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PERIODIC SOLUTIONS OF DISSIPATIVE FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH INFINITE DELAY
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Abstract. We consider periodic, infinite delay differential equations. We investigate

dissipativeness for these equations. Massat proved that dissipative, periodic, infinite

delay equations have a periodic solution. For our purpose we need a weaker

dissipativeness, so we prove Massat's theorem from this weak dissipativeness in an

elementary way. Then we extend a theorem of Pliss giving a necessary and sufficient

condition for this weak dissipativeness. We also present a theorem using Liapunov

functionals to show the weak dissipativeness and hence the existence of a periodic

solution.

1. Introduction. Let / : RxRd-^Rd be continuous and locally Lipschitz in x

with f(t + Γ, x) = fit, x) for all (ί, x) and some T> 0. We say that the ordinary differential

equation

(1) x' = f{t,x)

is dissipative, if all solutions become bounded by a fixed constant at some time and

remain bounded from that time on. Pliss [9, Theorem 2.1] showed that the ordinary

differential equation is dissipative if and only if there is an r > 0 such that for each

(/0, x0) there is a τ>t0 with |x(τ, t0, x o ) |<r . The author [7] generalized this result for

finite delay differential equations stating that dissipativeness is equivalent to every

solution becoming bounded by a fixed constant for an interval of length 2/z, where h

is the retardation. The author also gave an elementary proof for a result of Hale and

Lopes [3], who proved that dissipativeness implies the existence of a periodic solution

for finite delay equations. The following Lyapunov-type theorem, which can also be

found in [7], proves the existence of a periodic solution through dissipativeness.

THEOREM A. Suppose there are a functional V: Rx%>^>R and constants a,b,

M, U>0 such that

( i ) 0<F(ί,φ),

(ii) V\Uxt)<M and

(iii) V\t,xt)<-a\x\t)\-bfor \x(t)\>U.

Then the solutions of the finite delay differential equation are dissipative.
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Stronger versions of the conditions asked in this theorem are used in the literature
to prove uniform boundedness and uniform ultimate boundedness (see e.g. Theorem
4.2.11 in [1]). There naturally arises the question if these theorems can be generalized
for infinite delay. By looking at Theorem A nothing seems to keep this theorem from
being applicable to the infinite delay case. Also the theorem of Hale and Lopes can be
stated for infinite delay, Massat [8] proved using an axiomatic approach that
dissipativeness is enough to have a periodic solution for infinite delay differential
equations. Hino and Murakami [4] also used axiomatic setup of the phase space to
investigate infinite delay equations. Kato [6] summarized many boundedness-type
properties and their connections, which are related to dissipativeness. For a good
summary of the recent results concerning dissipativeness see Hale's book [2].

In this paper we consider an equation not satisfying some of the axioms used in
the above mentioned papers. We will see that this paper is parallel to [7] although the
properties used in this paper are different from the obvious generalizations of that
paper. We prove the existence of a periodic solution from a property called weak
dissipativity, which is weaker than dissipativity. With this weak dissipativity we prove
a generalization of Pliss' Theorem and then use this result to get an exact counterpart
of Theorem A.

2. Main results. We now introduce a functional differential equation with infinite
delay. Let (#, || \\g) be the Banach space of continuous functions φ: (— oo,0]->/?d

with the so-called g-norm defined by

s<o g(s)

where g: (— oo, 0]->[l, oo) is a continuous, decreasing function with g(0)=l and
g(s) -> oo as s -• - oo. If we talk about boundedness or compactness in the following we
always mean it in the g-norm. Denote xt(s) = x(t + s) for s<0 and let F: Rx%?-+Rd

be continuous and locally Lipschitz in φ in the g-norm with F(t+ T, φ) = F(t, φ). Then

(2) x' = F(t9xt)

is a system of functional differential equations and for each (ί0, φ)eRx%> there is a
unique solution x(t, ί0, 0) which depends continuously on the initial data. The local
Lipschitz condition together with the periodicity of F clearly implies that F takes bounded
sets of φ into bounded sets. Let us denote by L(M) the bound for Fwhen φ is bounded
by M and assume that L is a strictly increasing function of M.

We asked g to be decreasing in order to simplify our proofs. If one has a not
decreasing g(s\ one can replace it by infu^s^(w), which is decreasing, smaller than g(s),
and hence the conditions on F can be more easily satisfied.

We now show how to use the dissipativeness of the solutions in proving the existence
of a periodic solution. We need a few quite technical lemmas, which we will use in the
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following.

LEMMA 1. The set

: there is an S>0 such that \ φ(s) \ < J~gjs) for all s<-S,

φ{u) — φ(v)I <L(^/g(min{u, υ}))\u — v\ for w, v< —S and

ψ(s)\<R,\ψ(u)-ψ(v)\<L(R)\u-v\fors,u,vel-S,0]}

is compact in the g-norm.

PROOF. Let φne^(R) be an arbitrary sequence and let Sn denote the constant

used for φn. We have two cases:

Case 1. If Sn is bounded above, then take a subsequence, say Sn again, such that

Sn -• S. Using Ascoli's Theorem, φn has a subsequence, φn again, which converges in the

supremum norm on the interval [ —£, 0]. Now take an interval [ — Q, —5]. On this

interval φn is bounded by y/g(-Q) and satisfies a Lipschitz condition with L(y/g( — Q))

and hence we can apply Ascoli's theorem to prove that φn has a subsequence, which

converges in the supremum norm on the interval [ — Q, — 5] . Using this result for

— Q:= — S—ra(ra-»oo) and applying the diagonal method we can find a subsequence

of φn, say φn again, which converges to a function φ uniformly on any finite interval.

Now we estimate the gr-norm:

sup ' »•«»"", sup
<S<-Q g(s) se[-β,o] g(s)

<max<

We can make the first argument small by taking Q large enough and using that g(s) -• oo

as s—• — oo. Also, the second term is small for large enough n, since φn converges

uniformly to φ on the interval [ —β, 0]. Hence, φn converges to φ in the g-norm.

Case 2. If Sn has a subsequence, say Sn again, so that Sπ->oo, then using the

usual diagonal method and Ascoli's Theorem we can find a subsequence of φn (again

φn) so that it converges to a function φ uniformly in the supremum norm on any finite

interval, where φ is bounded by R. We now estimate the g-norm:

\φn(s)-φ{s)\ \φn{s)-φ{s)
sup l ψ u ψ u ι , sup ι ψ K} ψκp , p

s<-sn g(s) se[-sn,o] g(s)

<max< sup - ^ — — , sup
[ ()

\φn(s)-φ(s)\\
— — , sup — V.

[s<-sn g(s) se[-smo] g(s) J

Since g(s)->oo as s^ — oo and since Sn->oo as «->oo, the first term tends to 0. Next,
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\φn(s)-φ(s)\ f 2R \φn(s)-ψ(s)\\
sup ψ y n <maχj sup - — , sup ι y y w ι \

se[-5n,0] g(s) lse[-Sn,-P] g(s) se[-P,O] g(s) )

is also small if we choose P independently of n but large enough to make the first term
small, and then if n is large enough, the second term will also become small. This proves
that φ" converges to φ in the #-norm.

Note that \\φ\\g<R for all φeS?(R)9 if R>\.

LEMMA 2. Let R,r>\, Q constants be given and consider any function x\
(-00, oo)-+Rd with xQe^(R) and \x(s)\<r for s>Q. Then we can find an H>Q in-
dependent of x so that \\xt\\g<rfor all t>H.

PROOF. We estimate \\xt\\g in three parts. As xQe£f(R) there is an S>0 such that
^j for ^< - S . Then

\χ(s)\ 1*001 \Φ)\
sup ^-^-, sup -±-^-9 supS<Q-S g(s-t) se[Q-s,Q] g(s-1) ss[Q,t] g{s~t)

sup — ^ - ^ — , sup , sup
s<-S g{s — t + Q) se[Q-S-t,Q-t] g(s) se[Q,t] g(s —

1 R \x(s)\
SUp — — , , SUP — - , SUp

s<Q-H g(s) se[Q,t] g(s - ί

The first term is less than \/Jg(s) < 1 < r by our assumptions. Since we can have g(s) > R/r
for s < Q — H for large H, we can also make the second expression smaller than r. The
third argument is clearly smaller than r from | x(s) | < r. Hence we proved that for any
large enough t we have | |x f | | g<r independent of the x chosen from the given set.

DEFINITION. Equation (2) is weakly dissipative (at t = 0), if there is an r > 0 such that

lim sup I χ(ί, 0, φ) I < r

for all φe^(R), where R>0 is arbitrary. For technical reasons we always assume in
the following that r > 1.

LEMMA 3. If (2) is weakly dissipative with r, and we start a solution from φe£f(R)
(for some R>0) then there is an S>0 such that xt( , 0, φ)e^(r)for all t>S.

PROOF. Let x(s): = x(s, 0, φ). Using the dissipativity we can find Q>0 and M>R
such that I x(s) \ < M for s e [0, Q~] and | x(s) \ < r for s > Q. Observe that xQ e tf(M\ and
hence from Lemma 2 we find an H>Q such that ||xj|^<^ for s>H. Now let H>0 be
large enough, so that g(s)>M2 for s<-H, and let S: = H-\-H. Then xt is in £f(r) by
construction for all t > S. Note that we proved that xt is in some sense in the inside of
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^{f). This means that if we start a solution from a function φ e ^(R) close to φ and
fix a t > S, then using the continuous dependence of the solution on the initial data we
also have xt( ',0,φ)e^(f). We will use this remark in the following.

DEFINITION. Equation (2) is weakly uniformly bounded (dX t = 0), if for every R>0
there is a B>0 such that \x(t, 0,φ)\<B for all φe^(R) and t>0.

DEFINITION. Equation (2) is weakly uniformly dissipative (at / = 0), if there is an
r>0 such that for every R>0 there is a P > 0 so that \x(t,0, φ)\<r if φe^(R) and
t>P.

THEOREM 4. If (2) is weakly dissipative, then it is weakly uniformly bounded.

PROOF. Let r>0 be the number in the definition of weak dissipativeness. Suppose
that the statement of the theorem does not hold. Then we find R>r and sequences
φne<$f(R) and tn>0 such that \x(tn,0, φn)\-+oo. We assume that n is so large that
xtn(-,0,φn) is not in <^(R), because ^{R) is bounded and \x(tn, 0, φn)\->ao. Since
φn = xo(',0,φn)e^(R), we can define τn so that φH:=xτn( 909φJeSf(R)9 but
xt( , 0, φn)φ^(R) for te(τn, /„]. Using a translation argument we find a τπe[0, T]
such that x(t, τn, φn) = x{t + {τn-τn), τn9 φn) = x(t + (τn-τn), 0, φn). Since Sf{R) and [0, Γ\
are compact, there are subsequences, say φn and τn again, such that φn-+φe Sf(R) and
τn-+ τG [0, Γ]. Using Lemma 3 for this φ we find a />τ such that xt( -,τ,φ)e^(f). Let
M: = sup jce[ft]Ix(s, τ,φ)\. Now take any n large enough to have |x(tn, 0, φn)\ = \x(tn —
(τπ-τπ), τB, W I > M + 1, |x(s, τπ, ^ | < M + 1 for j6[τB, /] andx,( , τn9 φn)e^{r)^^{R)
using the remark in Lemma 3. Then we must have tn — (τn — τn) > t, but this is a
contradiction to the choice of τπ, because we must have xt( , τπ, φn) φ ̂ (R) for t e
(τn, tn — (τn — τπ)]. This contradiction shows the required weak uniform boundedness.

THEOREM 5. If (2) is weakly dissipative, then it is weakly uniformly dissipative.

PROOF. Let r>0 be the number in the definition of the dissipativeness and r>0
be the number of weak uniform boundedness for ^(f) from the previous theorem. We
claim that (2) is weakly uniformly dissipative with r. Suppose for contradiction that
there is an R > 0 and sequences φn e ̂ (R) and /„-» oo such that | x(tn, 0, φn) | > r. As ^{R)
is compact, there is a subsequence of φn9 say φn again, such that φn->φe ^(R). For
this φ we find a m>0 such that xmT( , 0, φ)e&?(r) using Lemma 3. Now take n large
enough to have xmT{ , 0, φn)e£f(r) and tn>mT. Using the weak uniform boundedness
we find that |x(s,0, φn)\ = \x(s,mT, xmT(-9 0, φJ)| = |x(j-mΓ, 0, xmΓ( , 0, φ j ) | < r for
all s>mT, which is a contradiction to /π>mΓand |;ψn, 0, φn)\>r. This contradiction
shows the required weak uniform dissipativeness.

THEOREM 6. If (2) w weakly dissipative with r>0 (and hence weakly uniformly
dissipative with r>0from the previous theorem), then for all R>0 there is a P>0 such
that xt( -, 0, φ) E Sf{j) for all φ e S?(R) and t > P.
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PROOF. This theorem states a stronger version of the weak uniform dissipativeness

we will use in the following theorem. From Theorem 4 we have a constant M>max{r, R]

such that |x(ί, 0, φ)\<M for all φe^(R) and />0. We also have a P such that

Ix(t, 0,φ)\<r for all φe^(R) and t>P. Using Lemma 2 (since Xp( , 0, φ)e <f(M) for

all φey(R)) take H>P large enough to have ||jcf( , 0, φ)\\β<f for all φe^(R) and

/>//. Taking /7>0 so large that g{s)>M2 for s< -H holds and defining P:=H+H

we have x,( , 0, φ)e^(r) for all φe^(R) and ί > P , which was to be proven.

THEOREM 7. 7/*(2) w weakly dissipative, then it has a T-perίodic solution.

PROOF. From Theorems 4 and 5 we know that (2) is weakly uniformly bounded

and weakly uniformly dissipative with r>0. Since the proof of this theorem is very

similar to the usual proof of the existence of a Γ-periodic solution assuming uniform

boundedness and uniform ultimate boundedness (see [1, Theorem 4.2.2]), we will give

only a sketch of the proof. Let So: = Sf{f) and define P: # -> # by Pφ: = xτ( , 0, φ).

From the weak uniform boundedness we find Bx>r such that |x(t, 0, φ)\<B1 for t>0

and φ G So. Let 5Ί : = ̂ {B^. Once again using the weak uniform boundedness we define

B2>B1 such that if S2 : = £f(B2), then Pn(Sί)c=:S2 for all n>0. Also, from Theorem 6

we find an m>0 such that P^SJ^SQ for «>m. Now all the conditions of Horn's

fixed-point theorem (see [5] or [1, Section 3.4]) are satisfied, and hence there is a fixed

point of P, which is (of course) a Γ-periodic solution of (2). The proof is complete.

Now we generalize a theorem of Pliss for this infinite delay case.

THEOREM 8. Equation (2) is weakly dissipative if and only if there exists an r > 0

such that for all φe^(R) {R>0) there is a τ > 0 such that xτ( , 0, φ)e&?{r).

PROOF. The implication follows from Lemma 3. To prove the opposite direc-

tion, suppose for contradiction that equation (2) is not weakly dissipative, i.e. there

is a sequence φne^(R) such that limsup^^ |x(ί, 0, φn)\>rn, where rn-*oo. By our

assumption, take £„>() so that xSn( , 0, φn)e^(r). Let tn>sn be any number with

I x(tn, 0, φn) I > rn and assume that n is large enough to have rn > r. Let τn e [sn, tn) be a

number with ψn: = xτn{-,0,φJeSf(r) and xt( ,0,φn)φS?(r) for te(τn, tn~\. The proof

from here on is the same as that of Theorem 4; we use the translation argument, take

convergent subsequences of τn and ψn and get a contradiction. This proves the weak

dissipativity of equation (2).

THEOREM 9. Suppose there are a functional V: RxΉ^R and constants a,b,

M,U>0 such that

( i ) O<K(ί,0),

(ii) V'(t9xt)<Mand

(iii) V\Uxt)<-a\x\t)\-bfor \x(t)\>U.

Assume also, that g(s)>c2s4 for all s<0 and some c>0. Then the solutions of (2) are

weakly dissipative.
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PROOF. By our previous theorem we need only to prove that there is an r>0 such

that for every φe^(R) there is a τ>0 with xτ( , 0, φ)e^(ή. Fix R>0 and φe^(R)9

and let x(ή: = x(t, 0, φ\ V(t)\=V{t,xt) and t1:=0. Let S>0 be the number for φ in

the definition of ^{R\ and let to\=-S. Define L to be so large that if Q> U+L> 1

then (Q - U)a - M(yjQJc + t/β/c2) > dγ > 0, where ^ is a constant. Clearly we have

such an L>0. Define r\ = U+L and Mί: = R. We will do an induction. Suppose, that

to,...,tn and M 1 ? . . . , Mn are defined so that | xtn(s) \<yfg(s) and | xtn(u) — xtn(v) I ̂

LQg(min{u, υ}))\u-υ\ for s, u, V<-(/„-/„-i) and | xfn(s) | < Afπ and | x f » - * f » | <

L(Mπ)|w —f| for s, w, VE[ — ( ^ —ί π -i), 0]. This inductional assumption clearly holds

for n= 1. Suppose, that it is true for some n>0. Then we define tn + 1 : = tn + y/MJc +

XjMJc2. We have two cases:

Case I: If x is bounded by r on the interval [/„, tn + ί] then by construction we

have ||jct||^ < r for / e [ / n + ^/MJc2, tn + ί], and hence x satisfies a Lipschitz condition with

L(ή in that interval. Also, for s9u,v< —y/MJc we have |x ί n + 1C?)|<>/<7(5) and

I xtn + SM)~ xtn + ί(v)\<L (^(min{w, v}))\ u — υ\. Therefore x f n + l e ^(f) by construction, and

the proof is finished (the induction is terminated).

Case II: Let Mn+1 >r be the maximum of x on the interval [/„, tn + 1]. First, we

estimate the decrease in V:

Case 1: If | x ( ή \ > Ufor all te[/„, tn+ J then using (iii) we have a J 2 > 0 such that

if Mn+1<Mn and

if M n + 1 > M π .

Case 2: If there is a / e [/„, /„+ x ] with | JC(/) | < U, then

MJc2)-{Mn-U)a-{Mn + 1 -

by the definition of L.

In any case we have V(tn + 1)- V{tn)< -d-(Mn+1-Mn)a for some d>0. To prove

the inductional assumption for tn + 1 we need to consider two cases again.

Case A: If Mn+1<Mn then we redefine tn to be ίn+1-y/MJc. Now, using this new

definition of /„ we have \xtn+ί{s)\<yfg(s) and I*ίn+1(w)-xίn+1001<L(^(min{M, υ}))\u-v\

for s9u,v<-(tn + 1-tn). We also have | |x f | | β <Aί I I + 1 for te[tn,tn + 1] and hence x

satisfies a Lipschitz condition with L(Mn + ί) on that interval.

Case B: If Mn + 1>Mn then we leave tn as it is, and because g(s)>M2 for

s<tn+ί-tn we have \xtn(s)\<y/g^) a n d I * * » - * * » I <L(^(min{w, t;})) |w —i; | for

s, w, y< —(tn — tn-ι). Obviously, x satisfies a Lipschitz condition with L(Mn + 1) on the
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interval [/„, r π + 1 ] .
This finishes our induction step.
If we ever go in Case I during this induction, then the proof is finished. If we

always get Case II, then we have

V(tn)-V(ΐί)<-(n-l)d-(Mn + ί-M1)a<-(n-\)d-(r-R)a,

which is a contradiction for large n. This proves that Case I must happen at least once
and the proof is complete.

Note that we can replace b by a function b: R-+R integrable on any finite interval
with J^ b(s)ds= oo and we do not have to change much in the proof. In this case we
argue that we cannot have Case 2 of Case II infinitely many times, and hence there is
an N>0 such that Case 1 holds for n>N and so V(tn)- VitjK^| b(s) \ds-γt

n

Nb{s)ds-
(r—R)a, a contradiction for large n.

In order to make the computations in the proof easier we took a stronger condition
in Theorem 9, than it is really necessary. With more careful investigations one could
prove that if g(s)/\ s|->ooass->— oo then the statement of the theorem still holds. For
this we must start the proofs from the beginning of the paper by modifying the definition
of y(R) to let the function get closer to g for s < — S. Then we prove everything the
same way as we did modifying the necessary parts of the proofs.
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