z1.

Suppose that deg(C\) < d1. Then degίQ) = 1 and dx = 2. In this case we have Zx ~
/*(C1), where Cγ is the proper transform of C1 in Y. So the weight of [ Z J is zero.
Since Z—Zγ is effective and λ(Z—Z1) = 0, we have {Z—Z{\eQ(G\ This implies that
the weight of [Z] is zero, contradicting Corollary 3.7. Hence άeg(C1) = d1. •

LEMMA 3.13. Lei {^ = (</,-, {^(Gi)}i<i<r)}./=i,...,s ^ fl virtual decomposition of
G = Σ\Gi. Let Dj = djλl2-Σ^1ΣB^j{Gi)a(B)/2forj=l,...,s. Assume that DUD2G

Pic(Z) β«d d2<3. Then \D2-D1\ = 0.

PROOF. If dt > d2 then the conclusion is obvious. So we discuss the following two
cases:

(1) dί<d2. In this case we have dx = \ and d2 = 2. Suppose that there exists
Ze\D2 — Dί\. Since Zλ=\, Lemma 3.11 implies that η(Z) is an irreducible component
of C. By Lemma 3.10 the weight of D2 — D1 is equal to 5. However the weight of
D2 — Dx is equal to that of D2 + DU which is equal to 9 by Lemma 3.3 and the condition
(4) of Definition 3.1, a contradiction.

(2) d1=d2. Suppose that there exists Ze\D2 — D1\. Since Zλ = 0, Z is the sum
of ( —2)-curves. Hence ZeQ(G), which implies that the weight of D2 — Dί is zero. How-
ever the weight of D2 — D1 is equal to that of D2-\-D1, which is equal to 2^(6 — 2^)
by Lemma 3.3 and the condition (4) of Definition 3.1, a contradiction. •

LEMMA 3.14. Let G = Σ\ Gt. Let {@j = {dj9 K ^ ) } ^ ^ , ) } ^ ^ . . ^ and {@'j = (d'j,
{^j(Gi)}ί<i^r)}j=ίt_mtS' be two virtual decompositions ofG. Assume that s = s' anddj = dfj

for l<j<s. / / Σ =1ΣBe^,(G ί)
α(5) = Σ = i Σ ^ ^ . ( G i )

α ( 5 ) / ^ * < ; < * , then these two
virtual decompositions are equal.

PROOF. It suffices to show that for any 1 < i < r there exists qi e Aut(Gf) such that

If Gι is not of type A2n_1, then it is obvious from Table 1 that Σΰe

Σue.0f.(Gi)
α(5) i m P u e s ^j(Gi) = s/j(Gi). So in this case we may take gt= 1.

It remains to consider the case Gi = A2n_ί. If j/z(Gί) = {I, II} for some \<l<s, then
s/liGi) is also {I, II}. It is obvious that J2/j(Gi) = s/'j(Gi) = 0 for aΆjΦL So we may
take ^ = 1 . If there exist Iφk such that ^^^ = {1} and s/k{Gύ = {U}, then either
^(G.) = {I}5 s/ί(Gi) = {11} or j^ί

/(Gi) = {Π}, ^'k{G^={\}. In the former case, we take
gt= 1 while in the latter case we take gt to be the transposition of I and II. •
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LEMMA 3.15. Let \β 3 — {d^ {^j(Gi)}i<i<r)}j=i,...,s be a virtual decomposition of
G=Σ\Gi- Let DJ=dJλl2-Σr

i=ιΣBe^j(GA^2 f°r some 1^J^S- Λssume that DJe

Pic(X). Let Zj be a member of \ Dj \ such that the image of Z, in P2 is an irreducible

component Cj of the sextic curve C with deg(Cy) = dj. Let (dj, {^c/^j)}i<i<r) be the

characteristic data of Cj. Then

Σ oc(B)= Σ *(B)
Bestj(Gi) Bestcj(Gi)

for every \<i<r if one of the following conditions is satisfied'.

1. dj<3;

2. dj = 3 and δ(s/j(Gk), Gk)>0 for some \<k<r.

PROOF. Let Z be the irreducible component of Z, such that the image of Z

in P2 is Cj. Then Z ~ J / / 2 - £ ' = 1 £ B e ^ c (Gi)α(£)/2 by Lemma 3.9. Since the effec-

tive divisor Zj-Z is in Q(G), we have ΣL^C {GAB)I2-ΣB^ {G)^B)/2eQ(Gi) and

ΣB,^GAB^ΣB^ΛGAB) for a 1 1 » ̂ ' - J l

Ifdj<39 then δ(s/Cj(G& Gd = 0 for every 1 <i<r. Lemma 3.5 implies ΣBES/J(GAB) =

Σβ^CjiGi)^^-

If dj = 3 and δ(s/j(Gk)9 Gk)>0 for some 1 <k<r, then δ(s/Cj(Gk), Gk)>0 by Lemma

3.4. Hence δ{^c.(G^ Gι) = 0 for all /#&, since C7 has at most one singularity. The result

follows from Lemma 3.5 immediately. •

THEOREM 3.16. Let G = Σ\=1Gι be a Dynkin graph with rank less than or equal

to 19. Let S=Zλ®Q(G), λ2 = 2. Let {2j = (dj9 {^j(Gi)}1<i<r)}j=1,...,s be a virtual

decomposition ofG. Let L>j = djλ/2-Σr

i=1ΣBe^j{Gί)θL(B)/2forj= l,...,s. Then there is

a reduced sextic curve C such that the characteristic data of its irreducible decomposition

is exactly equal to {^}J=i,...,s if and only if there is an over lattice T of S satisfying the

following three conditions:

1. The lattice T has a primitive embedding in the even unimodular lattice with

signature (3, 19) and has the following properties (a) and (b):

(a) there is no teT—S such that tλ = 0 and t2 = — 2;

(b) there is no teT such that tλ = 1 and t2 = 0;

2. The canonical images of Du ..., Ds in S*/S are in T/S;

3. For every possible virtual decomposition \β'~(άiy {^j(Gi)}ί£i^r)}j=ltm_tS' of

smaller total degree, there is some \<k<s' such that the canonical image of

in S*/S is not in T/S.

PROOF. Sufficiency: Assume that the conditions 1-3 are satisfied. By Theorem

2.3 and the condition 1 there exists a reduced sextic curve C whose combination of

singularities corresponds to the Dynkin graph G. Make a canonical resolution of the

double cover of P2 branched over C and let X be the K3 surface in the diagram (2).

We may assume that Γ^Pic(X).

Consider the following three cases.
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Case I: s = 1. It suffices to show that C is irreducible. Otherwise, the characteris-
tic data of all irreducible components of C would form a virtual decomposition of
G satisfying the condition 2 but violating the condition 3.

Case II: s = 2 and d1=d2 = 3. First we assume that ^(^(G^), Gk)>0 for some
1 <k<r. By 4 of Lemma 3.3 we can check that Dx satisfies the condition 2 in Lemma
3.11. Take Ze\Dx\. Then ι(Z) = Z by Lemma 3.11. Since d1 = 3, there exists an ir-
reducible component Z x of Z such that λZγ is an odd number and Z x is contained in
the ramification divisor of/. If λZ1 = 1, then the image of Zγ in P2 is a line component
of C So the set of characteristic data of the irreducible components of C is a virtual
decomposition with smaller total degree. This would violate the condition 3. Hence
λZ1 = 3. This implies that the image Cγ of Z in P2 is an irreducible cubic curve which
is a component of C. By Lemma 3.15 we have

(5) Σ Σ «(B)=Σ Σ «(β).
i=l BejtfCί(Gi) i=l BerfίiGi)

Let C2 = C—C1. Then C2 is irreducible, for otherwise the characteristic data of the
irreducible components of C would be a virtual decomposition of smaller total degree.
Hence

Σ Σ «(B)=Σ Σ m-ί Σ <B)
i=ί Be^c2(Gi) i=l Best(Gi) i=l Be^c,(Gi)

= Σ Σ m-Σ Σ m

= Σ Σ m
i= 1 Bejtf2(Gi)

by (5). Lemma 3.14 implies that the virtual decomposition \βu <2)2} is equal to the
characteristic data of the irreducible components of C.

It remains to consider the case where δ{s^x{G^ Gi) = δ(s^2(Gi), Gi) = 0 for all 1 <
i<r. Then all G/s are of type A2n_γ. In this case, we have D1~D2 and Dl = 0. Hence
I Z>! I is a pencil of elliptic curves on X. Let R denote the ramification divisor of/. Then
R^2D1. Since R is a smooth reduced curve, R is the union of two nonsingular elliptic
curves, each of which is linearly equivalent to Z)^ It is easy to see that the characteristic
data of their images in P2 are equal to 2fv and Q)2 respectively.

Case III: ds < 3 for some/ After a rearrangement of the indices we may assume
that \<dγ< <ds. Since dί+-- +ds = 6, we have ds_x<3. Take ZJE\DJ\ and let

Cj = η(Zj) for j= 1,..., s— 1. Then every C; is a curve of degree dj contained in C by
Lemma 3.12.

First of all, Cx is irreducible, for otherwise the characteristic data of the irreducible
components of C would give rise to a virtual decomposition with smaller total degree,
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which would contradict the condition 3. Hence Σ " = 1 Σ β e ^ C i (

by Lemma 3.15.

Let k be the largest integer such that

( i ) k<s-l;
(ii) C l 5 . . . , Ck are distinct irreducible components of C;

Σ ; = 1 Σ ^ c / β , ) Σ;=1Σi,βJ,J(cf,
We would like to show that k = s— 1. We have already seen that fc>l. Suppose

that k<s— 1. First we show that C f c + 1 does not contain any of C 1 ? . . . , Ck. Indeed, if

Cj were a component of Ck+1 for some j</τ, then there would be an irreducible

component WoίZk+ί such that η(W) = Cj. But ^ ~ ^ / 2 - £ | = 1 £ B e ^ c ( G i ) a ( 5 ) / 2 by

Lemma 3.9. So W~Dj by (iii). This would imply that Zk + 1-We\Dkl\-Djl con-

tradicting Lemma 3.13. Secondly, we see that Ck + ί is irreducible, for otherwise

the characteristic data of the irreducible components of C would give rise to a

virtual decomposition with smaller total degree. Finally Lemma 3.15 implies that

Σ = i Σ β e ^ c k + 1(G ι)
α(β) = Σ = i Σ β e ^ f c + 1(G f)

α(β) τ h i s w o u l d contradict the maximality

of k. We conclude that k = s-\. Hence Cί,...,Cs-ί are distinct irreducible com-

ponents of the sextic curve C and Σ = i Σ β e ^ c . ( G i )
α ( 5 ) = Σ = 1 Σ β e ^ ( G i )

α W f o r e v e r y

\<j<s-\.

Let CS=C— Cx— - — C s _ x . Then Cs is an irreducible component of C by the

condition 3. It is obvious that

Σ Σ ί
i=l Besίcs(Gi)

The result follows from Lemma 3.14.

Necessity: Let C be a reduced sextic curve and C=C1-\- \-Cs. Take the virtual

decomposition {®</}J ! =i f . . . f S to be the characteristic data of C l 5 . . . , Cs. Let Γ=Pic(X) n

S. Then the conditions 1 and 2 are satisfied. By the proof of the first part of the theorem

the condition 3 is also satisfied. •

COROLLARY 3.17. Let Xbe the K3 surface in the diagram 2. Let SeY\c{X) be the

subgroup generated by the divisor classes of the pull-back of a line in P2 and the exceptional

divisors of τ. Let T be the primitive hull of S in Pic(X). Then the virtual decomposition

associated with the characteristic data on irreducible components of C is uniquely

characterized by the conditions 2 and 3 in Theorem 3.16.

COROLLARY 3.18. Let G = ΣakAk + ΣbιDι + YjcmEm be a finite Dynkin graph of

rank less than or equal to 19. Let Q = Q(G) be the root lattice of type G. Let A denote

the unimodular even lattice with signature (3, 19). Let Zλ be a free lattice of rank one

with λ2 = 2. Assume that the orthogonal sum S=Zλ®Q has a primitive embedding into

A, Then there exists an irreducible sextic curve in P2 whose combination of singularities

corresponds to G.
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PROOF. Take T=S and apply Lemma 3.9. •

COROLLARY 3.19. If r(G)< 10, then there exists an irreducible sextic curve whose

combination of singularities corresponds to G.

PROOF. If Gφ KL4l9 then S = Zλ® Q(G) satisfies the conditions of Theorem 2.5,
since /(S*/S)<rank(S)< 11 <22-rank(S) = / + + / _ - ί + - ί _ . Hence Shas a primitive em-
bedding into A. The result follows from Corollary 3.18. If G= \0Aί9 then a generic g\
of a rational curve A gives rise to a map from A into P2 whose image is a sextic curve
with ten ordinary double points. •

The significance of Theorem 3.16 is that it provides a method to determine all
configurations of reduced sextic curves. This can be achieved by the following steps:

(1) For a given Dynkin graph G, find the set 91 of all possible virtual decom-
positions of G.

(2) Use the method in the previous section to find the set § of all possible
overlattices of λZξ&Q(G) satisfying the conditions in 1 of Theorem 3.16.

(3) Find the subset 91' of 91 consisting of all virtual decompositions of G such
that all conditions in Theorem 3.16 are satisfied for some Teξ). This set 91' is the set
of all configurations of reduced sextic curves whose combination of singularities cor-
responds to G.

EXAMPLE. Let G = Σ*=ίGh where GX=D6, G2 = D5, G3 = AΊ, G4r = A1.

Step 1: It is easy to find that there are three virtual decompositions:
( i ) ®x = (6, {I, II, III}, {I, II}, {I, II}, {I, II}).
(ii) @x =(4, {I, II}, {II}, {I}, 0 ) .

(iii) ^ = (3, {III}, {II}, {I}, {I}).

Step 2: Determine lattice embeddings.
We have S = Zλ® £ * = 1 Q{G^ and

(6) S*/S = Q(Zλ)*/Q(Zλ) Θ QiGJVQiGJ Θ Q(G2)*/Q(G2)

The discriminantal form of S is determined as follows:
1. Q(Zλ)*/Q(Zλ)^Z/2Z is generated by bo = λβ with fog = 1/2.
2 Q(GλflQ(G1)^ZβZ®ZI2Zv& generated by b1=(e1+2e2

3e6)/2 and b2 = (e1 + 2e2 + 3e3 + 4e4r + 3e5 + 2e6)/2 with b\ = b2

2=-3β and
bxb2=-\.

3 β(G2)*/β(G2)^Z/4Z is generated by b3 = (2e1 +4e2 + 6e3 + 3e4 + 5e5)/4 with
fci 5/4.
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4. Q(G3)*/Q{G3)^Z/8Z is generated by bt = {

ΊeΊ)/S with bl=-7IS.

5. Q{GATIQ{G^ZβZis generated by bs = ej2 with b\=-1/2.

6. The direct sum in (6) is orthogonal.

Calculation shows that there is only one overlattice T of S up to automorphisms

of S satisfying the conditions in 1 or Theorem 3.16. The quotient T/S is generated by

β1 = b0 + b1+b2 + 2b3+4b4 + b5 and β2 = b2-\-4b^-\-b5.

Step 3: Check the conditions in Theorem 3.16.

For the virtual decomposition (ii) in Step 1, we have D1=b0 + b1+b2 + 2b3 + 4b4.

(mod S). One sees that the canonical image of Dx in S*/S is not in T/S. Hence the

condition 2 in Theorem 3.16 is not satisfied. Thus the virtual decomposition (ii) does

not correspond to an actual decomposition.

For the virtual decomposition (iii) one easily sees that Dlr D2 and D3 are con-

gruent to βu β2 and βχ+β2, respectively, modulo S. Thus the condition 2 in Theorem

3.16 is satisfied. The other conditions are easily checked. It is obvious that the virtual

decomposition (i) does not satisfy the last condition of Theorem 3.16.

Hence the sextic curve C with D6-\-D5-\-AΊ + Aί as its singularities consists of

three irreducible components: a cuspidal cubic, a conic and a line. Their intersections

are illustrated in Figure 3.

FIGURE 3. An example.

4. Maximizing sextics. Adopting the terminology in [3], we call a plane sextic

curve a maximizing sextic if all its singularities are simple singularities and the rank of

the Dynkin graph of the singularities is equal to 19. The double cover of the plane

branched over a maximizing sextic curve is birational to a singular K3 surface in the

sense of [5].

By using the method described in the previous section, we determine all possible
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TABLE 2.

EΊ + D12[2],

E7-\-D5+A5+A2l3'],

*E8+D119 E8+Dx

*E8 + A8+A3,

E7+D7 + D5, E7 + D7 + D4 + Au E7 + l

E7 + D7 + AA + Al9 £ 7 + 2Z)6[2], E7 + D6 + D5 + Al9

2 + 2^1,

E7 + Alx+Al9 * £ 7 + ^ 1 0 + ^ 2 ,

^7+^9 + 3^!,
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TABLE 2. (cont.)

D13+A5 + Al9

D12+D6 + Al9

6 + 2A2+Alt

3 + 2A2+Al9 *E6 + AΊ+A6, E6-\-AΊ-\-As-\-A1\

-A,, £ 6 + 2 ^ S + ^ [ 2 ] ,

6 + A5-\-2A3-\-2Aί,

*Dtl+A8

D9 + D6 + A3 + A1,

-Al9 D9-\-D4-\-A5-\-Aί,

+ A2+Al9

A + A19

+ 2A1,

D8-\-D5-\-D4-\-2A1,
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TABLE 2. (cont.)

-Au D8 + AA + A3 + A2 + 2Al9

6 + D5+A8,

2 + 2Aί[2'],

D5+A6+A5+A2 +
D5 + A6 + A3 + 2A2

5 + 2A2\2~],

')7 + D4 + A5 + A2 + Aι, *DΊ+Aί2,

2D5+A9,

D5 + A9 + A3 + A2[2], D5 + A9 + A3 + 2AU Ds + A9 + 2A2 + Aί[2'],

D5 + 2AΊ, DS + AΊ + A6 + AU

4+A9+A3+A2+A
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TABLE 2. (cont.)

3 + As+Al9 *.

Λ- A -X- A -X- A A I o /f \ A
1 2 ~ ' ~ / ^ 4 " ' 2 ~ ' ~ 1 ' 1 2 • ^ " 3 ' 1»

•**. i 1 "T" - ' I Λ "T" -*1 7 I* ^»-/l 1 9 -*i 1 1 l" £*•**• 3

Aίί+3A2+2A1, *A10 + A9[2], *A10 + A8-\-A1,
* A -\-A -\-Λ A Λ-A A-2 A *A ~\~A ~\~A

*A -\~2A -\-A *A

Λ- A Λ- A Λ- A A
Q l̂  f\ n \~ Si 3 "x Λ i 9 /I

"f A -\~2A -\-A *A ~\~ A -\~3A Λ-A 2A -¥~A

47+^4 + ^ ^ 2 ] , 2^7+^3+^(2,
iΊ + 2A2+Al9 *,

7 + 2A5+2At[2]9 A

3A5 + 2A2

configurations of all maximizing sextics. Due to the limit of space, we do not give the
list of configurations (available from the author upon request). Instead, we include the
number of configurations for each item in Table 2 in the bracket right after it. If the
number is omitted, it means that it is equal to 1. For example, E8 + A9 + A2 has two
configurations. Moreover, if an irreducible maximizing sextic exists for a given Dynkin
graph in Table 2 then it is marked with an asterisk. There are 128 irreducible maximizing
sextics.

REMARK 4.1. The same methods can be applied to determine the configurations
of other reduced sextic curves with simple singularities. The list is too long to be printed
here.

Once the enumeration of maximizing sextics has been settled, some questions raised
in [3] can be answered. Here are two of them.

(1) The exact upper bound for the discriminants of maximizing sextics.
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In the process of the computation, the discriminants of overlattices are evaluated.

So without much additional effort, we can find maximizing sextics with large discrim-

inant. The largest discriminant is 3600, the sextic curve is irreducible and its singularities

correspond to A7-\-2A4-\-2A2. This is the only sextic curve whose discriminant reaches

3600. The irreducible curve corresponding to 2A6 + A4 + A2 + Aί has discriminant 2940,

which is the second largest value.

(2) The existence of a smooth sextic whose double cover is a singular K3 surface

with arbitrarily large discriminant.

By definition, a singular K3 surface is a K3 surface whose Picard group has rank 20.

THEOREM 4.2. For any integer N, there exists a smooth sextic curve C in P2 such

that

1. the double cover X of P2 branched over C is a singular K3 surface;

2. the discriminant of X is greater than N.

PROOF. Obviously, we may assume that N>2. By Dirichlet's arithmetic progres-

sion theorem there are infinitely many prime numbers of the form \6n— 1. Take nine

distinct prime numbers pί = 16nί — \,.. .,p9 = 16n9 — l. For i = l , . . . , 9, let Ut be a lattice

of rank two generated by vt and wf such that υf = — 4, wf — — Ant and v Wi = 1. Let Zθ

be a lattice of rank one with θ2 = —2N. Let S be the orthogonal sum of Zλ, Uί9..., U9

and Zθ, where λ2 = 2. It is an even lattice. The abelian group S*/S is the direct sum of

Z/2Z, Z\pγZ,..., Z\p9Z and Z\2NZ. Then S has a primitive embedding into the even

unimodular lattice A of signature (3, 19) by Theorem 2.5. By the surjectivity of the

period map for K3 surfaces there exists a K3 surface X whose Picard group is isomorphic

to S. Since S does not contain an element η such that ηλ= 1 and η2 = 0, the complete

linear system | λ | determines a double cover from X to P2 branched over a sextic curve

C (see [6] for detailed arguments). We claim that C is smooth. Otherwise there would

exist a (— 2)-curve on X which has zero intersection with λ, but this is impossible because

the orthogonal complement of Zλ in S does not contain an element η with η2= — 2.

•
5. Other applications. The result we obtained so far has many potential ap-

plications. For example, one can consider the triple cover of 6-tuple cover over a

sextic curve. Since there are a lot of sextic curves at our disposal we may obtain many

examples of surfaces of general type with small invariants.

Here we mention two other simple applications.

5.1. Contact of two cuspidal cubics. Consider two cuspidal cubics Cx and C 2

on the plane. Here we always assume that Cγ and C 2 do not intersect at cusps. We ask

what are the possible ways of contact for C1 and C 2 .

Since C X C 2 = 9, the contact of Cx and C 2 can be described by a partition of 9. We

use a sequence (nu ...,nr) to denote a partition 9 = nί + +nr. We say that this

partition is admissible if there exist Ci and C 2 meeting at r distinct points with contact
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numbers nu ..., nr.

If a partition (nu . . . , nr) of 9 is admissible, then the Dynkin graph of the singu-

larities of the sextic curve C1 + C2 will be 2A2 + ΣiA2ni-1. The rank of this Dynkin

graph is 22 — r. This implies that r > 3. When r = 3 the sextic curve Cx + C 2 is maximizing.

Here we list all admissible partitions with r = 3:

(7,1,1), (6,2,1), (4,4,1), (3,3,3).

Of course this is only a sample. For other curves Cx and C2 with deg(C1) +

deg(C2) = 6 one may determine their contacts in a similar way.

5.2. Sextics with cusps. The irreducible curves with cusps of multiplicity 2 or 3

were discussed in [10] and [11]. Here we restrict to sextics with cusps of type A2n, E6

and E8 as its only singularities. Using our result all such curves can be enumerated.

Here we only give the list of all elliptic curves as follows.

3£ 6,

A18,

-\-A
8,

6 4 2 6 4, 6 4 2 4r 2 9A2 .

The last one is well-known, and is the dual curve of a smooth cubic. Note that

there are no rational curves with this property.
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