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Abstract. We deal with the question of whether the Hopf differential on constant

mean curvature surfaces parameterizes the dressing orbits of these surfaces. It is shown

that in addition to the Hopf differential, there are infinitely many dressing invariants

associated with an umbilic point of order larger than or equal to 2. Thus, when such

an umbilic point is present, there are many dressing orbits sharing the same Hopf

differential. We also give a procedure for computing all these dressing invariants

associated with an umbilic point and they are used to show that the sizes of the dressing

orbits in general depend on the topology on the loop group used.

The dressing action in soliton theory was first introduced into the study of harmonic

maps by Uhlenbeck [7] and then clarified by Bergvelt and Guest [1] and Guest and

Ohnita [6], among others. It was shown in [5] (also see [2]) that every constant mean

curvature (CMC) torus in space, whose Gauss map is harmonic, is in the dressing orbit

through the cylinder. This result implies that any two CMC tori are dressing equivalent.

Naturally, one wonders if any two compact CMC surfaces of a fixed genus > 2 can

always be put in one dressing orbit and, if that is the case, what the "simplest" CMC

surface in such an orbit is.

Since the dressing action is fairly complicated, not very much is known about it

yet. For example, a very basic question has not been answered yet: does the Hopf

differential E(z)(dz)2 on CMC surfaces parameterize the dressing orbits? In this paper,

we shall show that the answer to this question is negative.

The tool to be used in this paper is the Weierstrass type representation of the CMC

surfaces given in [4]: every CMC surface can be constructed from two meromorphic

differentials on its universal covering via two loop group factorizations. A certain 2 x 2

matrix formed by these two meromorphic differentials is called the normalized potential

for the surface. We look at the action on normalized potentials for CMC surfaces

corresponding to the dressing action on CMC surfaces, still called the dressing action.

The formal integrability of the equation defining the corresponding transformations

among normalized potentials, called dressing transformations, is investigated. It turns

out that if E(z)(dz)2 has a zero (i.e., the surfaces have an umbilic point) of order >2,

then there are infinitely many dressing invariants associated with the zero. As a

consequence of this fact, there are at least C°°-many dressing orbits of CMC surfaces

with an umbilic point of order >2. We also show that these dressing invariants are
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unique among the quantities of similar forms.
Actually, given two normalized potentials P and Q on which the dressing invariants

take the same values, the equation on the dressing transformation from P to Q is
formally solvable. One certainly wants to know when the formal solution converges.
Even though this difficult question is not answered here, we address a relatively easy
one: does the topology on loop groups affect the convergence of a formal dressing
transformation?

The second purpose of this paper is to show that if ^ and 3~2

 a r e t w o topologies
on the loop group involved such that the dressing action is defined, the Weierstrass
type representation [4] holds under both of them, and ^ is weaker than 3Γ2 when
restricted to the "positive loops", then the dressing orbit under ZΓ2 through a CMC
surface having an umbilic point is always smaller than the corresponding orbit under

Since the Hopf differential does not parameterize the dressing orbits, it is interesting
to know how simple the normalized potential for a CMC surface in a given dressing
orbit can be. In a forthcoming publication [9], we will prove that normalized potentials
with at most quadratic poles away from umbilic points are dense in each dressing orbit.

We are grateful to Josef Dorfmeister, Guido Haak and Franz Pedit for their interest
in this work. We also would like to thank the referee, whose suggestions led to several
improvements in our presentation. The author was partially supported by NSF Grant
DMS-9205293.

1. The equations for dressing transformations. First, let us recall the dressing

action on CMC surfaces and the Weierstrass type representation of CMC surfaces from
[4]. Set

o - l

Let D c Cbe either the whole C or the open unit disc centered at the origin,/: D^>R3

a CMC immersion and Φ: D^ΛSU(2)σ the extended frame for the unit normal n of
/(such that the corresponding mean curvature H=\β) satisfying

(1.1) Φ(0,0,.) = /

Here one uses the fact that the unit normal of/is a harmonic map to S2 = SU(2)/SU(1).
An Iwasawa decomposition SU(1)C = SU(1) B for SU(1)C is given by

AM-{(ί AHHC
The group Λβ 5L(2, C)σ acts on the CMC immersions/as follows. For h + e ΛβSL(2, C)σ,
the loop group Iwasawa decomposition ΛSL(2, C)σ = ΛSU(2)σ ΛβSL(2, C)σ yields
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(1.3) h + (λ)Φ(z9 z, λ)=Ψ{z, z, λ)H + {z, z, λ),

where z is a global coordinate on Z), and Ψ is an extended frame for the unit normal

of a new CMC surface g: £>-•/?3, which can be computed from Ψ using the Sym-

Bobenko formula, see [4]. f)-J>g = (h+).f is the so-called dressing transformation

corresponding to h+ on CMC surfaces. The loop group decomposition of the big cell

[4] in ΛSL(2, Qσ as Λ~SL{2, Qσ Λ + SL(2, Qσ implies

(1.4) Φ(z,f, •) = *-(*, )Φ+(*,V) and Ψ(z,z9-)=Ψ-(z,-)Ψ+(z,z,-)

for all z e D \ S, where S is at most a discrete subset of D \ {0}. The normalized potential

for/with reference point z = 0 is the meromorphic (1, 0)-form

(1.5) P(z) = Φ_(z9λy1dΦ.(^λ)λ

on D, whose poles are in S. Let Q be the normalized potential for g with reference

point z = 0. Setting G+ =Φ+H + 1}F+\ we have G+ : D\S->Λ + SL(2, Qσ with

(1.6) G+(0,0, ) = ̂ + (0,0, )

and

(1.7) Ψ_=h +

From (1.7) we obtain

(1.8) ϊ F I 1 ^ _ = G ; 1 Φ l 1

i.e., G+ is holomorphic on Z>\S and

(1.9) G + ρ = PG

The initial condition (1.6) for G+ now becomes

REMARK. The equation (1.9) has already appeared in [3].

By [4] or [8], we can set

(z)/p(z) 0

where E(z)(dz)2 = - </«(z), n(z)}(dz)2 is the Hopf differential of/. By the format of G+,

( U 2 ) — - • ' ' 0 dtoJΛclz) 0

a2(z) 0 V / 0 b3(z)\73

0 d,(z)/ \cJz) 0
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with aodo = 1. Thus, by (1.9), we can write

( U 3 ) β ( z )
(z)/q{z) 0

In particular, the Hopf differential E(z)(dz)2 is a global invariant of the dressing action.

From (1.11)-(1.13) we see that (1.9) is equivalent to

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

».•* =
q

dn — = a n

E

P

p + b]

E

aoq-doP,

αή_i for odd n>\ ,

ί/ή-i for °dd n>\ ,

^_! for even « > 2 ,

+ c'_, for even « > 2 .
q p

For applications in the sequel, we rewrite (1.15)—(1.18) in the following two ways.

(1.19) cn = bn — -a'n_r- for odd « > 1 ,

pq p
(1.20) b'nE + c'npq = 0 for odd n > l ,

(1.21) a'nq + d'np = 0 for even n>0,

(1.22) anq-dnp = bf

n_ι for even n > 2 ,

or

(1.23) a'n = bn+1-—-cn + 1p for even n > 0 ,
q

(1.24) K = an + ίq-dn + 1p for odd « > 1 ,

(1.25) c'n=-an+1 — + dH+1 — for odd n > l
P q

E
(1.26) ^ = - ^ w + i — + cn+iq for even n>0.

Finally, the condition det G+ = 1 is equivalent to

(1.27) M o = l ,

(1.28) a2



DRESSING ACTION OF LOOP GROUPS 603

π / 2 - l n/2-1

(1.29) aodn + ando = £ b2k+ίcn-.2k.1- £ a2kdn.2k for even n > 4 .
k=0 k=ί

Note that (1.14) and (1.27) together are equivalent to

(1.30) al = ̂ - and do = ao-^-,
q p

or

(1.31) 4 = — and ao = do'^-.
P 1

Moreover, differentiating (1.19) and substituting the result into (1.20), we can rewrite

(1.32) Cn = bn'—-af

n^'— for odd n > l ,
pq p

.33) 2 ^ £ + foJF-(— + — l £ = ( < _ ! - < _ ! • — jg for odd π > l ,

(1.34) a'nq + d'np = 0 for even n > 0 ,

(1.35) anq-dnp = b'n_ί for even n>2.

When z = 0 is a non-umbilic point, the solution to (1.33) is

(1.36) bn(z)

When z = 0 is an umbilic point, one only needs to solve (1.33) on a small sector

{z = peιa; 0 < p < l , —ε<α<ε} in D, where ε > 0 is small enough, and obtains

(1.37) bn(z)= v —^ α;_ 1 (w)-α;_ 1 (w) '-—— 1. dw
2jE(ΐ) Jo V PM ) y/E(w)p(w)

by integrating (1.33) from z/m to z and then letting m-+ + 00.

2. The first set of invariants on the dressing orbits. In this section, we give the

first set of invariants on the dressing orbits of CMC surfaces associated with an umbilic

point of order > 2 on the surfaces.

Assume that z = 0 is an umbilic point of order k>2, i.e., E(0) = E'(0)= - • =

E{k~1)(0) = 0 and £ ( fc)(0)^0. Let n be an odd integer. Then, (1.33) implies that, at z = 0,
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//Λ -j \ ii i r I // / Γ 1 I // / r

p \ n~1 p J \ n~1 n'1 p

Next, we spell out what (2.1) means for n = 1. By (1.30),

(2.2) 2^=^-4-.
<Z if

Multiplying (2.2) by a0 yields

(2.3) a0

2\p q

Differentiating (2.3) one obtains

( 2.4, « .
P q 2p2 pq

So,

( 2 . 5 ) « -
p 2 \ p q 2p2 2q2

By (2.1) and (2.5), we have

p 2p2 q V '

at z = 0. Therefore, we have proved the following result.

THEOREM 2.7. At an umbilic point z = Q of order k>2, the quantities

p 2p2

defined by using the normalized potentials

(2.9) (
\E(z)lp{z) 0

for CMC surfaces with reference point z = 0 are invariant under the dressing action.

Since the normalized potential for a CMC surface depends on the point chosen as

the reference point for the loop group factorizations, it is necessary to express the

quantities in (2.8) in terms of the geometric quantities of the surface. By [8], this can

be done using only the holomorphic part of the induced metric on the surface.

THEOREM 2.10. At an umbilic point z = 0 of order k>2, the quantities
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(2.11) 2(0"-0' 2)(O), 2(0"-0' 2)'(O), , 7 Γ - τ r Γ ( 0 " - 0 ' 2 ) ( * - 2 ) ( O )
(/c-2)!

defined by using the induced metric Ae2ω(<z'Σ)dzdz on CMC surfaces, where θ(z) is the

holomorphic part in the Taylor expansion with respect to z = 0 ofω(z, z) as a real analytic

function of z and z, are invariant under the dressing action.

PROOF. From [8], if we choose z = 0 as the reference point for the loop group

factorizations, then the normalized potentials is

(2.12) (

\E(z)/p(z) 0

with

(2.13) P(z) = e2θiz)-θi0).

Then, direct calculations using (2.13) yield the expressions given in (2.11) for the

quantities in (2.8). •

Note that θ is holomorphic in a neighborhood of z = 0. The values of the k—\

quantities in (2.8) or (2.11) depend on the choice of the complex coordinate on D.

Actually, direct computations yield:

PROPOSITION 2.14. If z = z(w) with z(0) = 0 and z '(0)/0, then the value of the first

quantity under the new local coordinate w is

(2.15) 2(θ"(0)-θ'(0)2)z'(0)2 + ̂ ^ 3 z ( 0 )

z'(0) 2z'(0)2

where 2(0"(O) — 0'(O)2) is the value of the first quantity under the original coordinate z.

For this reason, from now on we are going to use a local coordinate z around the

umbilic point z = 0 of order k such that

(2.16) E{z) = zk.

Such a local coordinate will be called a canonical coordinate. There are exactly k + 2

canonical coordinates around z = 0: if z is one, then the others are e

2Jπi/(k + 2^z for

7 = 1 , 2 , . . . ,/ : + 1 . Moreover, from the discussions of Section 1, the dressing action

respects every canonical coordinate.

Under a canonical coordinate z around z = 0,

(2.17) /(z) = 0"(z)-0'(z)2

will be called the dressing function around z = 0, and

(2.18) 1(0), /'(0), •••, — i — / ( Λ"2 )(0)
(/c-2)!
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the first set of dressing invariants associated with z = 0. Note that under a change of

canonical coordinates, the dressing function gets a constant factor and the first set of

dressing invariants gain constant factors accordingly. In general, any continuous func-

tion in a finite number of coefficients of 0 that is invariant under the dressing action

will be called a dressing invariant associated with z = 0. Note that if Ju «/2,...,*/„ are

dressing invariants associated with z = 0, then so i s / p ^ , J>2, ...,</„) for any continuous

function/. We will ignore this freedom. Since the first dressing invariant 7(0) is defined

by using 0(0), θ'(0) and 0"(O), or equivalently using p(0), p'(0) and p"(0), we will say

that 7(0) is of order 2. Similarly, 7'(0) is of order 3, and so on.

We are going to call CMC surfaces C->/?3 CMC planes. As a direct application

of the first set of dressing invariants, we have the following examples.

COROLLARY 2.19. Let k>2 be an integer and (70, Iί9..., 7Λ_2) an ordered (k—1)-

tuple of complex numbers. Then there exist k—\ constants 02, θ3,..., θk such that the

values of the first set of dressing invariants associated with z = 0for the CMC plane having

normalized potential

0 e2θ(z) \

with reference point z = 0 are 70, 7 l 5 . . . , 7fc_2, respectively, where 0(z) = 02z
2 + 03z3 +

+ θkz
k. Moreover, there are at least Ck~1-many dressing orbits of CMC planes with zk(dz)2

as their Hopf differentials.

PROOF. First we note that since the potential in (2.20) is holomorphic on C, it

is the normalized potential for some CMC plane. Set Θ1=O. For any k—\ constants

02, 0 3 , . . . , θk, let 0(z) = 0xz + 0 2 z 2 + • +θkz
k. Then,

(2.21) ff'(z)-ff(z)2 = kΣ
j=o

+ higher order terms .

By Theorem 2.10, in order to obtain the desired values 70, Iί9..., 7fc_2 of the first set

of dressing invariants associated with z = 0 using such a 0(z), one only needs to choose

the coefficients of 0(z) by

(122) θ "
If two distinct ordered (k— l)-tuples (70, Iί9..., 7fc_2) and (/0, Jl9..., Jk-2) of

complex numbers satisfy

(2.23) (e*J«"* + »I0, e*™***^,..., e2k^k + 2\_2)^(J0, / , , . . . , Jk_2)
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for7= 1, 2 , . . . , k+1, then the corresponding two CMC planes as constructed above are

in different dressing orbits. Thus, the CMC planes constructed from (Zc-l)-tuples of

complex numbers with small arguments are in mutually different dressing orbits. •

More dressing invariants will be given in §4.

3. Basic effects of one-parameter subgroups. In this section, we work out the

basic effects of the canonical one-parameter subgroups of Λ£ SL(2, C)σ on the normalized

potentials. Here by the canonical one-parameter subgroups of Λβ SL(2, C)σ we mean

the subgroups

0

\ Λ - ) : J foreven n~2'
or °ι);tsC} and {(o T ) ; ? € C } forodd "-1-

The results are used to determine the orders of dressing invariants associated with points
on CMC surfaces and to prove that there is at most one such dressing invariant of a
given order.

First of all, from the definition of the dressing action in §1, one easily derives the
formula

ί ep 0 \ / 0 p(z) \ ( 0 e2pp(
( 1 1 ) \0 e-p)\E{z)lp{z) 0 )dZ\E(z)/(e2pp(z)) 0

for peR, which implies the following result.

LEMMA 3.2. Any dressing invariant associated with z = 0 has the form

(3.3)

for some positive integer m and function J: Cm -• C.

PROOF. If J=J( p(0), p'(0),..., p(m\0)) is a dressing invariant associated with z = 0,
then

(3.4) J(p(0),Pm...,Λ0)) = j f l , ^ , % ^ ^

since the fact that p(0) is positive implies that

(3.5) ( y )(
\piO)E(z)/p{z) 0 J \0 e-o) \E(z)lp(z) 0
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where p = - (In p(0))/2. •

Next, we compute the basic effects of the other canonical one-parameter subgroups

under the assumption that the origin is a non-umbilic point.

LEMMA 3.6. If the origin is a non-umbilic point, then for any odd ra> 1,

(3.7) ) and .
\tλm 1/ Vθ

),/7/(0),...,ym"1)(0) invariant and change /?(m)(0) *y -2wίp(0)2£(0) ( w"1 ) / 2

2mί£(0) (m+1)/2, respectively; for any even m>2,

/ e α m 0
(3-8) a

leaves p(0), p'(0),..., p(m~ υ(0) invariant and changes p(m\0) by 2m+ xtp(0)E(0)ml2.

PROOF. From (1.26) with « = 0we obtain

* u E ,(3.9) d o = —&! h c x ^ .

P

Starting from (3.9) and repeatedly using (1.23)—(1.26), we derive

(3.10)

+ terms involving bu cu . . . , 6 2 J - I o r cu-i >

(3.11)

+ terms involving bί9 cu ..., a2l or ά2l,

for/>l .I f

/ 1 0
(3.12) h + (λ) = (

\tλm

with m > 1 odd, then

-/ l °
hence,

(3.14) ao{Ό)-do(Ό)-l, cm(Ό)- t,

and (3.9)—(3.11) together with (3.14) imply
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(m)(0) 2 m ί ( 0 ) 2

From (1.31) and (3.15) we obtain

for 7 = 0,

)=-2 m ί/?(0) 2 £(0) ( m - 1 ) / :

Similarly, if

(\ tλm

(3.17) h + (λ) = l

with m>\ odd, then

( 3 1 8 ) ,«WΛχ ,

if Λ+(/l) is given by (3.8) with m>2 even, then

for y = 0,^ ( 0 )

qim\0) = 2m+1 tp(0)E(0)m/2 + p ( m ) (0) .

This proves the lemma. •

A direct consequence of Lemma 3.6 is the following result.

PROPOSITION 3.20. There is no dressing invariant associated with any non-umbilic

point.

PROOF. Assume that the origin is a non-umbilic point. By Lemma 3.6, one can

change the value of p'(0) arbitrarily while keeping the value of p(0) fixed. Hence, there

is no dressing invariant of the form

(3.2D
P(O)

Let w > 2 be an integer. Also by Lemma 3.6, we can change the value of

p(m)(0)
(3.22) 1WL

P(0)

arbitrarily while keeping the values of

( 3 2 3 )

P(O) ' p(0) ' ' p(0)

fixed. So, there is no dressing invariant of the form

(3.24)
P(O) p(0) p(0)
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Therefore, the conclusion follows from Lemma 3.2. •

Finally, we give the basic effects of the other canonical one-parameter subgroups

under the assumption that the origin is an umbilic point.

LEMMA 3.25. If the origin is an umbilic point of order k, then for any odd m > 1,

(3.26) ( l °) and (
\tλm \ J \ 0

leave p(0),p'(0), ...,f~l\(i) invariant and change p(l)(0) by -2γtp(0)2E(kW"-1)/2 and

2βtEm(0)(m+1)l2, respectively, where

(3.27) / = — (m-ί)k + m and l =—(m+l)k + m,

respectively, and γ = ylm, β = βι,m are positive integers; for any even m>2,

etλm 0
(3 28) o .-•»
leaves p(0), p'(0),..., p(l~ υ (0) invariant and changes p{l)(0) by 4(xtp(0)Eik\0)m/2

9 where

(3.29) l =—mk + m

and α = α / m w «positive integer.

PROOF. By (3.9) and (1.23)-(1.26),

(3.30) d'ό= -2a2 • — + 2d2E-b1 ( — -
P V P

(3.31) ^ ' = - 4 6 3 - E

3 q 2

V \ P

+ d2 -(3F+ )-&i (— +

where the terms involving only lower orders of derivatives of E are abbreviated as the

dots. In general, for n > 2, we have

(3.32) d^=-Σ fl

V A . / P2n,2j-l^j,2n-2j+l ,

+ Σ C2j-l'(y2n,2j-lEj-l,2n-2j+l<l+ ' •
j=2
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E(2n-1)
(2n-l)

j=2

n+1

7-l # U2#ι+ l,2j-lEj- 1,2M-2./

£(2ιi)

• ( |

7=1

n

+ .Σ

where 0Lrt2p βr,ij-ι a n d 7r,2j-ι a r e positive integers,

17 17*2 17 1717' 17 ΪΓ'2 E1 17'17"
^ 2 , 0 — *-* » ^ 2 , 1 — ^ ^ > ^ 2 , 2 — ^ ' ^ 2 , 3 — ϋ ϋ ?

17 i7"2 17 V'V" . . .

(3.34) £ - £ 3 E -E2E' E -EE'2

E =E'3 E =E'2E" E —E'E"1

•jn I 7 " 3 17 17''2 Tfiit 17 Z7"i7"'2

and each set of dots in (3.32) and (3.33) denotes the remaining terms therein, each of
which has the same number of derivatives of E (of orders >0) as the corresponding
Erj does, and has either derivatives of E of orders differing at least by 2 or a lower
sum of the orders of the derivatives of E. If

(3.35) h + (λ) (
\tλm I

with m> 1 odd, then, as in the proof of Lemma 3.6,

( 3 3 6 ) flo(0)=4>(0) = l , cjfi)=-t,

61(0) = c1(0) = fl2(0)= = U 0 ) = 0,

and (3.9), (3.30)-(3.33) and (3.36) imply

(3.37) d'0(0) = = 4~ 1((0) = 0 , df(O) = -γ,,mtq(O)E«Xθym~l)'2 ,

and hence,
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f 3 3 8 , ί ° > ( O ) = p ω ( o ) for . / = 0 , l , . . . , / - I ,
( ' ' 9

( l )(0)=-2y i,mίp(0) 2£" [ )(0) ( m- 1 ) / 2+p ( ' )(0),

where

(3.39) /=—(m-l)Λ + m.

Similarly, if

tλ"
(3.40) t . t , V o ]

with m > 1 odd, then

9ω (0)=pϋ)(0) for j = 0 , l , . . . , / - l ,

<2(/)(0) = 2/9 ( , m t£ ( f c ) (0) ( m "

w h e r e

(3.42) 1=1

if h+(λ) is given by (3.28) with m>2 even, then

where / is given by (3.29). This completes the proof. •

The following results are direct consequences of Lemma 3.25. To better understand

the first of them, we remark that by the Weierstrass type representation in [4], any

holomorphic 2-form on D is the Hopf differential of a CMC surface D^>R3 and hence

there are many CMC surfaces with simple umbilic points.

PROPOSITION 3.44. There is no dressing invariant associated with any simple umbilic

point.

PROPOSITION 3.45. Let k>2 be an integer and je{l,k+l,k + 2,k + 392k + 3,

2k + 4, 2fc + 5, 3fc + 5, 3/:+ 6, 3& + 7 , . . . } . Then, there is no dressing invariant of order j

associated with any umbilic point of order k.

Moreover, combining Theorem 2.7 and Lemma 3.25 yields the following result.

PROPOSITION 3.46. Let k>2 be an integer and ye {2, 3 , . . . , k}. Then, there is

exactly one dressing invariant of order j associated with any umbilic point of order k.

PROOF. By Lemma 3.2, any order-2 dressing invariant associated with the umbilic
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point, z = 0, is a function of p'(0)/p(0) and p"(0)/p(0). Fix a dressing orbit and a canonical

coordinate z around z = 0 on the surfaces in the orbit. By Theorem 2.7, there is a

constant c such that for each surface in the orbit, the normalized potential

(3.47) (
\E(z)lp{z) 0

with reference point z = 0 satisfies

(3.48) P(0) 2

Now, by Lemma 3.25, one can change pf(0)/p(0) arbitrarily using dressing transfor-

mations. Therefore, there is no more relations between p'(0)/p(0) and p"(0)/p(0), i.e., there

is no more order-2 dressing invariants on the orbit associated with the umbilic point

z = 0. Similarly, there is no more dressing invariants of order 3 or . . . or k on the orbit

associated with the umbilic point z = 0. •

4. The other sets of invariants on the dressing orbits. In this section, we prove

the existence of dressing invariants of the remaining orders, i.e., the orders fc + 4,

k + 5,..., 2/c + 2, 2/c + 6, 2/c + 7,..., 3/c + 4,..., associated with an umbilic point of order

k>2.

We fix a canonical coordinate z around the umbilic point, z = 0, of order k>2, i.e.,

a local coordinate z around z = 0 such that

(4.1) E(z) = zk.

LEMMA 4.2. Assume p'(0) = 0. For each odd integer m>\ and any constant teC,

tλn

(4.3)

does not change p ( i + 1 )(0), where

(4.4) / =—(m+l)/c + m,

and

h l tλm

-tλm + 2 l-tλm +

leaves p(0), p'(0),..., p{l~ υ(0) invariant and changes p(l\0) and p(l+1)(0) by βt and αίp(O),

respectively, where β and oc are positive integers.

PROOF. If h+(λ) is given by (4.3), then
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1 — tln

(4.6). ~ " - '

and hence,

(4.7) f,l(θ) = Cl(O)

= cm(O) = α m + 1 (O)= ί / m + 1 (O) = O.

By a more detailed analysis than that in the proof of Lemma 3.25, from (4.7) one

deduces that

(4.8)

dil+1)(Q)=(k\)im+1)'2t( ^l+1 mP'^ I

V P(0)2

where j5/m and J?ί + i,m are positive integers, while βι + ί m is a non-negative integer. Since

/> 1, (1.31), (4.7) and (4.8) together with the assumption p'(0) = 0 imply that

(4.9)

If h+(λ) is given by (4.5), then

l-tλm+1 -tλ

and hence,

(4 11) flo(0) = </0(0)=l, * m ( 0 ) = - ί , flm+1(0)=-

41(0) = c1(0) = £i2(0) = rf2(0)= =rfw_1(0) = c

By the first equations in (1.31) and (4.11), there holds

(4.12) q(0) = p(0).

As in the previous case, from (4.11) and (4.12) we obtain

( 4 1 3 )

p(0)2 p(0)q(0)

where βlm, α / + 1 m + 1, and βι + ί m are positive integers, while βι+ίtm is a non-negative

integer. (1.31), (4.12) and (4.13) together with the assumption p'(0) = 0 imply that
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)(O)=pω (o) f o r 7 = i , 2 , . . . , Z - l ,

(4.14)

This completes the proof. •

Write the dressing function / around z = 0 as

(A 1 S\ I(z) —ϊ + / z + T z2 +

Now we are ready to prove the main result of this section.

THEOREM 4.16. Let k>2 be an integer, and je{k + 4, /c + 5,..., 2/c + 2, 2/c + 6,

2/c + 7,..., 3/c + 4, }. 77zeτz there is exactly one dressing invariant of order j associated

with any umbilic point of order k. Moreover, this invariant is a differential polynomial in

the dressing function I evaluated at the umbilic point.

PROOF. Here we only sketch a proof. Let

(4.i7) P ( Z ) =CVP(Z)
 ή t y

be the normalized potential with reference point z = 0 for a CMC surface with the

induced metric 4e2 ω ( z ' f )dzdz. Then, by [8],

^T.ioj pyz) = e ,

where θ(z) is the holomorphic part in the Taylor expansion with respect to z = 0 of

ω(z,z) as a real analytic function of z and z. By Lemma 3.2, we may assume that

0(0) = 0. For each odd integer n>\ and any constant teC, set

( 1 tλn

0 1

a n

By (1.23)—(1.26) and an argument using (1.33) with n= 1 which is similar to that

for the existence of the first set of dressing invariants, 7\(ί) does not change / fc_i,

/ k , . . . , 72k. From (1.17) with n = 2 and (1.28) one can solve for a2, while cx(0) is given

by (1.19) with n = 1. By (1.25) with n = 1, there hold c\{0)= =c(/c)(0) = 0. Moreover,

*i(0)> &Ί(0)> ' &?+ υ(0) can be expressed in terms of 7k_ 1 ? 7 f c,..., I2k using (1.37) with

Λ = 1 . Then, it is not difficult to show that (1.33) with n = 3 implies the invariance of

some quantities
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C2,2h-i+

(4.20)

C2,k~lh-1 + ̂ 2,fc- lh + e2,k- 2̂ fc + 1 + ̂ 2fe- 1 >

when 0'(O) = 0, where the constants cr s, dr s, and er>s are polynomials in the first set of

dressing invariants Iθ9 Iί9..., / k _ 2 By Lemma 3.25 and (4.18), T^t) with an appropriate

t changes θ'(0) to 0. Therefore, the quantities in (4.20) are the second set of dressing

invariants on any dressing orbit.

Similarly, by (1.23)—(1.26) and an argument using (1.33) with n = 3 and some other

identities in § 1 that is similar to that above for the existence of the second set of dressing

invariants, there are polynomials £P2k+u &2k + 2i > &3k + 2 without constant terms such

that Ux(t\ V2(t) and T3(ή do not change

fk- I? *k>

where some of the coefficients of the polynomials &2k+ί9 &2k + 2> » ̂ 3k + 2 depend on

the orbit. It is not difficult to prove that (1.33) with n = 5 and some other identities in

§ 1 imply the invariance of some quantities

2k + 25 •* 2k + 3) "^"-*2k + 4 »

,Λ JJ, =^k+5(^2k+l? 2̂fc +

when θ/(0) = / f c _ 1 = / f c = / k + 1 = 0 , where some of the coefficients of the polynomi-

als *22 f c + 4, <̂ 2k + 5> j =̂ 3k+2 a l s o depend on the orbit. By Lemmas 3.25 and 4.2,

^3(^4)^2(^3)^1(^2)^1(^1) with appropriate tί9 t29 t39 and t4 changes all of θ'(0), Ik-i9Ik

and Ik+1 to 0. Hence, the quantities

k-li hi

(4.23)

-l» hi h+l)+l2k+li &2k + 2(h-li hi 4

-li hi h+ l) + ̂ 2k+ 3) + ̂ 3k + 2(h- li hi
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form the third set of dressing invariants on any dressing orbit.

Then, one uses an induction to prove the existence of the other sets of dressing

invariants on the dressing orbits.

Finally, the uniqueness of dressing invariants of these orders is a consequence of

Lemmas 3.2, 3.25, and 4.2 and the formats of the dressing invariants produced above

(see the proof of Proposition 3.46). •

We note that the proof sketched above is actually an algorithm for computing all

the dressing invariants. For example, direct computations following the algorithm and

using the identities in § 1 yield that the second dressing invariant is

(4.24) y/? + y V 2 + /4

if k = 2, and that the first dressing invariant in the second set is

(4.25)
V ; 3/c

if/c>2.

REMARK. By direct calculations, under a local coordinate around an umbilic point

of order >2 that does satisfy (4.1), we may miss some of the dressing invariants.

5. Integrability and topology on Λβ SL(2, C)σ. By §2 and §4, if two normalized

potentials P and Q are in the same dressing orbit, then each dressing invariant associated

with the umbilic points of orders > 2 takes the same value at P and Q. In this section,

we show that the equation (1.9) on the dressing transformation G+ from P to Q is

always formally integrable if each dressing invariant takes the same value at P and Q.

Then, we look at how the topology on the loop group affects the actual integrability

of (1.9) in the case where there is an umbilic point on the corresponding CMC surfaces.

Let

(5.1) P{z) = \ P^)dz and β(z) = ( ^ )dz
\E(z)/p(z) 0 / * W \E(z)/q(z) 0 )

be two normalized potentials on D. Then, P and Q are in the same dressing orbit if

and only if there exists a holomorphic map G+ : D\S-+Λ+SL(2, C)σ satisfying (1.9)

with initial value G+(0, )eΛβSL(2, C)σ9 where S consists of the poles of P and Q.

First, we look at the formal integrability of (1.9), i.e., the question of how to find the

functions am bm cn, dn in the coefficient matrices of G+.

Since ao(0), p(0) and #(0) are all positive, both (1.30) and (1.31) mean

(5.2) ao = J— a n d do = J— >
V q V P
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where the radical satisfies y/T= 1. So, the functions am bn9 cn and dn are determined by

(5.2), (1.19)-(1.22), (1.28) and (1.29), or equivalently, by (5.2), (1.32)-(1.35), (1.28) and

(1.29).

LEMMA 5.3. The equation (1.21) is a consequence of (5.2), (1.19), (1.20), (1.22),

(1.28) and (1.29), or equivalently, of (5.2), (1.32), (1.33), (1.35), (1.28) and (1.29).

PROOF. By (5.2); we can rewrite (1.21) and (1.22) as

(5.4) a'ndo + d'nao = 0 for even n>0

and

(5.5) ando-aodn=
 n~ι ° for even n>2,

respectively. Now, we proceed by induction on n in (5.4). From (5.2) one obtains

(5.6) αίA + 4«o = )4(
p q ) 2 \ q p

i.e., (5.4) for n = 0 is a consequence of (5.2). From (1.28) and (5.5) with « = 2we get

(5.7) a2d0=—b1cί+-^- and aod2=—b1c1—
 1 °

2 ι 2q 2 2q

which together with (1.19) for n= 1, (1.20) for H = 1 and (5.4) or (1.21) for n = 0 imply

(5.8) a'2d0 + a0d'2 = (a2d0 + a0d2)' - a2d'o - a'od2

= (biciy-l—aob1c1+-^)d'o-a'ol—bίcίdo--i-
\2 2qJ \2 2p

2p

h,fbiE flo

P / \ pq / 2p 2p

= 0,

i.e., (5.4) holds for n = 2. For any integer />2, from (1.29) and (5.5) one obtains

(5.9) 2 j = ° 2 y = 1 ^
x7 V I, V J °2l-lU0

2 2
Σ b2j+iC2ι-2j-i Σ ^ i f l n - i j ,

2 j=o 2 j=i 2q

which together with (1.19) for n<2l-l, (1.20) for n<2l-l, (1.22) for n<2\-2 and the

induction assumption, i.e., (5.4) or (1.21) for n<2l-2, imply
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(5.10) a'2ld0 + aod'2l = (a2ld0 + a0d2l)' - a2ld'o - a'0d2l

l-l l-ί

= Σ (b2j+lC2l-2j-l+b2j+ίC2l-2j-1)- Σ (a2jd2l- 2j + a2jd'2l- 2j)
j0 j

1 { 1

- 2 7 - l - — λ <*2jd2l-
2

2jd2l-2jλ ^2j+lC2Z-27-l λ <*2jd2l-2j + Z
j=o 2 j=i 2q

- \-Γ Σ b2j+lC2l-2j-ί-~ Σ a2jd2l-2j

\ 2 j =o 2 j=i 2q

- Σ K^j
i = i L \ /

( _

2q 2p

<*Όb2l-l aΌb2l-l aΌbf2l-l

P ΪP 2p

= 0,

i.e., (5.4) holds for n = 21. •

Therefore, the functions an, bn, cn and dn only need to satisfy (5.2), (1.28), (1.29),

(1.32), (1.33) and (1.35). We collect these equations here with only evident modifications:

(5.11) ao= \*- and do= t ,
V q V P

(5.12) 2fc;£ + 6 ^ F - ^ - ^ £ j = ^ . 1 - β ; _ 1 ^ ί for odd n > l ,

(5.13) Cn = bn — - « ; _ ! - — for odd n>U
pq p

1 W 1 W

(5.14) α2 = — f l o b l C l + - i - and d2=—doblCl-^-,
2 2 D 2 2/7

1 n/2-l I n/2 - 1 £ '

(5.15) απ = - α 0 X b 2 j + 1 c n _ 2 j _ 1 - - α 0 Σ «2Λ-2j + - ^ — forevenπ>4,
2 j=o 2 ; = i 2g

^ π/2 -1 1 n/2 - 1 £' _

(5.16) rfn = -rf0 Σ b2j+ιcn_2j.1--d0 X α2A-2i ^ ~ for even n>4.
2 y = o 2 .7=1 z p

THEOREM 5.17. //"fλe or/g/« w a non-umbilic point, then for any P, Q, and initial
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conditions b^O), &3(0),..., the equation (1.9) on G+ : D\S-*Λ + SL(2, Qσ is formally

integrable. If the origin is a simple umbίlic point, then for any P and Q, the equation (1.9)

on G+: D\S -• Λ + SL(2, C)σ is formally integrable and the formal solution is unique. If

the origin is an umbilic point of order k>2 and the coordinate z satisfies (4.1), then for

any P and Q such that J(P) = J>(Q) for each dressing invariant J> associated with the

origin, the equation (1.9) on G+ : D\S-+Λ+SL(2, C)σ is formally integrable and the

formal solution is unique.

COROLLARY 5.18. Iff: Z>->/?3 is a CMC immersion with an umbilic point, then

the dressing action of ΛβSL(2, C)σ on the dressing orbit through f is free, and hence, the

orbit is diffeomorphic to ΛβSL(2, C)σ.

REMARK. Josef Dorfmeister and Franz Pedit told us that they had obtained the

results of Corollary 5.18 in a direct way.

PROOF. The first statement directly follows from (5.11)—(5.16). The idea for our

proofs of the other two statements is: (5.12) determines bn(0) when z = 0 is an umbilic

point, which can be seen from (1.37). For example, if the origin is a simple umbilic

point, then (5.12) implies

(5.19) f,π(0) = ̂ ' _ 1 ( 0 ) - α ; _ 1 ( 0 ) ^ - ) - | ^ - for odd n>\ ,

and hence, (5.12) uniquely determines bn from an-l9 p, q and E. Therefore, all the

functions an, bn, cn and dn are uniquely determined by p, q and E. •

So far, we have no knowledge as to if a formal solution to (1.9) actually converges

under any topology on ΛSL(2, C)σ. However, we turn to the question of whether the

topology on ΛSL(2, C)σ affects the convergence of a formal solution to (1.9). In order

to indicate the topology 9~ used on Λβ SL(2, C)σ, we are goint to use the notation

THEOREM 5.20. Let &Ί and ZΓ2 be two topologies on ΛSL(2, C)σ such that the

dressing action is defined and the Weiers trass type representation of CMC surfaces holds,

f: D^>R3 a CMC surface with an umbilic point. If &Ί is weaker than ZΓ2 when restricted

to ΛβSL(2,C)σ, then the dressing orbit through f under the action of Λp]BSL(2, C)σ

contains the dressing orbit through f under the action ofA%-^ BSL(2, C)σ as a proper subset.

PROOF. Since Λp2t βSL(2, C)σ is a proper subset of Λpu BSL{2, C)σ, there is an

element h+ eApuBSL{2, Qσ\Λp2fBSL(2, Qσ. Then, by Corollary 5.18, (h+).f is not in

the dressing orbit through/under the action of Ap2 BSL(2, C)σ. •

Hence, if one can weaken the topology on Λβ SL(2, C)σ while keeping the dressing

action defined and the Weierstrass type representation valid, then there are more than

one dressing orbit with any given Hopf differential E(z)(dz)2 on D having a zero.
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In summary, the equations (5.11)—(5.16) only tells the format of the normalized

potentials for the elements in a dressing orbit of CMC surfaces with an umbilic point,

and the topology on Λ% SL(2, C)σ determines how big the orbit is.
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