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Abstract. In this work we give a method for constructing a one-parameter family

of complete CMC-1 (i.e. constant mean curvature 1) surfaces in hyperbolic 3-space that

correspond to a given complete minimal surface with finite total curvature in Euclidean

3-space. We show that this one-parameter family of surfaces with the same symmetry

properties exists for all given minimal surfaces satisfying certain conditions. The surfaces

we construct in this paper are irreducible, and in the process of showing this, we also

prove some results about the reducibility of surfaces.

Furthermore, in the case that the surfaces are of genus 0, we are able to make some

estimates on the range of the parameter for the one-parameter family.

1. Introduction. Recently, new examples of immersed CMC-1 surfaces of finite
total curvature in the hyperbolic 3-space H3( — 1) of curvature — 1 have been found (cf.
[UY1], [UY2], [S], and [UY4]). One method used to make these new examples is the
following: The set of all conformal branched CMC-c (i.e. constant mean curvature c)
immersions in H3( — c2) of finite total curvature with hyperbolic Gauss map G defined
on a compact Riemann surface M corresponds bijectively to the set of conformal
pseudometrics of constant curvature 1 with conical singularities on M. (cf. [UY4].) By
the work of Small [S], this correspondence can be explicitly written when the immersion
can be lifted to a null curve in PSU2, C) = SL(2, C)/{±1}. This gives a method for
constructing new examples. However, to construct non-branched CMC-c surfaces is
still difficult, because the method above does not give any control over branch points.

In this paper we use a new method to construct new examples without branch
points, which have higher genus, many symmetries, and embedded ends. More precisely,
we prove that for each complete symmetric finite-total-curvature minimal surface in R3

with a non-degenerate period problem, there exists a corresponding one-parameter
family of CMC-1 surfaces in H3( — 1). We define the terms "symmetric" and "non-
degenerate" later. To prove the existence of these corresponding one-parameter
families, we begin by using a small deformation from the original minimal surface in
R3, preserving its (hyperbolic) Gauss map G and Hopf differential Q. This gives us
CMC-c surfaces in 7/3( —c2), for c^O. Finally, we rescale the surfaces into CMC-1

1991 Mathematics Subject Classification. Primary 53A10; Secondary 53A35, 53C42.

This research was supported in part by Grant-in-Aid for Scientific Research, the Ministry of Education,

Science, Sports and Culture, Japan, and by a fellowship from the Japan Society for the Promotion of Science.



450 W. ROSSMAN, M. UMEHARA AND K. YAMADA

surfaces in H3( — 1). The method is somewhat similar to that of [UY2], the main
difference being that we use the duality on CMC-1 surfaces to keep the symmetry
properties of the initial minimal surfaces.

Here, we briefly outline the construction: Let / 0 : M-+R3 be a conformal minimal
immersion defined on a Riemann surface M. We set

G = ω = dx1—idx2 , Q = ω dG,G = , ω = dx1idx2

dxι—idx2

where the dot means the symmetric product. Then G is the Gauss map of /0, and Q is
the Hopf differential, namely the (2, 0)-part of the complexification of the second
fundamental form. The pair (G, ώ) is called the Weierstrass data of /0. For CMC-c
surfaces in H3( — c2), the Weierstrass data can also be defined. The CMC-c surface fc

with the same Weierstrass data (G, — ω) as —/0 is only defined on the universal cover
M. We set

{ / is a conformal CMC-c immersion Ί

f:M^H3(-c2); with hyperbolic Gauss map G >

and Hopf differential Q . )
In Section 3, we show that the set ΐ)$(G9 Q) can be identified with the hyperbolic 3-space
J f3. (We will use two different notations for hyperbolic space. The notation H3 will
be used to represent the ambient space for CMC surfaces, and the notation Jf3 will be
used to represent the parameter space of £)(G, Q)) We show that any two CMC-c
immersions in T>$(G, Q) are non-congruent, and they are dual surfaces of the CMC-c
surface fc. (As mentioned above, (G, — ω) is the Weierstrass data of fc. The duality
exchanges the roles of the hyperbolic Gauss map and the secondary Gauss map, and
at the same time the sign of the Hopf differential is reversed.)

Then, defining a subset I{M(G, Q) of immersions which are single-valued on M\

(1.1) /$(G, Q) = {fe £$(G, β); / is single-valued on M itself.},

we show that IM(G, Q) is either empty, or is a connected totally geodesic subspace of di-
mension 0, 1 or 3 in Jf73. (The two-dimensional case does not occur.) When
dim/$(G, β) = 0, the unique CMC-c immersion in I(M(G, Q) is irreducible in the sense
of [UY1]. For initial minimal surfaces /0, which are symmetric, and have non-degener-
ate period problems, we can construct a one-parameter family of CMC-1 surfaces
fc: M^>H3( — c2) with the same symmetry properties as /0. Moreover, if the initial
minimal surface is generated from a fundamental domain by reflections with respect to
three non-parallel planes, we can show that I(M(G, Q) consists of only one point, whenever
c is sufficiently small. This unique surface coincides with the above fc. If we consider
H3( — c2) as the Poincare model of radius 1/| c |, then it converges to the initial surface
/o as c->0. (See Remark 5.8.) The method we have just described can be applied to
virtually all of the well-known symmetric minimal surfaces in R3. (See Section 5.) When
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the hyperbolic Gauss map G and the Hopf differential Q have certain properties, our

method is valid even without initial minimal surfaces. In Section 7, we demonstrate this

by constructing hyperbolic correspondences of the catenoid fence and Jorge-Meeks

fences (cf. [Kar], [R]). Taking limits of these surfaces as c approaches 0, we obtain

alternative proofs of the existence of the corresponding minimal surfaces in R3.

Other useful applications of duality for CMC-1 surfaces can be found in [UY5].

2. Preliminaries. In this paper, we use the following identification:

(2.1)

where a* = *ά. The complex Lie group PSL(2, Q = SL(2, C)/{± 1} acts isometrically on

H3{-c2) by aop = apa*, where aePSL(2, C) and peH3(-c2). (See [Bry], [UY1], or

[UY2].)

Let M be a Riemann surface and / : M->H3( — c2) a complete conformal CMC-c

immersion of finite total curvature. Then there is a null holomorphic immersion

F: M->SZ(2, C) defined on the universal cover M of M such that f=(l/c)FF*. Such

Fis uniquely determined up to the ambiguity Fb, for beSU(2). Define a meromorphic

function G by

(2.2) d F d F

dF2ί dF
22

where F=(Fij)ij=l2. Then G is a meromorphic single-valued function on M. The

function G is called the hyperbolic Gauss map of / (cf. [Bry]). We can set

(2.3)
i -g

where g is a meromorphic function on M and ω is a holomorphic 1-form defined on

M. We call the pair (#, ω) the Weierstrass data of the CMC-c immersion /, and g the

secondary Gauss map of /. The pair (g, ω) also has an S£/(2)-ambiguity with respect

to that of F(cf. Remark 2.1). By using the Weierstrass data (g, ω), the first fundamental

form ds2 and the second fundamental form h are written as

(2.4) Λ 2 = (l + |flf|2)2ω ώ, h=-Q-Q + cds2 ,

where

(2.5) Q = ω-dg.

Conversely, if the Weierstrass data (g, ω) on M satisfying the compatibility condition

(2.6) <fc2 = (l + |0 | 2 ) 2 ω ώ>O

is given abstractly, then there is a CMC-c immersion / : M^H3( — c2) with Weierstrass
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data (g, ω).

REMARK 2.1. Let / : M -> H3( — c2) be another conformal CMC-c immersion with

Weierstrass data (g, ώ). Then / and / a r e congruent if and only if their fundamental

forms mutually coincide, which, by (2.4), is equivalent to the following condition:

(2.7) g ^ ^

for some matrix

p

where \p\2 + \q\2 = 1 (cf. [UY1, (1.6)]). We call this SU(2)-equivalence. Transforming

(g, ω) into (g, ώ) in (2.3) transforms F into Fb~ι. Thus

/ = — {Fb~ι)(Fb-1)*=~ FF* = f
c c

holds.

The holomorphic quadratic differential Q defined by (2.5) is called the Hopf

differential of / . By (2.4), Q is single-valued on M. The hyperbolic Gauss map G, the

secondary Gauss map g and the Hopf differential Q satisfy the identity (cf. [UY1],

[UY4])

(2.8) S(g)-S(G) =

where S(g) = Sz(g)dz2 is the Schwarzian derivative of g, namely Sz(g) is

sHvH(vJ <•-«*>•
DEFINITION 2.2. Let (g, ω) be a Weierstrass data on M with the compatibility

condition (2.6). Then there exists a conformal CMC-c immersion / : M-^H3( — c2)

with the Weierstrass data (g, ω). Let G be the hyperbolic Gauss map of /. Then there

exists a unique null holomorphic immersion F: M^SL(2, C) satisfying (2.2) and (2.3)

(cf. [UY4, Theorem 1.6]). We call Fthe lift off with respect to the Weierstrass data (g, ω).

For a meromorphic function G and a holomorphic 2-differential Q defined on M,

the set £>M(G, Q) is defined as in the introduction.

LEMMA 2.3. The following assertions are equivalent:

(1) Φ#(G, Q) is nonempty.

(2) The symmetric tensor
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Q

dG \dG

is positive definite on M.

Moreover, any immersion f in £>M(G, Q) has a complete induced metric whenever

dSβ is a complete metric of finite total curvature and Q has poles of order at most 2.

PROOF. Assume that (2) holds. Then there is a conformal CMC-c immersion

/ : M-+H\-c2) with the Weierstrass data (G, -Q/dG). Let g be the hyperbolic Gauss

map of / Take the lift F: M-+SL(2, Q of / We set

c

which is called the dual surface in [UY5]. By taking the dual, the hyperbolic Gauss

map G and the secondary Gauss map g are exchanged, and the sign of Q is reversed.

So the conformal CMC-c immersion / * has the hyperbolic Gauss map G and the Hopf

differential Q. (See Proposition 4 of [UY5], with special attention to the sign of Q.)

Hence / * e £>M}(G, Q), and (2) implies (1). Moreover the completeness of the induced

metric of/* follows from [UY5, Lemma 5].

Conversely, suppose that fe TtfaXG, Q) is given. Let (g, ώ) be the Weierstrass data

of / Taking the lift F of/with respect to the Weierstrass data (g, ώ), the conformal

CMC-1 immersion defined by f* = {F~1)(F~1)* has the Weierstrass data (G, -Q/dG).

Since F~1 is an immersion, the first fundamental form ds% of / * is positive definite.

D

COROLLARY 2.4. Suppose that feX>$(G, Q) satisfies f=(\/c)FF*9 where F: M->

SL(2, C) is a null holomorphic immersion. Then F satisfies the differential equation

(Q _
(2.10) * 1

1 -G) dG

PROOF. AS seen above, the dual immersion f* = {\/c)(F~ι)(F~1)* has the Weier-

strass data (G, -Q/dG). Since (F~ίy1d(F~1)=-dFF~\ the assertion immediately

follows from (2.3). •

LEMMA 2.5. If£$(G9 Q) is not empty, then it is identified with the hyperbolic 3-

space ^ 3 .

In the above statement, we used the notation J»f3 for the hyperbolic 3-space to

distinguish it from the hyperbolic 3-space as the ambient space for CMC surfaces.

PROOF. Choose a CMC-c immersion / 0 e T){M(G, Q), and fix a null holomorphic

immersion Fo : M-• SL(2, C) such that fo = (\/c)FoF$. Consider any immersion

fγ e T>M(G, Q). Then there exists a null holomorphic immersion F1\ M->SL(2, C)
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satisfying fι—(l/c)F1Ff. Let g0 and gγ be the secondary Gauss maps of / 0 and fί9

respectively. By (2.8), Sz(g0) = Sz(g1). Thus a well-known property of the Schwarzian

derivative yields

ag + a for s o m e a = (akj)k j=ί 2eSL(2, C).

Since the hyperbolic Gauss maps of/0 and fx coincide, we have Fx =Foa~ί (cf. [UY4,

(1.6)]). Thus /^(l/cJFoίfl-^fl-1)*/^, and

D

By Remark 2.1, the following assertion is immediately obtained.

COROLLARY 2.6. For any two distinct CMC-c immersions fi,f2 : M—>H3( — c2) in

, β), there is no isometry TeSL{2, C) such that T(f1)=f2.

3. Reducibility. Let Mbe a Riemann surface and/?: M->M the universal cover

of M. We fix a reference point zoeM and identify canonically the fundamental group

π1(M) = π1(M, p(z0)) with the deck transformation group on M. Take a meromorphic

function G and a holomorphic 2-differential Q defined on M. We identify the lifts G°p

and Qop on M with G and β themselves.

We consider the subset /#(G, β) of D#(G, β) as defined in (1.1). When Dft>(G, β)

is non-empty, as seen in Lemma 2.5, we can consider I$(G, β) as a subset of the

hyperbolic 3-space Jf?3. The set /$(G, β) is closely related to the reducibility of CMC-c

surfaces. We recall the definition (cf. [UY1, Definition 3.1]): For /eX>$(G, β), we

define a pseudometric dσj by dσ2 = ( — K)ds2, where ^ is the sectional curvature of the

first fundamental form ds2. Then (cf. [UY4, (2.8)])

(3.1) dσ2

where g is the secondary Gauss map. By (2.4), (2.5) and (3.1), one can easily get the

relation

(3.2) ds2 dσ2 = 4Q Q .

By (3.1), dσ2 is the pull back of the canonical metric on the unit sphere S2^CΌ {OO}

by the secondary Gauss map g. For each deck transformation τeπ^M), there exists a

matrix p(τ) = (α</ fc)J f f c = l t 2 in PSL(2, C) such that

(3.3) goτ-^fi
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where the asterisk means the action of p(τ) as a Mόbius transformation. Then a
representation p: πi(M)^PSL(2, C) is induced. Let F: M->SL(2, C) be the lift of /
with respect to the Weierstrass data (g, Q/dg) (cf. Definition 2.2). Since Foτ and Fp(τ)
have the same hyperbolic Gauss map and secondary Gauss map goτ, Theorem 1.6
in [UY4] yields

(3.4) Foτ = sτFp(τ)

where sτ = 1 or — 1. We set

p{τ) = sτp(τ)

Then p: π1(M)->PSL(2, C) can be lifted to a representation

p: πΐ

Since the representation p depends on the choice of the Weierstrass data, we will also
use the notation pF as well as p when such an explicit notation is required.

LEMMA 3.1. Suppose fe £$(G, Q). Then fe /$(G, Q) if and only ifp(τ) e SU(2)for
allτeπ^M).

PROOF. Since G and Q are single-valued on M, by Corollary 2.4 in [UY4],
/e/$(G, Q) if and only if ds2 is single-valued on M. The condition is equivalent to dσj
being single-valued on M by (3.2). Thus feI$(G, Q) if and only if each p(τ) preserves
dσj, that is, p(τ) e SU(2). •

A CMC-c immersion /e/$(G, Q) is said to be reducible if p(τ1)p(τ2) = p(τ2)p(τ1)
holds for all τ l 5 τ2eπ1(M). In Theorem 3.3 of [UY1], the second and third authors
showed that reducible CMC-c surfaces have a nontrivial deformation associated with
the deformation of the Weierstrass data (λg,(l/λ)ω) (λeR\{0}). This deformation
preserves the Hopf differential Q = ω dg. Moreover, by (2.8), S(G) is also preserved.
Since the Schwarzian derivative S(G) is invariant under the Mόbius transformations of
G, we can place each of these one-parameter family of surfaces by a suitable rigid
motion in H3( — c2) so that the hyperbolic Gauss map is not changed. Thus we get a
non-trivial deformation in /$(G, Q) for reducible CMC-c surfaces. As a refinement of
this observation, we prove the following theorem.

THEOREM 3.2. Assume that the subset /^(G, Q) of I>$(G, Q) is not empty. Then
the set I{M\G, Q) is a point, a geodesic line Jf1 or all of Jf3 = T)$(G, Q). Moreover, each
feI$(G, Q) is irreducible if and only if I${G, Q) is a point.

REMARK 3.3. In other words, I(M(G, Q) is a connected totally geodesic
^-dimensional subset of ^ 3 with n = 0, 1, or 3. In the case /$(G, Q) = ̂ 3 , any null
holomorphic immersion F: M -• PSL(2, C) with the hyperbolic Gauss map G and the
Hopf differential Q is single-valued on M (cf. [UY3, Theorem 1.6]).
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We set Γ:=p(πί(M))c:SU(2). Then Theorem 3.2 is an immediate consequence of

the lemma in the appendix.

4. A representation of the fundamental group. In this section, we consider how to

find a CMC-c immersion fe D M ( G , Q) for any given hyperbolic Gauss map G and Hopf

differential β ( # 0 ) on a Riemann surface generated by reflections. As in the previous

section, we fix a reference point zoeM and identify canonically the fundamental group

π1(M) = π1(M,p(z0)) with the deck transformation group on M. Let μ1? . . . , μ m be

reflections of M, that is, conformal orientation-reversing involutions on M. Suppose

that μ l 5 . . . , μm generate the deck transformation group on M and induce reflections

μ1? . . . , μm of M such that

(4.1) poμ. = μ.op (j=l,...,m),

where p: M-> M is the covering projection.

Take a pair (G, Q) of a meromorphic function and a holomorphic 2-diίferential on

M such that ώ j = (1 +1 G |2)2(g/ί/G) (Q/dG) is positive definite. In addition, we assume

that

(4.2) Q°μj=Q and dsloμ.=ds2

G

hold. By Lemma 2.3, the set X>$(G, Q) is non-empty.

LEMMA 4.1. TTzere exz^ matrices σ(μj)GSU(2) (j= 1, . . . , m) such that

PROOF. Consider a pseudometric dpl = 4dG dG/(l +1 G | 2 ) 2 on M. By (4.2) and

(3.2), dpQoμj = dpQ holds. This occurs if and only if there exists a matrix σ{μj)eSU{2)

such that Goμj = σ(μj)~1*G, since μ7 is orientation reversing. •

Each matrix σ(μ7) (j= 1, . . . , m) is determined up to sign. From now on, we fix a

sign of σ(μj).

LEMMA 4.2. Let fet)$(G,Q) and F:M^SL(2,C) be a null holomorphic

immersion such that f=(l/c)FF*. Then there exists a unique matrix pF(flj)eSL(2, C)

(j= 1, . . . , m) such that

(4.3) Foμ^σiμjrj

holds for σ(μj) in Lemma 4.1.

PROOF. Consider two CMC-1 immersions defined by



CONSTANT MEAN CURVATURE 1 SURFACES IN HYPERBOLIC SPACE 457

Then by assumption (4.2), the two immersions have the same first fundamental form

CISQ and the same second fundamental form — Q — Q + cdSβ. Hence these immersions

are congruent by the fundamental theorem for surfaces, and so there is a unique isometry

aeSL(2, C) such that fι=af2a*. In particular, there exists beSU(2) such that (cf.

Remark 2.1) F~ i=a(F°μjy
ib, that is, Fofij = bFa. Since Foμ. has the hyperbolic Gauss

map Goμp we have b = εσ(μj)~1 (ε= ±1) by Lemma 4.1 and by [UY4, Theorem 1.6].

Finally, if we set βF(fij) = εa, we have the desired expression. The uniqueness of βF(βj)

follows from that of the matrix a and the sign ε. •

REMARK 4.3. For any two reflections μj9 μk, the following relation holds:

Foμjoμk = σ(μk)
 ί(Foμj)βF(μk) = (σ(μj)σ(μk)) 1FpF(μj)fiF(fik).

COROLLARY 4.4. Let feΐ)$(G, Q) and F: M->SX(2, C) be a null holomorphic

immersion such that f=(l/c)FF*. Then βFa(μj) = a~1βF(μj)ά holds for any aeSL(2, C).

LEMMA 4.5.

PROOF. Since μyoμ^id, G = Goμjoμ.= {σ(μj)σ(μj)} X *G, and we see that

σ(μj)σ(μj)= ±id. Suppose that σ(μj)σ(μj)= —id. Since σ(μj)eSU(2), we have

and so Goμj = σ(μjy
1*G= — 1/G. Let z be a fixed point of μ7 . Then | G(z)\2= —1 holds,

a contradiction. •

REMARK 4.6. By Remark 4.3 and the previous lemma, we have pF(μj)βF(μj) = id.

Recall that for each τ e πx(M), there is a representation pF: π^M) -• SL(2, C) such

that F°τ = FρF(τ). (See Section 3.) Each τ is represented as

( 4 4 ) τ=fihOβj2O'-°fij2k-lOflj2k

Then by Remark 4.3, we have

(4.5) Foτ = {σ(μjl)σ(μj2) -σ{μhl<_1)σ{μjj}
 x *F-pF(μh)βF{μh) βF(μhk_

On the other hand, by Lemma 4.1,

G o τ = {σ{μh)σ{μj2) σ(μJ2k _ > ( μ J 2 k ) } x * G

holds. Since G is single-valued on M, we have

σ(μh)σ(μj2) σ(μJ2k_ί)σ(μJ2k) = ετid ,

where ετ = 1 or — 1. So we have an expression
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(4.7) pF(τ) = ετβF{μh)βF{μ^ βF(μJ2k_ι)βF(μhk).

The following criterion is useful to construct examples.

PROPOSITION 4.7. Let / e l ^ G , Q) and F: M->SX(2, C) be a null holomorphίc

immersion such that f=(\/c)FF*. Suppose βF(βj)eSU(2) (j= 1, . . . , m) holds. Then the

immersion f is an element ofI{^\G, Q). Moreover, each reflection μ ; extends to an isometry

of H3( — c2) preserving the image of f

PROOF. The first assertion immediately follows from Lemma 3.1 and (4.7). Since

Foμj = σ(μj)~1FβF(μj) and βF{βj)eSU{2\ we have foμj = σ(μj)~1f(σ(μjy
1)*. This im-

plies the last assertion. •

The following lemma plays an important role in later sections:

LEMMA 4.8. Let Fc\ M^>SL(2, C) be a family of null holomorphic immersions

such that limc_0 Fc = id and (l/c)FcF* e T)£}(G, Q). Let I be a loop on M and τ eπ^M) the

deck transformation induced from I. Then

G - G 2 '

1 -G

d
pFc(

τ)=
Q

dG

PROOF. Let z0 be a point of / in M and z o e M a lift of z0. Put zt = τ(z0). Then

there exists a lift Γof /joining z 0 and zv We set F'c = {dFJdc)\c=0. By Corollary 2.4, Fc

is a solution of the equation

(4.8) dFc = ctxFc, α =
G -G2

1 -G ) dG

Since F 0 = lim c^0 JF c = id, we have p F o = id, and since

where ' = d/dc\c = 0. Integrating this, we have

F'c = a.Fc + cat.F'c, we have dF'0 = a,

Γ2"1

) =
Hence

(4.9)

On the

(4.10)

other hand,

dc c = 0

dc c = C

δ

dc~
(FcPl

c = 0

α + i

c = 0

holds. By (4.9) and (4.10), we are done. •

The above lemma is a generalization of [UY2, Lemma 3.3] in which the same statement
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for a loop / surrounding an end is shown.

5. CMC-1 surfaces of finite total curvature. In [UY4], the hyperbolic cor-

respondence of the Jorge-Meeks n-oid and CMC-1 surfaces of genus 0 with Platonic

symmetries have been constructed. (See also Section 6.) In this section, we construct

CMC-1 surfaces of both genus zero and positive genus in H3( — 1), which correspond

to minimal surfaces in Euclidean 3-space R3 described in [BR], [R], [W].

In fact, we show that for any complete finite-total-curvature minimal surface in

R3 satisfying certain conditions, there exists a one-parameter family of corresponding

CMC-1 surfaces in H3(— 1). The conditions are quite general in the sense that they are

satisfied by almost all known examples of complete finite-total-curvature minimal

surfaces.

Osserman [O] showed that any complete finite-total-curvature minimal surface in

R3 can be represented as a conformal immersion / : M->/?3, where M is a compact

Riemannian manifold with a finite number of points removed, i.e. M=M\{el9..., er).

Let S={xeM\3yφx, f(y) = f(x)} be the intersection set of/. The following definition

describes minimal surfaces that are embedded everywhere except in neighborhoods of

the ends.

DEFINITION 5.1. If there exist r disjoint open disks UjCiM (y = 1, . . . , r) such that

βjβ Uj and Scz [jr

j= χ Up then the immersion / is almost embedded.

Next we define what we mean by a symmetric minimal immersion.

DEFINITION 5.2. A minimal immersion / is symmetric if there is a subregion

D <^f(M) that is a disk bounded by non-straight planar geodesies, and does not contain

any non-straight planar geodesies in its interior.

If / is symmetric with subdisk D, then D generates the entire surface by reflections

across planes containing boundary planar geodesies. (Since each curve in the boundary

of D is a planar geodesic, the surface can be smoothly extended across these boundary

curves, by the Schwartz reflection principle.) Note that since / has finite total curvature,

/ is not periodic. Therefore, if any two boundary curves of D lie in parallel planes,

they must actually lie in the same plane.

LEMMA 5.3. If f is almost embedded, and if f is symmetric with subdisk D, then

there are at most three planes that contain all of the boundary planar geodesies of D.

These (at most three) planes lie in general position, and meet pairwise at angles of the

form π/m, where m>2 is an integer.

PROOF. Let Pl9..., Pn be the smallest set of distinct planes that contain dD, and

let μj (j= 1,...,«) be the reflection with respect to the plane Pjm Since / is of finite

total curvature, the group Γ generated by the symmetries μ l 5 . . . , μn is finite. It is

well-known that Γ has a fixed point and the number of planes of the fundamental
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chamber is at most three (see [Bou, Chapters 4-6]). •

Let us name these distinct planes Pί9..., Ps9 where s ( = 2 or 3) is the number of

the planes. Let the boundary planar geodesies of D contained in Pj be called SjΛ,

Sj2, , Sjtdj (j=l, ...,s). We now define what we mean by a non-degenerate set of

period problems. Let d equal the number of smooth boundary planar geodesies minus

the number of planes. Thus d=dί+d2 + d3 — 3 if s = 3, and d= d1 + d2 — 2 if s = 2.

DEFINITION 5.4. Let / : M->/?3 be an almost embedded minimal immersion that

is symmetric with subdisk D. Then the set of period problems for / is non-degenerate

if there exists a continuous ^/-parameter family of disks Dλ9 (λ = (λί9..., λd), \λ\<ε) such

that

(1) Λo,o,.. ,o) = £ .

(2) dDλ=\JSj=ι(\JtJ=ι Sj,kW) such that each Sjyk(λ) is a planar geodesic lying in

a plane Pjtk{λ) parallel to Pjm

(3) Letting T>erjk(X) (j= 1, . . . , s, k = 2,..., dj) be the oriented distance between

the plane Pjtk(λ) and PjΛ(λ), the map A: λ = (λί9..., λd) h-> (PeΓj?tfc(λ)) e Rd is an open map

onto a neighborhood of 0.

We reflect Dλ infinitely often to get a simply connected complete surface Mλ. Let

M be the initial minimal surface. Then the universal cover M of M coincides with Mo.

The initial fundamental disk Dλ is contained in Mλ. Also we have associated reflections

μλjk on Mλ with respect to Dλ, and we have the properties

(5.1) fixj.k°fixj.k = id, (fixj,k°fix.r.k'rj-kJ'-k' = id,

whenever the planes containing Sjtk and Srx meet at an angle of π/mjxyk,. Let Γ(λ)

be the group generated by these reflections, with the above properties (5.1). Since mjkyx

does not depend on λ, Γ(λ) is isomorphic to Γ(0), so let i: Γ(λ) -> Γ(0) be the canonical

isomorphism. Let Γ be the deck transformation of the universal cover M of the initial

minimal surface M. Γ is considered as a subgroup of Γ(0). Let Γ A = Ϊ ~ 1 ( Γ ) , and let

Mλ = Mλ/Γλ. Then MA is diffeomorphic to the initial minimal surface M=M0/Γ. On

the initial minimal surface, each reflection μ0Jtk on M induces the reflection μjtk: M->M.

Thus for any τ e Γ , there exists a r ' e Γ such that μ0j,k
oτ = τ'0βo,j,k' By the definition

of Γλ9 any τeΓλ has also an element τ'eΓλ, such that μχj,k

oτ = τ'oβλj,k' This implies

that μA J J t also induces a reflection μA > M: MA -» MA.

Since D λ is a minimal disk bounded by planar geodesies, the Gauss map Gλ and

the Hopf differential Qλ are well-defined on Dλ. Thus Gλ and β A can be extended to

Mλ9 so that they satisfy the properties Gλoμ.k = σ(μjk)~Λ*Gλ and Qλ°fij,k = Qλ Here,

σ(μλJk)eSU(2) is explicitly given by
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where v = (v1? v2, v3) is the unit normal vector perpendicular to the plane Pjk. (Since

Pjtk is parallel to PjU the unit vector v does not depend on the choice of A:.) One can

easily check the above formula as follows: Since the left hand matrix is in SU(2), the

transformation

- / V 3 eCujoo}
-/VaZ + ^ - z V i )

preserves the metric dσl = 4dzdz/(l +1 z | 2 ) 2 . Moreover, the inverse matrix is the conjugate

matrix. Thus Γis an isometric involution. Let T: S2(1)->S2(1) be the induced isometric

involution. By straightforward calculation, T corresponds to a reflection with respect

to the plane passing through the origin perpendicular to v.

LEMMA 5.5. Gλ and Qλ are single-valued on Mλfor any λ.

PROOF. It suffices to show that Gλoτ = Gλ and Qλ°τ = Qλ for each τeΓλ. Since

τ is an orientation preserving diffeomorphism on Mλ9 it can be written as

τ = μλjίkio oβλj2nk2n. Since Qx°fixj,k=Qxi obviously Q°τ = Q holds. On the other

hand, we have

Goτ = {σ(μλJίM)σ{μλj2M)' 'Φxj^.^

Note that Goχ = G holds for 2 = 0, because G coincides with the Gauss map of the initial

minimal surface when λ = 0. This implies that

where λ = 0. Thus it holds for any λ because σ(μjk) does not depend on λ, by (5.2). •

Thus we have an abstract Riemann surface Mλ. Moreover, the induced conformal

metric of Mλ defined by ds\ : = (1 +1 Gλ \
2)2Qλ/dGλ (QJdGλ) is single-valued on Mλ.

Since Mλ is complete and Mλ consists of a finite number of congruent copies of the

finite-total-curvature disk Dλ, Mλ is complete and has finite total curvature. Hence Mλ

can be written as

Mλ = Mλ\{eu...,er},

where Mλ is a compact Riemann surface, and eί9 . . . , er are points corresponding to

the ends of Mλ. Let fλ: Mλ -+ R3 be the immersion of the (periodic) minimal surface

containing Dλ. Then Gλ and ωλ = Qλ/dGλ are the Weierstrass data of fλ. Since Dλ is

continuous in A, we see that Gλ, and Qλ are also continuous in λ. For the sake of

simplicity, we express each reflection by μjk instead of μλ hk. We can place Dλ in R3 so

that the boundary curves Sίtk lie in the plane {*2

 = 0}, the boundary curves S2,k He in

a vertical plane containing the x3-axis, and the boundary curves S3k lie in a nonvertical

plane. Since the angle between Pί and P2 is of the form π/ra (see Lemma 5.3), we have
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where m is an integer, \Po\2 + \qo\2 = 1, and qo=£0, Re(<70) = 0.

PROPOSITION 5.6. Suppose m>2. Then, for a sufficiently small ε>0, there exists

a(d+ \)-parameter family {Fcλ}\c\<ελeBε(0), (Bε(0)czRd) of null holomorphic immersions of

Mλ into SL(2, C) with the following properties.

(1) fCtλ = (l/c)FCtλF*CίλeT)$Λ(Gλ, Qλ)for each (c, λ) (c#0).

(2) Fc λ is smooth in c and continuous in λ.

(4) l im c ^ o p F c λ(μjk) = σ(μjk), where pFc λ(βjyk) is the matrix given in Lemma 4.2.

(5) pF c > A(μ l f l) = id.

(6) There exists a smooth function ξ = ξ(c9 λ) such that \ξ\ = \ and

* r )-(ξ °

(7) Whens = 3,

P Ps.i

where /?3,i=/?3,i(c, λ) is a complex-valued function and β = β(c,λ) is a real-valued

function.

(8) For each j = 1, . . . , s, and each k>2,

2J.ik Pj,k

where pjtk=Pj,k(c, λ) is a complex-valued function, and yιj,k = yιj,k(c> λ) (/=1,2) are

real-valued functions.

The following lemma is easily proved in view of the fact that aά = id implies a = a ~x.

LEMMA 5.7. Let a be a matrix in SL(2, C). Then aά = id holds if and only if a is

of the form

JΎi P

PROOF OF PROPOSITION 5.6. We prove the proposition in the case of ^ = 3.

When s = 2, the assertions are proved if we simply ignore the discussions after (5.7) in

Step III.

Step I. Let z0 λ be a fixed point in the curve S1Λ, which depends continuously

on λ. Consider the initial value problem according to Corollary 2.4:
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(5.4) dFcβ;}=mλ, Fc,Λ(z0,A) = id, where *λ =

Gλ is real on the curve SίΛ, since 5 l f l is a planar geodesic in a plane perpendicular to

the jc 2- a χi s Q is r e a l o n t n e curve SίΛ, since Qχ°μltί = Qλ. Thus, the solutions Fc λ are

also real on SίΛ. For the solutions Fcλ of (5.4), fc,λ = (l/c)FcλF*λ satisfies (1), (2).

For c = 0, (5.4) reduces to dF0 λ = 0. So FOtλ satisfies (3). Moreover, since the Fc λ

are real on SiΛ, FCtλ°μίΛ=FCtλ on SίΛ, where S1Λ is the lift of SlΛ that contains the

point z0. So by the holomorphicity of Fc λ,

Mλ.

This shows that βp(βίΛ) is the identity and (5) is proved. By (5.4), we have F o A = id.

This proves (3). By Gλ°μjtk = σ(μjk)~1*Gλ, we have

Fo,x ° βjtk = σ(f*j,k) γ

where σ(μjfk) is the matrix given by (5.2). Since Foλ = id, we have lim c^0 βpcλ{μhk) = σ(μjfk).

This proves (4).

Step II. By (4.5), we have

( 5 5 ) PPcΛhk)PPc,J<hk) =id

By Lemma 5.7, we have the following expression:

Since we suppose that m>2 and limc^0/?(c, λ) = eπι/m, there exists a sufficiently small

neighborhood U<=Rk and a positive ε > 0 such that the imaginary part lm(p(c, λ))>0

and IRe(/?)|< 1 for any \c\<ε and λe U. In such a small neighborhood, pF c Λ(μ2,i) n a s

two distinct eigenvalues ξ(c, λ) and l/{(c, 2). Since | Re(/?) | < 1, ξ(c, λ) is not a real number,

and thus | ξ(c, λ)\ = l by straightforward calculation. Moreover ξ = ξ(c, λ) is a smooth

function. Now we define a real matrix w(c, λ) e SL(2, R) by

Since Im(^(c, 2))>0, we can easily see that p — ξ is a non-vanishing imaginary number

for any λeUand | c | <ε. Thus u = w(c, 2) is defined as a smooth SX(2, R)-valued function.

By straightforward calculation, we have

(5.6) βfcλ{μ2Λ) = u^
0 ξ(c,λ)

We set FCfλ = FCfλu(c, λ) and/c,A = (l/c)F c,/*A. Since
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and u(c, λ)eSL(2, R), we have by Corollary 4.4

Pfe,Jβj.k) = u(c> λV1βpe,Jίlij.k)u(c> λ ) (j=l>'->s,k=h.",dj).

By (5.6), we have (6) for fc λ. Since w(0, Λ) = id, fcλ satisfies the same properties (l)-(5)

as fc,λ.
Step III. By (5.5) and Lemma 5.7, the matrices ppc A(μ3,i) and βpc λ(μjfk) (j>2) are

written in the form

where βί9 β2, Ί\,j,k a n d y2j,k
 a r e real-valued functions of c and λ. Since

(/Ϊ3fl) = σ(μ3il), we have

(5.8) />3.i(<U)=/>o, βiΦ,λ) = β2(0,λ)=-iqo*0.

By (5.8), there exists a positive number ε such that βχ/β2>0 holds for |c\<ε. For c in

such a range, we set fcλ = (l/c)FcλF*λ, where

Since ί 0 Λ = 1 and t = tcλ is a real-valued function, Fc λ and / c λ satisfy (l)-(6). By Corollary

4.4,

where β = Jβiβ2- Thus /C,A satisfies (7). By (5.7), we have

Replacing y l t M and y 2 i M by /CtA

2y1Jifc and t?tλγ2Jtk9 we get (8). D

REMARK 5.8. In the Poincare model of radius 1/c, the immersion fcλ converges

to the initial minimal immersion fλ. Indeed, by (5.4) we have dFc λF~J =dFc λF~J = c(x,λ.

By the same argument as in Lemma 4.8, we have dF'o λ = ocλ, where F'oλ = (dFJdc)\c=o.

In the complexified Poincare plane of radius 1/c, Fc λ converges to F'oλ by Lemma 2.1

of [UY2]. On the other hand, the initial minimal immersion fλ can be expressed as

'o,λi where we identify a point (xί9 x2, x3) in C 3 with the matrix

x3 xί + ix2
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in the Lie algebra of SZ(2, C). Thus by Corollary 2.2 of [UY2], we can conclude /C<A ->/A.

It should be remarked that p F c A ( μ l t l ) , p F c A(μ2,i), PFC A ( ^ 3 , I ) G ^ ^ P ) Moreover,

βFc Jβjtk)eSU(2) if and only if y1jtk = y2j,k % Proposition 4.7, the period problem in

the hyperbolic case reduces to showing that 7ij,fc = 72j,k To show that this can be done,

we have the following lemma. Recall that o(c) denotes any function of c that tends to

zero faster than c itself as c -> 0.

LEMMA 5.9. Let Fc λ be as in Proposition 5.6. Then

(j= h , s, k = 29..., dj).

PROOF. Let /}V be a curve in Dλ starting from a point on SjΛ and ending at a

point on *SΛk, and let /jj be its reflected curve across the plane containing SjΛ. Then

the curve ljk obtained as the composite of the reversed oriented curve — /jj with 1$

can be considered as a closed loop in Mλ. Let τhk be the corresponding element of

π ^ M J . It can be identified with an element of the deck transformations of Mλ9 if we

choose the base point in Mλ as the initial point of ljk. Then we have τj,k = fij,k°βj,i'

have from Remark 4.3 and (4.6) that

Fc,λ °τ,\Λ = Fc,λ ° βj,k ° fij, 1 = FCtλρFcλ{μhk)ρFcλ{μjΛ).

By the Weierstrass representation formula for the initial minimal surface with the

Weierstrass data (GA, ωA), (where ωλ = Qλ/dGλ), we have

(5.9) Red) (1 - GA

2, i(l + G2), 2GA)ωA = 2 PerM(A) (v1? v2, v 3),

where (vί9 v2, v3) is a unit vector perpendicular to the planes containing SjΛ and Sjtk.

If we set

r

I m ώ (1-Gf, z(l + GA), 2GA)ωA = (*71, η2, η3),

then we have from Lemma 4.8

(5.10) j -
where A and B are the matrices given by

- v 3

Since PF,Jτ) = PFc,J&j,k)PFc,Λ(fij.ι)> b y (4) of Proposition 5.6, we have
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where we simplify the notation as pk = pFc λ{μjtk\ cr = σ(μJJL) = σ(μM) and the prime de-

notes differentiation with respect to c evaluated at c = 0. Since p J p / = id, we have

(pj)'σ + σ(pj)' = 0. Thus by (5.10) we have ρFcJτhk)' = {{ρk)' -{p^σ. By Lemma 4.5,

σ = σ " 1 holds. Thus we have

For a matrix a = (aij)iJ=ίa, we define a function Δ[a] by A[a] = a12 — a21. Since

^[Pi ] = 0, we have A[(p1)'] = 0. Hence

i{{y^k)'-(y2,J}=Λl{pkn=Δi{p^^

By (5.2) and (5.11), we can directly compute that A[Aσ\ = 2i and Δ\βσ\eiR. Since

(yijJ-(y2j,k)'eR, we have

(5.12) ( 7 l , M y-( 7 2 J , f c y = 2 . P e r M W .

On the other hand, by (4) of Proposition 5.6, it holds that

(5.13) lim(γulk-y2tlk) = ]imA(Pj) = Δ(σ) = 0.
c->0 c- O

By (5.12) and (5.13), we have the conclusion. •

Thus we have equated the period problems for the minimal surface in R3 with the

period problems for the CMC-c surface in H3( — c2). If the period problem on the

minimal surface is non-degenerate, the period map λ\—>Perjyi(λ) is an open map onto a

neighborhood of the origin. Since F is smooth in c and continuous in λ, for any

sufficiently small c there exists a λc such that y2j,k(c> h) = yij,k(c> λc) f ° r a " ̂  a n d / For

such a pair (c, λc), we see that fCfλc satisfies Proposition 4.7. Thus the CMC-c surface

fcλc is an element of I(M(GXC, Qλ). By Lemma 2.3, the surface has a complete induced

metric, whenever the Hopf differential Q has a pole of order at most 2. Moreover, in

this case the surface has finite total curvature, because its secondary Gauss map has at

most a pole at each end. Multiplying the Poincare model by c, H3( — c2) becomes H3( — 1)

and /CiAc becomes a CMC-1 surface. As we can do this for any c sufficiently close to 0,

we have found a one-parameter family of CMC-1 surfaces in H3( — 1). Thus we get the

following:

THEOREM 5.10. Let f0 be a complete almost-embedded minimal surface in R3 with

finite total curvature and non-degenerate period problem, and suppose thatf0 is symmetric

with respect to a subdisk D. Then there exists a one-parameter family 0/CMC-l surfaces

fc in H3(— 1) with the same reflectional symmetry properties. Moreover it has the following

properties'.

(1) If the Hopf differential Q of the initial minimal surface has poles of order at

most 2, then the surfaces also have complete induced metrics with finite total curvature.

(2) The CMC-1 surfaces are irreducible if s = 3, where s is the number of planes
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containing the boundary of the minimal subdίsk D.

The final statement follows as follows: Suppose that one of the CMC-1 surfaces
are reducible. Then by definition, pFcλ(μ2,i) and βFcλ(μ3Λ) must be commutative, a
contradiction to the fact that fiFcJfi3tί) is not diagonal.

Now we apply this theorem to construct several examples.
5.1. Jorge-Meeks n-oid with one handle. Let n > 3 be an integer. Then there exist

complete minimal surfaces of genus one with n catenoid ends in R3 (cf. [BR]). These
surfaces look like Jorge-Meeks surfaces [JM] with one attached handle, and so they
admit Dn x Z 2 symmetry, where Dn is the dihedral group of order n. The fundamental
piece of the surface is given in Figure 1. As shown in Berglund-Rossman [BR], the
period problem of this example is non-degenerate. (Here s = 3, d=l and so the period
problem is one-dimensional). Thus, by Theorem 5.10, we have the existence of a
one-parameter family of CMC-1 irreducible n-oid cousins in H3(— 1) with finite total

reflection
i£ across 5 3 1

FIGURE 1. The fundamental piece Dλ.

FIGURE 2. A genus-1 CMC-1 trinoid in H3(— 1). (This picture is due to Katsunori
Sato of the Tokyo Institute of Technology.)
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curvature and symmetry DnxZ2.
5.2. Genus-0 Jorge-Meeks n-oid. The genus zero verison of the previous example

can be shown to exist as a CMC-1 surface in H3(— 1) by the same method. It has been
constructed in [UY4]. (There is no period problem (s=3, d=0), so the non-degenerate
condition is trivially satisfied.) We examine this example in more detail in the next
section.

5.3. Genus-0 and higher genus Platonoids. With only slight modifications of the
two previous examples, we have CMC-c surfaces with Platonic symmetries, which
correspond to the minimal surfaces in Section 4 of [BR]. Higher genus Platonoids were
also constructed by Berglund-Rossman [BR]. Since they have non-degenerate period
problem, we get the following irreducible examples by Theorem 5.10:

• a CMC-c surface of genus 3 with 4-ends and tetrahedral symmetry,
• a CMC-c surface of genus 5 with 8-ends and octahedral symmetry,
• a CMC-c surface of genus 7 with 6-ends and octahedral symmetry,
• a CMC-c surface of genus 11 with 20-ends and icosahedral symmetry, and
• a CMC-c surface of genus 19 with 20-ends and icosahedral symmetry.
5.4. Enneper's surface. Enneper's cousin / was found in [Bry], which is a

complete simply connected CMC-1 immersion on C with the same Weierstrass data
(z, dz) as the original Enneper surface. Since it has no period problem, we can trivially
apply Theorem 5.10 and get the daul /* of Enneper's cousin. Since the hyperbolic
Gauss map of / is given by G = tanhz (see [Bry]), the dual surface /* is complete.
(Since G has an essential singularity at infinity, the total curvature of /* is infinite.)
Compared to Enneper's cousin, its dual surface /* is aesthetically more appealing (see
Figure 3). Note that for every planar geodesic on the minimal Enneper's surface,
there is a corresponding planar geodesic on Enneper's cousin. However, for the straight
lines in minimal Enneper's surface, there are not corresponding geodesic lines in

FIGURE 3. Half of the dual of Enneper's cousin.
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Enneper's cousin. This is because our construction utilizes the planar geodesies of the
minimal surface, but does not concern itself with straight lines in the minimal surface.
The result is that the symmetry group of the dual of Enneper's cousin is a subgroup
of that of minimal Enneper's surface.

Recently, Sato [Sa] has shown the existence of higher genus Enneper-type minimal
surfaces for any positive genus, where he showed a certain non-degeneracy of the
period problems. However, his work does not imply that the period problems are
non-degenerate in our sense, since his fundamental domain is smaller than ours.

5.5. Higher genus prismoid. Let n>3 be an integer. There are so called "higher
genus prismoid" minimal surfaces as shown in Figure 4 (cf. [R]). These surfaces have
Dn x Z 2 symmetry. In these examples, we have two period-killing problems (s = 3, d=2)9

which correspond to the two parameters λί and λ2 in Figure 5. The fundamental domain
Dλuλ2 as in Figure 5 is a minimal surface in R3 which is obtained as the conjugate
surface of the minimal disk bounded by Cλuλ2 in Figure 5. Each segment of the boundary
Dλuλ2

 ιs a p l a n a r geodesic contained in the plane P M , where P3 u P32 and P33 are
parallel to the x1x3-plane, P2Λ is perpendicular to (sin(π/«), cos(π/«), 0), and P1Λ is
parallel to the x1x2-plane. We define ck(k=\,2, 3)by P3fk = {x2 = ck}. Then the cks are
continuous functions in λί and λ2. Consider two functions fι = c1 — c3 and fϊ = c2 — c3.
The following statement implies that the period problem is non-degenerate: There exists
an open disk in the (λί, λ2)-plane such that its image under the map (λu λ2)\-^{fι(λu λ2),
f2{λu λ2)) contains the origin in the (fl9 f2)-plane as an interior point. This can be proved
by arguments found in [BR]. By Theorem 5.10, there exist CMC-1 higher genus prismoid
cousins.

5.6. Genus-0 prismoids. This case is a simpler version of the above example. In
this case, there is still a period problem, but now it is only one-dimensional (s = 3, d— 1),
and it is known to be non-degenerate (cf. [R]).

FIGURE 4. A 6-ended genus-2 prismoid in Euclidean space.
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parallel to x3-axis

the end is
perpendicular to the plane

containing the rays
in the boundary curve

parallel to jc3-axis

FIGURE 5. The contour Cλltλ2 and the fundamental piece Dλuλ2 for the prismoids.

FIGURE 6. The disks for the 3-ended and 4-ended Costa surfaces.

5.7. 4-ended Costa surfaces. We refer to a complete minimal surface of finite
total curvature with four parallel ends as a "4-ended Costa surface". Wohlgemuth [W]
has constructed several types of 4-ended Costa surfaces, which can have arbitrarily high
genus. He has shown that the period problems are non-degenerate for all of his examples.
Thus our method applies to all of these examples of Wohlgemuth, producing cor-
responding CMC-1 surfaces in H3(— 1).

We describe one of the types here (named CSSCFF and CSSCCC by Wohlgemuth).
It is a one-parameter family of embedded minimal surfaces of genus 2k — 2 (for any
k>2), and with four parallel ends. The two outermost ends are always catenoid ends,
and the two innermost ends are either catenoid ends (CSSCCC) or planar ends
(CSSCFF).
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The fundamental piece Dλί λ2 for this 4-ended Costa example is shown in Figure
6. The boundary curves Sίtί9 S2Λ, S2,2> S3tί9 S3a are planar geodesies. The planes P2Λ

and P22

 a r e parallel to the x1x3-plane, and P3Λ and P32

 a r e parallel to the x2x3-plane.
We set P2Λ = {χ2 = c\}> Pi,2 = [χi = ci}τ ^3,i = {Λ:i = <:3}5 and P2,,2 — {χι=c±\' Then the

functions cί9 c2, c39 and c4 are continuous in λγ and λ2, and fί=c2 — c1 and fi = c^ — c3

are non-degenerate [W]. Thus the period problems are non-degenerate and by Theorem
5.10, we get the 4-ended Costa cousin.

It seems to be an interesting problem to construct 3-ended Costa surfaces. Unlike
the 4-ended Costa cousin, the fundamental piece of the 3-ended Costa cousin contains
a straight line in its boundary. Thus, like the case of Enneper's surface, we must use
the union of two fundamental disks in our construction. Even though the period problem
is non-degenerate on the fundamental disk of a minimal 3-ended Costa surface, this
does not imply the period problem is non-degenerate on the union of two fundamental
disks. However, existence of a 3-ended Costa cousin has been verified numerically.
(Clearly, this CMC-1 surface has less symmetries than the minimal 3-ended Costa
surface.)

6, Long time deformations of genus-0 CMC-c surfaces. The examples in the
previous section and in Section 7 are obtained through a small perturbation of c, and
in general we cannot explicitly determine the range of c such that the corresponding
CMC-c surfaces exist. In this section, we find that we can determine the range under
a certain situation less general than before. We now assume that we have at most three
smooth planar geodesies in the boundaries of the fundamental pieces. So we will use
the simpler notation μ, instead of the notation μjti.

6.1. Restricted situation. Consider a complete minimal immersion f0 : M^R3

of a Riemann surface M. Throughout this section, we assume that f0 is symmetric with

FIGURE 7. Assumption 6.1 (m = 2,
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respect to a disk Dczf(M) in the sense of Definition 5.2 and almost embedded in the

sense of Definition 5.1. Moreover, we assume the following (cf. Figure 7)

ASSUMPTION 6.1. The boundary dD consists of three non-straight planar geodesies

Sl9 S2 and S3 contained in the planes Pl9 P2 and P3, respectively, and

• Si and S3 are infinite rays, and S2 is a curve of finite length;

• Sί and S2 meet at/?! with angle π/n, where n>3 is an integer;

• S2 and S3 meet at p2 with angle π/2;

• S1 and S2 bound a l/(2m)-piece of a catenoid end which is asymptotic to the

standard catenoid, where m > 2 is an integer;

Here, the standard catenoid is the catenoid in R3 obtained from the Gauss map

G s t d = z and the Hopf differential Qstd = z~2(dz)2.

REMARK 6.2. Since f0 is almost embedded, the planes Pl9 P2 and P3 are in general

position (cf. Lemma 5.3). Hence we have:

• Each pair of planes among Pί9 P2 and P3 are not parallel.

• Each pair of lines among Pλ n P2, P2 n P3 and P3 n Pγ are not parallel.

We have the following theorem.

THEOREM 6.3. Let / 0 : M - > / ? 3 be a conformal minimal immersion satisfying

Assumption 6.1, which is almost embedded, and has Gauss map G and Hopf differential Q.

Then for each cφQ satisfying

1 / / m m\2 .
2 — 1 —1 < c < 0 or

there exists an irreducible complete conformal CMC-c immersion fc: M-* H3( — c2) whose

hyperbolic Gauss map and Hopf differential are G and Q, respectively.

We give a proof in Section 6.3. (About the interval (6.1), see Remark 6.11.)

REMARK 6.4. Let TA denote the total absolute curvature jM(-K)dA, where dA

is the area element with respect to the induced metric ds2. When c varies over the range

(6.1), TA is given by

where N denotes the number of the ends. This is verified as follows: The total absolute

curvature is the area with respect to the pseudo-metric dσ2 in (3.1). Thus, by the

Gauss-Bonnet formula, we have TA/2π = χ(M) + Σpeΰθrdpdσ2. Moreover, by (3.2),

oτάpdσj = ordpQ on M because ds2 is non-degenerate. Thus,

TA
(M) X oτdpdσ2

f+ £ orάpQ .
peM\M peM



CONSTANT MEAN CURVATURE 1 SURFACES IN HYPERBOLIC SPACE 473

Since M is of genus 0 and Q has poles of order 2 at the ends, the sum of oτάpQ over
peMis 2N—4. On the other hand, by the upcoming equation (6.14), ordpdσ2 is λ — 1,
where λ = -s/\—4c. Hence, we have the formula. We remark that the total absolute
curvature of the corresponding minimal surface in R3 is 4π(N— 1). Thus TA>4π(N— 1)
(resp. TA<4π{N-\)) if c<0 (resp. c>0).

6.2. Examples. The following two examples have already been constructed in
[UY4]. However the method in this section is more explicit and suggests an algorithm
to draw the surfaces by numerical calculations.

EXAMPLE 6.5 (Genus-0 Jorge-Meeks surface). Let f0 : M -+ R3 be the Jorge-Meeks
n-oid, with each end asymptotic to a standard catenoid. Then the fundamental region
D of /o satisfies Assumption 6.1, where m = 2 and n is the number of ends. Then by
Theorem 6.3, for each c satisfying —{n+ \)/n2<c<0 or 0<c<(n—l)/n2, there exists a
conformal CMC-c immersion fc\ M -• H3( — c2) whose hyperbolic Gauss map and Hopf
differential coincide with those of/0. The total absolute curvature TA of fc varies over
the range ( 4 φ - 2 ) , 4φ-l))u(4π(fl-l), 4πή)) (cf. Remark 6.4).

EXAMPLE 6.6 (Genus-0 surfaces with Platonic symmetry). There are minimal
surfaces with symmetries of the Platonoids. For such minimal surfaces, we can
apply Theorem 6.3. In these cases, n is the number of edges of the Platonic solid
bounding each face, and m is the number of edges with a common vertex. Table 1
shows the range of c for which we know the minimal surfaces can be deformed to
CMC-c surfaces.

TABLE 1.

Symmetry

Tetrahedra

Hexahedra

Octahedra

Dodecahedra

Icosahedra

Number

of ends

4

8

6

20

12

m

3

3

4

3

5

n

3

4

3

5

3

Range of c

(_AoWoΛ)
V 16 / V 16/

V 64' / V 64/

V 36' / V 36/

(_2LoWo,-î )
V 400 / V 400/

(-13,oWo, u)
\ 144 ) \ 144 J

Range of TA

(8π, 12π)u(12π, 16π)

(24π,28π)u(28π,32π)

(16π,20π)u(20π,24π)

(72π,76π)u(76π,80π)

(40π,44π)u(44π,48π)
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FIGURE 8. Profile curves for the genus-0 Jorge-Meeks cousin (c>0 on the left, c<0
on the right).

REMARK 6.7. The corresponding minimal surfaces of CMC-c surfaces in Examples

6.5 and 6.6 are non-embedded. Although fc has self-intersections for c<0, it seems to

be embedded for some positive c (the total absolute curvature is less than that of the

corresponding minimal surface), by our numerical calculations (see Figure 8).

6.3. PROOF OF THEOREM 6.3. Let μ̂  be the reflection across the plane Pj containing

the geodesic Sj. In the same way as in the previous section, we can induce the reflections

fij on the universal cover M. Let / be a loop on M surrounding the end that intersects

with D, and let τeπ 1 (M) be the deck transformation on M induced by /. Then the

reflections satisfy the following relations:

(6.2) (μ1o/ϊ2)" = id, (μ 2 °μ 3 ) 2 = i

The Gauss map G and the Hopf differential Q of f can be lifted to M, where we will

continue to denote them by G and g, respectively. Then, by symmetry, there exist

matrices σ{μj)eSU{2) (j= 1, 2, 3) such that

(6.3) Goμ^σQijΓ^G, Qoβj=Q 0 = 1 , 2 , 3 ) .

LEMMA 6.8. By a suitable choice of the coordinate system ofR3, we can choose

e'"<" 0 \ , x .ί(xoe
πi/n β0(6.4) σ(μ2) =

0 e-
where α 0 = cos(π/m)/sin(π/«) e R and OCQ = \, β0eR.

βo -*oe ~%iίn

PROOF. Take a coordinate system of R3 such that the plane Pί is the x1x3-plane

and P\ftP2 is the x3-axis. Since Px and P2 form an angle π/n, σiμj and σ(μ2) satisfies

(6.4). By /x3o/i3 = id and Lemma 4.5, we have σ(μ3)σ(μ3) = id. This shows that
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(6.5) σ(μ3) = ( ° Φ_° ) (aά + β* = 1, βoeR).
, Φo <•

By the relation (μ 2oμ 3) 2 = id, we have (σ(μ2)σ(μ3))2= ±id. If (σ(μ2)σ(μ3))2 = id, by

(6.5) and the form of σ(μ2), we have a= ±e~πι/n and βo = 0. This shows that σ(μ3) = σ(μ2),

and that P2 and P3 are parallel. This is impossible by Remark 6.2. Hence

(6.6) (σ(μ 2 )σ(μ 3 )) 2 =-id,

and then

( ' "yt~όt -\ R o-τti\n

where α 0 and β0 are real numbers. Since the rays S1 and S 3 span a l/(2m)-piece of a

catenoid end, the angle between the planes Pλ and P3 is π/m. Hence the eigenvalues of

σ(μ3) are e±πi/m. Thus, we have trace σ(μ3) = 2cos(π/m) = 2α0 sin(π/«). •

The metric ds% defined in Lemma 2.3 is positive definite on M. Hence the set
:, Q) is not empty.

PROPOSITION 6.9. For each c satisfying (6.1), there exists a one-parameter family

of null holomorphίc immersions of M into SL(2, C) with the following properties.

(1) fMWFcF*eT)fl(G9Q) for each c.

(2) Fc is smooth in c.

(3) l im c ^ 0 F c = id.

(4) lim^op f c(μ,.) = σ(μ,.) (j= 1, 2, 3).

(5) βFc{β1) = iά.

(6) There exists real-valued continuous functions α and β in c such that

eπi/n

β _

Once the above proposition is proven, fceI$(G, Q) by Proposition 4.7. Thus fc is

(after an appropriate 'dilation') the desired CMC-1 immersion as in Theorem 6.3.

PROOF OF PROPOSITION 6.9. In the same way as in Step I of the proof of Proposition

5.6, we can choose {Fc} which satisfies (3) and (5).

The eigenvalues of βpc{β2) are {eπi/n, e~πi/n}. Indeed, since (σ(μ1)σ(μ2))"= - i d and

fipjfij = id, we have βpc(β2)
n = - id. Then the eigenvalues of p/c(μ2) are n-th roots of - 1 .

Then, by the continuity of βpc(β2), they must be constant. Here, Iimc^op/<c(μ2) = σ(μ2),

so the eigenvalues of βρc(β2) coincide with those of σ(μ2). In particular, the eigenvalues of

βpc(β2) are not real. Then, by the same method as in Step II of the proof of Proposition
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5.6, we can diagonalize it with a real matrix u = u(c):

'eπi/n Q

Setting Fc = Fcu{c\ we obtain a family {Fc} satisfying (3), (5) and (6). Moreover, by
using (μ2 o μ3)2 = id and (6.6), (ppc(fl2)PPc(fi3))2 = - id holds and then p pc(μ3) can be written
in the form

(6.8) βφ^iί t
β 2 —e πι/n(x

When c is sufficiently small, we can prove the proposition by applying the same
argument as in Step III of the proof of Proposition 5.6, because of βJβ2>0. So it is
sufficient to show that βJβ2>0 for any c satisfying (6.1). Thus the proof of the
proposition reduces to the following lemma. •

LEMMA 6.10. If c satisfies (6.1), then βjβ2 > 0.

PROOF. Since σ(μ3) has plus-minus ambiguity, we have two choices for σ(μ3). We
choose σ(μ3) so that the eigenvalues of σ(μ3) are e±πί/m, and then

By the last relation in (6.2), we have

(6.9) pFc(τ)= -{pFc{μ,)pFc{μ,)T= -pFc(fi3)
m ,

where τ is the deck transformation induced from the loop / surrounding the catenoid end.
The eigenvalues of pFc(μ3) are ξ+ =s±iy/\—s2, where s = αsin(π/«). Thus, if

(6.10) | l

sin(π/«)

ξ+ are complex numbers of absolute value 1, and then, there exists 0e(O, π) such that
ξ+ =e±ιθ and θ = cos~1(αsin(π/«)). Since α(0) = αo satisfies (6.10), there exists an interval
/ocz/? which contains the origin and (6.10) holds for each celo. We now restrict celo

in order to make | ξk | = 1. Later, we restrict the range of c again to make | α(c) | < 1.
Hence, for each ce/ 0 , it holds that

(6.11) tracepFc(τ)= -trace(pF c(μ3))m= -{e~ime+ eimθ)= -2cosm0 .

Let M be the compactification of M and p e M a point corresponding to an end.
Since the end is asymptotic to a standard catenoid, the Weierstrass data are also
asymptotic to those of a catenoid. Hence there exists a coordinate z of M such that
z{p) = 0 and (G, Q) are expanded as
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(6.12) G = z + , Q

Let gc be the secondary Gauss map of Fc. Then, by (3.3), we have

(6.13) goτ = pF c(τ)*# = aiίQ α * 2 where pFc(τ) = (akJ).

So, by (2.8) and the fact that the Schwarzian derivative is invariant under Mόbius
transformations, there exists a matrix b e SL(2, C) such that

(6.14)

where λ = y/l— 4c. Hence, by (6.13), we have

( πAί

0 έΓ

that is, the eigenvalues of pFc(τ) are {±eπλi, ±e~πλί}. So, for each c<l/4,

(6.15) trace pFc{τ) = ± 2 cos πA

holds. Combining (6.11) and (6.15), we have ±cosτd= —cosmθ. Letting c^O, θ tends
to 0(O) = π/ra and λ-> 1. Thus the sign on the left-hand side is "minus":
(6.16) cosπλ = cosmθ .

Now we assume c satisfies (6.1), that is, ce/, where /\{0} is the open interval

So, if ce/, we have

πm((l/2)-(1/n))<mθ<2π-πm((l/2)-

because of (6.16).
Here, θ = θ(c) is a continuous function, and mθ(0) = π, and mθ(I) is an interval

containing π. Thus, we have

On (0, π), cos θ is a decreasing function. Thus

. π / /1 1 \\ .. . / / 2 1 1 \\ . π
sm — = cos π >cosWc)>cos π 1— > — sin — .

n \ \2 nJJ \\m 2 nJJ n
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This shows

- sin(π/n) < cos θ(c) = α sin(π/w) < sin(π/n).

Therefore, | α(c) | < 1 if c ε I. For such a value of c, β1 β2 = 1 - α2 > 0. Π

REMARK 6.11. The interval (6.1) in Theorem 6.3 gives only a sufficient condition

for the existence of deformation. However, in the case of the genus 0 Jorge-Meeks

surfaces, one can determine a necessary and sufficient condition on c so that there exists

a corresponding CMC-c surface. Indeed, for the Jorge-Meeks n-oid f0: M^R3 as in

Example 6.5, there exists a corresponding CMC-c immersion into H3( — c2) if and only

z/ce/0 < + , 7Oi_ or Ik(k=l,2,...), where

(6.18)

( ( X ) H ) ( - 7 ) ) (t-i 2 -)

Since m = 2 in this case, the condition (6.16) can be rewritten as cos πΛ, = cos 20 =

2 cos2 θ — 1, and recalling that cos θ = α sin(π/n) (see the first part in the proof of Lemma

6.10), we have cosπ/ί = 2α2sin2(π/w)—1, and then, α2 = (cosπ/l+l)/(2sin2(π/rc)) holds.

Here, a corresponding CMC-c immersion exists if and only if the conclusion of Lemma

6.10, i.e., β1β2 = l—oc2>O holds. (Otherwise, one cannot find fc with S£/(2)-condition.)

Using the above relation, this necessary and sufficient condition is rewritten as

cos πλ + 1 < 2 sin2(π/«), where λ = ̂ 1—4c. This inequality holds if and only if (6.18) holds.

By the same argument as in Remark 6.4, the total absolute curvature for fc (celk)

varies over the interval (4π{n(/c+l) —2}, 4πn(/c+l)). Numerical investigations suggest

that the surface is embedded for celo + sufficiently near (n — l)/n2.

7. Periodic CMC-c surfaces. The construction in Section 5 depends on the

properties of minimal surfaces in R3. However, our method can sometimes be applied

even if the corresponding minimal surfaces do not exist. We believe that the following

example is of interest, because our construction method here is independent of the

corresponding minimal surfaces.

In this section, we shall construct singly-periodic CMC-c surfaces in H3( — c2).

The corresponding minimial surfaces are well-known as the "catenoid fence" and

"Jorge-Meeks n-oid fence" (cf. [Kar], [R], Figure 9). Although, in the following

argument, we borrow geometric intuition from the corresponding minimal surfaces, our

construction will not depend on them. Thus, by letting c -> 0, we have another way to

construct the minimal catenoid (resp. n-oid) fence.

We denote the shaded region in Figure 9 by Mo. It is the fundamental region of

the catenoid fence, that is, the whole surface is obtained by reflections of Mo about its

boundary curves. In the CMC-c case, we define the underlying Riemann surface and
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FIGURE 9. The catenoid fence and its fundamental disk.

FIGURE 10. The image of Mo by Go.

the data g and Q by modifying M o . Let Go and Qo be the Gauss map and the Hopf

differential of the minimal surface M o . We consider Go as a map to the unit sphere S2.

So the image of Go in S2 looks like Figure 10, where each α,- is the image of a planar

geodesic in the boundary of M o . We identify M o with the image of Mo by Go.

REMARK 7.1. If the "catenoid cousin fence" exists, its hyperbolic Gauss map is

not singly periodic. Indeed, if G is singly periodic, any fundamental pieces coincide

mutually completely (not only are congruent). This contradiction implies that G cannot

be singly periodic.

For each number (5e( —π/2, π/2), we define a region Mδt0 on S2 as in Figure 11,

where αx and α3 are segments of great circles through P, α 4 is a segment of a great

circle centered at P, and α2 is one-fourth of a smaller circle centered at P with radius

π/2 + δ.

The boundary curves of Mδj0 are circles, so we reflect Mδf0 infinitely often by



480 W. ROSSMAN, M. UMEHARA AND K. YAMADA

stereographic
projection from

the point antipodal
top - 1

complex plane

tan

FIGURE 11. Modified Fundamental Region Mδ0.

2b

α4

e

«3

u

α2

2a

FIGURE 12. The Riemann surface Mδ.

inversions with respect to the boundaries of it and of its copies. Then we get an abstract

Riemann surface Mδ which is biholomorphic to C. We identify Mδ with C and take a

and b in C as in Figure 12. We denote

(7.1)

and define Mδ = C\E. We need to find a 2A-periodic CMC-c immersion of a cylinder

/ : Mδ/(2Za)-+H3( — c2) which has ends at E and umbilic points at U.

Let G^o: Mδt0 -> Mδt0 c S2 be the identity map. Since the boundary curves of Mδ,0

are circles, G ί > 0 can be extended to the holomorphic map Gδ: C=Mδ-+S2 = Cv{oo}.

Let μj be a reflection of the universal cover Mδ of Mδ, which is the lift of the

reflection about α, . By the definition of Gδ9 it satisfies Gδoμj = σ(μj)~1*Gδ, where

/tan((π/4) + (<5/2))\

(7.2)

0

i 0

0 -i

zcot((π

0 Γ

1 0

0

(see Figure 12). We give the following holomorphic 2-differential Qδ as a Hopf differen-
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tial on Mδ.

LEMMA 7.2. There exists a meromorphic 2-differentίal Qδ which has the following

properties.

(1) Qδ is doubly periodic with respect to the periods generated by 2a and 2b.

(2) Qδ has poles of order 2 at E9 and is regular on C\E.

(3) Qδ n a s zeroes of order 1 at [/, and is non-zero on C\ U.

(4) Q^fij=Qδ.
Moreover, Qδ is unique up to a real constant factor.

PROOF. If we set Qδ = qδ(z)dz2, then the proof reduces to finding a suitable elliptic

function qδ(z\ which can be done by using elementary elliptic function theory. •

Hence, we can choose Gδ and Qδ continuously on δ so that dsδ=(l +1 Gδ \2)2ωδώδ

is positive definite, where coδ = Qδ/dGδ.

THEOREM 7.3. For a sufficiently small c, there exist a number δ and a 2b-periodic

complete conformal CMC-c immersion f: Mδ/(2Za)-+H3( — c2) which has hyperbolic

Gauss map Gδ and Hopf differential Qδ.

By the same argument as in the proof of Proposition 5.6, we have the following:

LEMMA 7.4. There exists a two-parameter family {FCtδ}\c\<ε3\δ\<δo of null holo-

morphic immersion into SL(2, C) with the following properties:

(1) fc,ό = {l/c)FCtiFϊδeT>%δl2Za(Gό, Qό)for each (c, δ), where

(2) Fcδ is smooth in c and continuous in δ.

(3) l im c ^ 0 F c ,, = id.

(4) pFci4(/ϊi) = id, and

where ξ = ξ{c, δ)9p =p{c, δ) and q = q(c, δ) are complex-valued functions such that \ξ\ = l9

and β, γί and y2 are real-valued functions of c and δ. They satisfy

9δ) = 09 β(0,δ)=l9 ξ(O9δ) = i9

^ + y ^ , 72(0, δ) = c o t ( ^ + f ) •

PROOF OF THEOREM 7.3. In Lemma 7.4, let φ(c, δ) = y1(c, δ)/y2(c, δ). So 0(0, δ)> 1

if (5>0, and φ(0, δ)<\ if δ<0. Then, by the continuity of γj9 there exist δ+ and δ_

such that φ(c, δ+)> 1 and φ(c9 δ_)< 1 hold for a sufficiently small c. Hence there exists

δ such that φ(c, δ) = \. For such c and 5, all matrices in Lemma 7.4 are in SU(2). •

REMARK 7.5. The same argument can be applied to the Jorge-Meeks n-oid fence

(see Section 4 in [R]), and this produces a Jorge-Meeks n-oid fence cousin.
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8. Appendix. Let Γ be a subgroup of S U(2). In this appendix, we prove a property

of a set of groups conjugate to Γ in SL(2, C) defined by

CΓ: = {σeS£(2, C); σΓσ~ιciSU(2)} .

The authors wish to thank Hiroyuki Tasaki for valuable comments on the first draft

of the appendix.

If σe CΓ, it is obious that aσeCΓ for all aeSU(2). So if we consider the quotient

space

IΓ: = CΓ/SU(2),

the structure of the set CΓ is completely determined. Define a map φ: CΓ-> Jf3 by

φ(σ): = σ*σ,

where ^f3 is the hyperbolic 3-space defined by 3tf3 : = {aa*; a e SZ(2, C)}. Then it induces

an injective map φ: IΓ-+Jf3 such that φoπ = φ, where π : CΓ-»/Γ is the canonical

projection. So we can identify IΓ with a subset φ(IΓ) = φ(CΓ) of the hyperbolic 3-space

^f3. The following assertion holds.

LEMMA. The subset φ(IΓ) is a point, a geodesic line, or all J f3.

REMARK. Theorem 3.2 in Section 3 is directly obtained if we set Γ: = ρ(πi(M)),

where p is the representation defined in Section 3. Indeed, the set IM(G, Q) defined in

Section 3 coincides with the set 0(/p(πi(M)))

PROOF. For each γ e Γ, we set

Cγ: = {c e SL(2, C); σyσ~' e SU(2)} .

Then we have

(8.1) C Γ :=ΓKr
γeΓ

The condition σyσ"1 eSU(2) is rewritten as σ*σy = yσ*σ. So we have

(8.2) 3

where Zy is the center of γ e Γ.

Assume yφ ± id. If y is a diagonal matrix, it can easily be checked that Zy consists

of diagonal matrices in 5L(2, C). Since any y e Γ can be diagonalized by a matrix in

SU{2\ we have Z y = {exp(zΓ); ZGC}, where Γesu(2) is chosen so that y = exp(Γ). (su(2)

is the Lie algebra of SU(2).) Hence we have

(8.3) φ(Cy) = Jί?3 nZy = exp(iRT),

because exp(/su(2)) = J f3.

Suppose now that Γ is not abelian. Then there exist 7, y'eΓ such that yy'φy'y.
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Set y = exp(Γ) and y' = exp(7"), where Γ,Γesu(2). Then we have iRTniRT' = {0}.
It is well-known that the restriction of the exponential map exp| i s u ( 2 ): /su(2)-> Jf3 is
bijective. Hence we have

φ(Cγ) n φ(Cr) = exp(iRT) n exp(iRΓ) = {id}.

By (8.1), (8.2) and (8.3), we have

φ(IΓ) = {id} (if Γ is not abelian).

Next we consider the case Γ is abelian. If Γc={ + id}, then obviously

Suppose Γ ψ { ± id}. Then there exists y e Γ such that γ φ ± id. We set y = exp T(Te su(2)).
Since exp(RT) is a maximal abelian subgroup containing y, we have Γ<=exp(l?Γ). Then
by (8.3), we have

φ(IΓ) = exp{iRT) (iΐΓφ{±id} is abelian).

D
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