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Abstract. Concerning the topologically contractible curves embedded in the affine
plane defined over the complex numbers we shall present new conceptual proofs to the
theorem of Abhyankar-Moh and the theorem of Lin-Zaidenberg which are based on
the structure theorems of non-complete algebraic surfaces.

1. Introduction. In this paper we give new proofs of the following two results
from affine algebraic geometry.

THEOREM 1. Let C aC2 be a closed embedding of the affine line A*. Then there
is an algebraic automorphism of C2 which maps C onto the line {X=0}, where X, Y are
some affine coordinates on C2.

THEOREM 2. Let C cz C2 be an irreducible algebraic curve which is topologically
contractible. Then there exist affine coordinates X, Y on C2 such that in terms of these
coordinates C is defined by the equation {Xm= Yn}, where gcd(ra, n)= 1.

Theorem 1 was first proved by Abhyankar and Moh [1] and independently by
Suzuki [21]. Later on, several proofs of this result were found chronologically by
Miyanishi [14], Rudolph [20], Richman [19] and Kang [8].

Most of these proofs involve either somewhat heavy calculations or detailed
analysis of the singularity at infinity for the curve C The proof of Rudolph is short
and based on some basic results from knot theory (hence somewhat inaccessible to
algebraic geometers).

Theorem 2 was first proved by Lin and Zaidenberg [13]. Their proof involves deep
results from Teichmϋller theory.

In view of the importance of these results for affine algebraic geometry, it is useful
to have different ways of looking at these results. Our proofs of these results use
essentially the same ideas from the theory of non-complete algebraic surfaces. An
inequality of Miyaoka-Yau type proved by R. Kobayashi, S. Nakamura and F. Sakai
plays a crucial role in the proofs. The results from the theory of non-complete algebraic
varieties that we use have become by now well-known (except possibly for the inequality
of Miyaoka-Yau type). Once the basic results about non-complete algebraic surfaces
are assumed, our proofs become rather short and, we believe, more conceptual. In
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addition to these results, we only need some elementary facts about the singular fibres

of /^-fibrations on smooth surfaces (cf. Lemmas 7, 8, 9 in this paper).

2. Preliminaries. All algebraic varieties considered in this paper are defined over

the field of complex numbers C.

An affine space of dimension n is denoted by Cn. We denote C 1 by A1.

A smooth projective, rational curve with self-intersection number — n on a smooth

algebraic surface is called a ( —«)-curve.

A morphism φ from a smooth projective surface Y to a smooth curve B is called

a /^-fibration if a general fibre of φ is isomorphic to P1. Similarly, an ^-fibration and

a C*-fibration is defined, where C* denotes P1 — {two points}. A C*-fibration is said

to be untwisted if it is a Zariski-locally trivial fibration on a non-empty Zariski open

subset of the base. Otherwise, it is said to be twisted.

For any smooth irreducible algebraic variety X, let κ(X) denote the logarithmic

Kodaira dimension of X as defined by Iitaka in [6]. We will implicitly use the following

easy results about K.

(1) A smooth irreducible, affine curve B has κ(B)=—cc if and only if it is

isomorphic to A1, and ic(B) = Q if and only if B is isomorphic to C*.

(2) Let / : K-> W be a dominant morphism with V and W smooth varieties of

same dimension. Then κ{V)>κ{W). If further/is a proper birational morphism, then

the equality holds. If V is a Zariski open set of W, this implies κ(V)>κ(W).

For any topological space Γ, e(T) denotes its Euler-Poincare characteristic.

In what follows, by a surface we mean an algebraic surface and by a curve we

mean an algebraic curve.

Let W be a smooth quasi-projective surface and W a smooth projective

compactification of W such that the divisor A : = W— W has simple normal crossings.

We say that (W, A) is a minimal normal compactification of W if any (— l)-curve in A

meets at least 3 other irreducible components of A.

Let Wbe a smooth surface with a morphism g: JV^B, where B is a smooth curve.

For any scheme-theoretic fibre G of g, the greatest common divisor of the multiplicities

of the irreducible components of G is called the multiplicity of G. If the multiplicity of

G is greater than 1, then we call G a multiple fibre.

We now collect together the results from the theory of non-complete algebraic

surfaces that will be used frequently in our proofs.

LEMMA 1 (cf. [9]). Let X be a smooth irreducible surface with a morphism

φ\ X^>B onto a smooth curve B such that a general fibre F of φ is irreducible. Then

κ(X)>κ(

LEMMA 2 (cf. [10]). Let Xbe a smooth irreducible surface with κ(X)=l. Then X

contains a Zariski open subset U with a morphism φ: U-^B, where B is a smooth curve

and the general fibre of φ is isomorphic to either C* or an elliptic curve.
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The next result was proved by Miyanishi-Sugie and Fujita (cf. [16, Chap. I, §3]).

LEMMA 3. Let X be a smooth affine surface with κ(X) = — oo. Then X admits an
A1-fibration.

R. Kobayashi, S. Nakamura and F. Sakai have proved an inequality between
logarithmic Chern numbers of a smooth algebraic surface analogous to the well-known
Miyaoka-Yau inequality. We need the following consequence of the inequality (cf. [11],
[12], [17]).

LEMMA 4. Let X be a smooth affine surface with e(X)<0. Then κ{X)< 1.

This result can be regarded as a generalization of Castelnuovo's result that the
Euler-Poincare characteristic of a surface of general type is strictly positive.

LEMMA 5. Let V be a smooth affine surface and let φ: V^B be a morphism onto
a smooth curve B. Then

e(V) = e(B)e(F) + £(e(F()-e{F)),

where F is a general fiber of φ and the summation is over all the singular fibers of φ.
Further, e(F^) > e(F)for all i and the equality occurs if and only if either F s C or F= C*
and (F;)redSF (cf [21, §9] and [22, Lemma 3.2]).

The next result follows from R. H. Fox's solution of Fenchel's conjecture (cf. [2],

[3])

LEMMA 6. Let r > 3 and let Pi,P2,.. .9pr be distinct points in P1 and mu ra2,...,
mr arbitrary integers >2. Then there exists a finite Galois covering τ : B-^P1 such that
the ramification index at a point over pt is mi for i=\,2,...,r.Ifr = 2 and gcd(m1? m2) =
d>\, then we can construct a finite cyclic covering τ : B^P1 with the ramification index
datpl9p2.

We will often use the following elementary result about singular fibres of a
P^fibration on a smooth projective surface (cf. [16, Chap. I, 4.4.1]).

LEMMA 7. Let g: Y-+B be a Pι-fibration on a smooth projective surface and let
F be a singular fibre ofg, i.e. F is not isomorphίc to P1. Then the following assertions are
true.

(i) The reduced curve F r e d is a divisor with simple normal crossings and each
irreducible component ofFred is isomorphic to P1. Further, the dual graph of F
is a tree.

(ii) If a (—1)-curve E occurs with multiplicity 1 in the scheme-theoretic fibre F,
then F contains another {—X)-curve.

REMARK. From (i) it follows that any (— l)-curve in a singular fibre of g meets
at most two other irreducible components of the fibre. From (ii) it follows that in
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obtaining a relatively minimal /^-fibration starting from Y, we can successively contract

(—l)-curves other than E so that the image of E becomes a full fibre in a relatively

minimal fibration.

We now recall some easy properties of twisted and untwisted C*-fibrations. Let

φ: V->B be a C*-fibration on a smooth quasi-projective surface V. Then there exists

a projective embedding VczV such that φ extends to a /^-fibration Φ: V-*B. If φ is

twisted, then D: = V— V has a unique irreducible component which dominates B. We

call this irreducible component the horizontal component of D. If φ is untwisted, then

D has exactly two irreducible components dominating B. They are cross-sections of Φ

and also called the horizontal components of D.

The next result describes the nature of a singular fibre of a P1 -fibration arising

from a C*-fibration on an affine surface. For the elementary proofs, we refer the reader

to a paper of Fujita (cf. [4, Lemmas 7.6 and 7.7]).

LEMMA 8. Let f: S^B be an untwisted C*-fibration on a smooth affine surface S.

Let S c Y be a smooth compactification such that D: = Y— S has simple normal crossings

and Y admits a P1-fibration f extending f. Denote by D1, D2 the horizontal components

of D. Let F be a singular fibre off Assume that no irreducible component ofD contained

in F is a (— \)-curve. Then we have the following assertions.

(1) Suppose that FnS is irreducible and occurs with multiplicity > 1 in F. If further

Dr\F is disconnected, then the dual graph of F is linear and the closure ofFn S

is the unique (— \)-curve in F.

(2) Suppose that F is irreducible and FnSφ0. If DnF is connected, then F is

the closure ofFn S and D1nD2n Fφ 0.

REMARK. Lemma 8 is proved by a repeated use of Lemma 7 and the fact that S

is affine (and hence D is connected).

The next result follows easily from the observation that the irreducible components

at infinity in a smooth compactification X for C2 generate Pic(T) freely (since the Picard

group of C2 is trivial) (cf. [5, Proof of Lemma 3.2]).

LEMMA 9. Let φ: C2^B be a C*-fibration. Then we have:

(1) The fibration is untwisted, and B is isomorphic to P1 or A1.

(2) If B = Pλ, then every fibre of φ is irreducible and there is exactly one fibre

isomorphic to A1, if taken with reduced structure.

(3) If B^A1 then exactly one fibre is reducible and it contains two irreducible

components, say C l 5 C 2. Further, either Cί = C2 = A1 andC1, C2 intersect each

other transversally in a single point, or Cx=Al, C2^C* and they are disjoint.

All other fibres of φ are isomorphic to C* if taken with reduced structure.

The next result is the main point in the proof of the famous topological charac-

terization of C2 due to C. P. Ramanujam (cf. [13]).
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LEMMA 10. Let (X,D) be a minimal normal compactification of C2. Then the dual

graph of D is linear.

3. Proof of Theorem 1. In this section we prove Theorem 1. So, let C c C2 be
a closed embedding of the curve C isomorphic to A1. Denote the complement C2 — C
by V. Then e(V) = 0. By Lemma 4, κ(V)<\. The next result is the main step in the
proof of Theorem 1.

PROPOSITION. K(V)= —OO.

PROOF. Suppose that ic(V) = 0 or 1.
First consider the case κ{V) = 0. We choose a regular function/on C2 such that the

divisor of/is C. Consider the morphism φ: C2^AX given by/. Since/is a prime
element in the coordinate ring of C2, a general fibre of φ is irreducible. By Lemma 1
applied to the map φ\v: F->C*. we get

where Fis a general fibre of φ. Suppose κ(F) = — oo. Then F^ A1 and φ is an A 1-fibration.
Any A ^fibration on a smooth quasi-projective surface is trivial on a Zariski open subset
of the base curve. Hence V contains a Zariski open subset which is isomorphic to a
cylinder-like open set BxA1. It follows that κ(V)= -oo (cf. [16, Chap. I, §2.2]).

Hence assume that κ(F) = 0 and Fis isomorphic to C*. Namely, φ is a C*-fibration
and C is a full fibre of φ. But this contradicts Lemma 9 because the fibre containing
C must be reducible as C^A1.

Assume now that κ(V)= 1. By Lemma 2, Vcontains a Zariski open subset U with
a C*-fibration φ'. We need to consider three cases.

Case 1. φ' does not extend to a morphism on C2.

Then the closures of the fibres of φ' have a unique common point, say p, in C2.
This point cannot lie in V. For, otherwise V will contain a family of affine rational
curves with one-place at infinity and passing through p. By blowing up successively at
p and its infinitely near points, we resolve the base locus and get a smooth surface V
which admits a morphism to a curve with general fibre isomorphic to A1. But then
κ(V)= -oo as remarked above. Since Fis obtained from Fby a sequence of blowing-
ups, κ(V) = κ(V), contradicting the assumption that κ(V)=l. Hence peC. This gives
a C*-fibration φ: C2 — {p}^B such that φ' = φ\v.

We claim that B^P1. To see this we observe that since the closure of every fibre
of φ passes through p, every fibre of φ intersects the boundary of a small neighborhood
of p. Hence this boundary, which is a compact set, maps onto B and hence B is compact.

Clearly, the Picard group of C2 — {p} is trivial and any non-constant regular function
on C2 — {p} vanishes at some point. Hence the proof of Lemma 9 applies and shows
that all the fibres of φ are irreducible. This also implies that φ' is a C*-fibration on
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V. Note that clearly C2 — {p) is simply-connected. Suppose φ has three or more multiple

fibres m1F1,... ,msFs lying over the points pu . . . ,ps of P1. Using Lemma 6 we can

construct a finite Galois covering τ : B^P1 such that the ramification index at a point

over Pi is m^ Then the normalization of the fibre product (C 2 — {/?}) xPi2?, which we

denote by {(C2 — {p})xpιB}~, is a finite unramified covering of C2-{/?}, which is

impossible. Hence there are at most two multiple fibres for φ. If φ' has at most one

multiple fibre, then V contains a Zariski open subset U isomorphic to C* x C* and

hence ic(V)<κ(U) = 0. This contradicts the assumption that κ(V)=l. The same

argument shows that C—{p} is a reduced fibre of φ, for otherwise φ' has only one

multiple fibre. Hence φ' has exactly two multiple fibres. Let m1F1, m2F2 be the two

multiple fibres. Then again by Lemma 6, gcd(m1,m2)= 1.

Let X be a smooth projective compactification of C 2 —{/?} such that the divisor

D at infinity has simple normal crossings and there is a Px-fibration Φ: X-+P1 extending

φ. The fibration φ' is an untwisted fibration with one horizontal irreducible component

of D lying over p and the other coming from the compactification divisor for C 2 . We

now apply Lemma 7. Let C be the closure of C in X. Since C occurs with multiplicity

one in the fibre of Φ which contains it, using Lemma 7 repeatedly we can assume that

X has the following properties:

(1) D has two horizontal components Du D2 such that Dx lies over p and D2 is

an irreducible component at infinity for C 2 .

(2) The closure C of C in X is a full fibre of Φ.

(3) Z)1nZ)2nC=0.
(4) The fibre Ft of Φ containing Ft is a linear chain of smooth rational curves,

the closure Ft of Ft is the unique (— l)-curve in Ft and Du D2 intersect the two end

irreducible components of Ft for /= 1, 2 (cf. [4, Lemmas 7.6, 7.7]).

(5) Fl9 F2 are the only singular fibres of Φ.

Indeed, as C has multiplicity one in the fibre, by applying Lemma 7 repeatedly we

can make C a full fibre of Φ contracting (— l)-curves other than C in the fibre, which

also lie outside C2 — {/?}. In this process, the components Du D2 do not meet on C.

Hence the properties (1), (2), (3) hold. By a similar argument, (5) holds. For the proof

of (4), we use Lemma 8. For this, let E be any (— l)-curve contained in DnF,-. By the

remark after Lemma 7, E meets at most two other irreducible components of Fh and

if it meets two such irreducible components then it occurs with multiplicity > 2 in F f. In

the latter case E cannot meet either of Dί9 D2 as these are cross-sections. Hence we

can contract E and get a smaller compactification of C2 — {/?} which satisfies all the

properties of X. By this process we reach a situation where D n F t does not contain

any (— l)-curve. The hypothesis of Lemma 8 is therefore satisfied, and we may apply it.

Let Au Δ2 be the connected components of D containing Dί9 D2 respectively,

where Aγ contracts to/? smoothly. Since no irreducible component of Δ1 other than D±

is a (— l)-curve, we see easily that Dx is a (— l)-curve and Δ1 is a linear chain. As D1

is a cross-section and mt > 1, Ft contains at least one irreducible component of A1 for
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/=1, 2 which intersects D1. Clearly, X contains a Zariski open subset, say W, which
is obtained from C2 by a finite succession of blowing-ups at the point p such that A x

is the complete exceptional divisor. By the above observation, A x contains at least three
irreducible components and it is easy to see that after successive contractions of
(— l)-curves from A1 and its images, the image of C becomes singular at the point p,
where C is the proper transform of C in W. This contradicts the assumption that C is
a smooth curve. Hence the case 1 cannot occur.

Next we consider the case where φ' extends to a morphism φ: C2-+B. Then we
have two separate cases depending on whether or not C is contained in a fiber of φ. If
C is contained in a fiber, φ is a C*-fibration, and if C is not contained in a fiber, φ is
an Λ^-fibration and C is a cross-section.

Case 2. φ' extends to a C*-fibration φ: C2-*B.

Then φ is untwisted and B is necessarily isomorphic to A1 or P1 by Lemma 9.
Clearly, φ(C) is a point, say p0. The proof in this case is somewhat similar to the case
1 above. If B^P1, let Φ: X^B be a P^fibration on a suitable compactification of C2.
Then as in the proof of the case 1, the closure C of C is a reduced fibre of Φ, and φ
has exactly two multiple fibres m1Fί, m2F2 of relatively prime multiplicities. By
minimizing the compactification X of C2 by contracting (—1) curves contained in D
and the fibres of Φ, we may assme that the corresponding fibres of Φ are linear chains
of nonsingular rational curves, where D: = X—C2. The horizontal components Du D2

of D meet each other at a point in C (cf. [4, Lemma 7.7(1)]). Let Ft be the fibre of Φ
containing Ft for /= 1, 2. Since m{> 1, Fx contains at least two extra irreducible com-
ponents which meet the cross-sections Dl9 D2 and are contained in D. Then D1 and
D2 are branch points for the dual graph of D, where a branch point of the dual graph
signifies a vertex from which sprout three or more edges. In this case (X, D) is a minimal
normal compactification of C2, contradicting Lemma 10.

Next consider the case where B^A1. By Lemma 9, the fibre of φ containing C is
of the form C u C , where C'^A1 or C*. Consider also a suitable compactification X
of C2 with a /^-fibration Φ: JΓ—>/>1. The fibre over the point paD: = P1 —Bis contained
in D : = X—C2. As in the case 1, there are exactly two multiple fibres for the morphism
φ'\ V-+A1. Hence the morphism φ\v-c ' V-C' = C2-(CuC')-+C* has a multiple
fibre, say mF1 with m > 2. Let p: A -+P1 be a cyclic covering of degree m totally ramified
over φiFi) and/?^. Then the normalization Y of the fibre product (A—p~ι(po0))xAιC

2

is an unramified covering of degree m of C2, a contradiction.

Case 3. φ' extends to an Λ^fibration φ:

By Lemma 9, B^P1 or A1. As e(C2)=\, using Lemma 5 it is easy to see that
B^A1. Also, all the fibres of φ are irreducible by the count of the Picard number. They
are all reduced, for otherwise we get a finite unramified covering of C2 by the same
argument as in the latter case of the case 2 above. But then every fibre of φ is isomorphic
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to A1 and φ is a trivial A ̂ bundle by [7]. Hence V is isomorphic to A1 x C*, which
has κ= — oo, contradicting the assumption that κ(V)= 1.

This completes the proof of the proposition.

The rest of the proof is quite well-known. We briefly sketch it for the sake of
completeness. By Lemma 3, there is an A ̂ fibration φr on V. The fibres of this morphism
are closed in C2, for otherwise C2 contains complete curves. Hence this morphism
extends to an ̂ -fibration φ: C2-+B on C2 with the base curve B^A1. All the fibres
of this extended morphism φ are reduced and irreducible. As in the case 3 of the
proposition, φ is a trivial A ̂ bundle and C is a fibre of φ. So there exists coordinates
X, Y on C2 such that C is defined by X=0. This completes the proof of Theorem 1.

4. The proof of Theorem 2. Let C be a contractible irreducible curve in C2 and
denote by Vthe complement C 2 - C. Then e(V) = 0. By Lemma 4, κ{V) < 1. We consider
three cases as in the proof of Theorem 1.

Case 1. κ(V)=-oo.

Then by Lemma 3, there is an A ̂ fibration φ: V^>B. Since C2 is affine, it does not
contain any complete curves. Hence φ extends to an ̂ -fibration φ: C2^B\ where B'
contains B as a Zariski open subset. Next, φ extends to a /^-fibration on a smooth
compactification of C2. Clearly, C is contained in a fibre of φ. By Lemma 7, any fibre
of a /^-fibration on a smooth projective surface is a union of P1?s, hence C is smooth.
Therefore C = AX and the result is already proved in Theorem 1.

Case 2. κ(F) = 0.

Let / be a prime element in the coordinate ring of C2 such that C is defined by
/ = 0 . By Lemma 1,

where F is a general fibre of the morphism given by/. Hence κ(F) <0. But ̂ (i7) / — oo
as in the beginning of the proof of Proposition in §3, for otherwise, τc(F)= — oo. Hence
ic(F) = 0, so that F^C*. By Lemma 7 as before, any irreducible component of a
C*-fibration on an aifine surface is smooth. Therefore C is smooth and we are again
through.

Case 3. ic(V) = l.

Since V is aifine, by Lemma 2 and by the same argument as in the beginning of
the proof of the case 1 of Proposition in §3, there is a C*-fibration φ: F->2?. If this
morphism extends to a C*-fibration on C2 then C is mapped to a point and C is smooth
as above. If φ extends to an ^-fibration on C2, then C is a cross-section and hence
smooth and the result is proved by Theorem 1.
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Now assume that C is not smooth and that the rational mapping φ: C2-*/*1 given
by φ is not defined at a point p on C.

CLAIM 1. The point p is the only singular point ofC, and C is analytically irreducible

at p.

PROOF. Resolve the indeterminacies of the rational mapping φ: C2-+Pι by a
sequence of blowing-ups σ: W-+C2 at the point p and its infinitely near points, where
W is a smooth surface. Then the rational mapping φ gives rise to an ^-fibration
p: W^P1 such that the last exceptional curve of σ is a cross-section of p and the proper
transform C of C is contained in a fibre of p. The ^-fibration p is extended to a
Perforation p: W-+P1 on a smooth compactification W of W. By Lemma 7, every
singular fibre of p is a tree of nonsingular rational curves. Hence C" is smooth. This
implies that the point p is the unique singular point of C. Contractibility of C implies
that C is homeomorphic to A1. Hence C is analytically irreducible at/7.

The closure of any fibre of φ: V->B passes through the point p. As in the proof
of the case 1 of Proposition in §3, the restriction of p gives an untwisted C*-fibration
φ:C2-{p}^PK

CLAIM 2. (1) Every fibre ofφ is isomorphic to C* if taken with reduced structure.

(2) There are exactly two multiple fibres mx Fu m2F2 and φ is a trivial C*-fibration

outside the union of Fλ and F2.

(3) Let Fι be the closure of Fi in C2 for /= 1, 2. Then F1 and F2 are isomorphic to

A1. Hence C— {/?} is a reduced fibre ofφ.

(4) The curves Fx and F2 meet each other transversally at the point p.

PROOF. (1) Let F be a general fibre of φ. Then F^C* and C2-{p}-F is
an affine surface with e(C2 — {p} — F) = 0. Applying Lemma 5 to the C*-fibration
φ\C2-{p)-F: C2 — {p}—F^A1 we see that every fibre of φ other than Fis isomorphic
to C* if taken with reduced structure.

(2) If φ has three or more multiple fibres, then by Lemma 6 we can con-
struct a suitable ramified covering Δ^P1 such that the normalized fibre product
{(C2 — {p})XpiA}~ is an unramified covering of C2 — {/?}. But this is a contradic-
tion because C2 — {/?} is simply connected. Hence φ has at most two multiple fibres
and if there are two multiple fibres then their multiplicities are relatively prime. Sup-
pose φ has at most one multiple fibre. Then κ(C2 — C)<κ(C*xC*) = 0, which is a
contradiction. Hence φ has exactly two multiple fibres m1F1, m2F2 and φ is a trivial
C*-fibration outside the union of these two multiple fibres.

(3) Since φ is untwisted, C2 — Fi contains C* x C* as a Zariski open subset for
/= 1,2. Hence κ{C2 — Ft ) < 0. Note that Fi is a contractible curve because F{ is isomorphic
to C* and Ft is the union of Ft and the point p. Then, by the proofs of the cases 1 and
2 above, we see that Ft is isomorphic to A1, hence Ft is smooth. Since C is a singular
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curve, C is distinct from Fx and F2. So, C—{p} is a reduced fibre of φ.
(4) Note that C2-(F1uF2) is a trivial C*-bundle over C*, hence isomorphic to

C* x C*. Hence κ(C2 — F1 \JF2) = 0. Then the assertion follows from Lemma 11 below.

LEMMA. 11. Let Cx and C2 be irreducible curves on C2 such that C1 and C2 are
isomorphic to A1 and that Cx and C2 meet in one point p with local intersection multiplicity
n. Let V=C2-(C1ΌC2). Then κ(V) = 0 or 1, and ic(V) = 0 if and only if n=\.

PROOF. Since e(V) = 0, κ(V)<\ by Lemma 4. If κ(V)=— oo then there is an
^-fibration p: V-+B, which extends to an ^-fibration p on C2 so that Cι\)C2 is
contained in a fibre. This is impossible because any fibre of p is isomorphic to A1 by
Theorem 1. Hence κ(V) = 0 or 1.

Suppose κ(V) = 0. Let/=0 be a defining equation of C1 + C2 in C2 and consider
the morphism/: C 2 - ^ 1 defined by/. Let F be a general fibre oϊf\v\ F-»C*. Since
κ(V)Φ — oo, we must have κ(F)^ — oo. By Lemma 1 applied t o / | κ , we know that/ | κ

is a C*-fibration. Then Lemma 9 implies that n = 1.
Conversely, suppose n=\. Then we may choose affine coordinates Xί9 X2 on C2

so that Q is defined by A > 0 (cf. [15, Theorem 3.2, p. 40]). Hence V^C* x C* and
κ(V) = 0.

CLAIM 3. There exist affine coordinates Xu X2 of C2 such that C is defined by
X^-X^2 = 0.

PROOF. AS in the proof of Lemma 11 above, we choose affine coordinates Xu X2

on C2 so that Ft is defined by Xt = Q for /= 1, 2. The fibration φ: C2~{p}^P1 defines
a pencil, say Λ, on C2 of which m1F1 and m2F2 are members. Then we can choose an
inhomogeneous coordinate t on P1 such that / = X^^X™2. Since the given curve C is a
member of the pencil A, we may assume that C is defined by t= 1. So, C is defined by

This completes the proof of the Lin-Zaidenberg theorem.
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