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Abstract. A fundamental solution for the free Weyl equation is easily constructed

using the Clifford relation of the Pauli matrices. But, we insist on Feynman's idea of

representing a fundamental solution using classical objects. To do this, we first re-

formulate the usual matrix-valued Weyl equation on the ordinary Euclidian space to

the "non-commutative scalar"-valued equation on the superspace, called the super Weyl

equation. Then, we may find the classical mechanics corresponding to that super Weyl

equation. Using analysis on the superspace, we may associate the classical Hamiltonian

with that super Weyl equation. From this mechanics, we define phase and amplitude

functions which are solutions of the Hamilton-Jacobi and continuity equations,

respectively. Moreover, they are exactly solvable. Then, we define a Fourier integral

operator with phase and amplitude given by those functions, which gives a solution to

the initial value problem of that super Weyl equation. The method and idea developped

here, may be applied not only to the Pauli, Weyl or Dirac equations but also to any

system of P.D.E's.

1. Introduction and the result. Let ψ{t, q):RxR3^>C2 satisfy

iH -J- φ(t, q) = Hφ(t, q), H=- icHσj -^~

(1.1) < ό t

Here, φ{t,q) = \\j/1{t,q\\j/2{t,q)), c and H are positive constants, the summation with

respect to 7= 1,2, 3 is abbreviated. And the Pauli matrices {<jy} are 2 x 2 matrices

satisfying the following relations (Im stands for the m x m identity matrix):

(1.2) σjσk + σkσj = 2δjkl2 for j , k = 1, 2, 3 , (Clifford relation)

(1.3) σίσ2 = iσ3,
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for example,

(1 4) σ i = ( i oh σΛi oh " 3 = U -
Applying formally the Fourier transformation (which contains a parameter K) with

respect to qεR3 to (1.1), we get

iH~ιj}(t9p) = Hφ(t,p) where H=cσjPj = c( Ps p'~
dt \Pi+iP2 -

As H2 = c2\p\2I2 by (1.2), we easily have

^ - ^ ( ^ [ c o s t c / Γ M ^

Therefore, we have

PROPOSITION 1.1. For any teR,

(1.5) e-in-itHφ(q) = (2πny3'2\ d p e ^ ^ e ' ^ ^ ^ Λ dq'E(t, q, q')ψ(qf)

with

(1.6)

On the other hand, Feyman's main motivation for deriving his notorious measure,
is to clarify the so-called "Bohr correspondence" as explicitly as possible. He expressed
quantum objects using classical quantities as ingredients of the integral representation
with respect to his measure. But it seems difficult to imagine from the above formula
that there exist classical objects when /z->0. Therefore, he could not apply his idea to
the equation containing "spin" and posed a problem in p. 355 of Feynman & Hibbs [7].

In spite of this, we claim that there exists the classical mechanics corresponding
to the Weyl equation and that a fundamental solution of (1.1) is constructed as a Fourier
integral operator using phase and amplitude functions defined by that classical
mechanics. Therefore, the Weyl equation is obtained by quantizing that classical
mechanics after Feynman's procedure. Because the Hamiltonian defined on the super-
space is "of first order both in even and odd variables," we should modify Feynman's
argument from the Lagrangian formulated "path integral" to the Hamiltonian for-
mulated one.
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MAIN THEOREM (Path-integral representation of a solution for the Weyl equation).

(1.7)

ψ(t, q) = b((2πtiy3/2n (I dξdπ@1/2(t, x, B9 ξ, π)em~ίy{t<^πJ^($φ)(ξ, π)

Here, £f(t, x, B, ξ, π)and@(t, x, B, ξ, π) are solutions of the Hamilton- Jacobi and continuity

equations, (1.17) and (1.19) respectively.

REMARK. Unfamiliar notation above is roughly explained in the course of

describing the outline of our procedure below. For example, one may intuitively regard

odd variables θj9 πk as something-like odd forms on ίίRcc = Y[f=ίR'\ where the space

R°° has the Frechet-Grassmann structure. See also Appendix A where the fundamentals

of superanalysis (= analysis on the superspace 9ϊm|w) is given.

Outline of our procedure (l)-(6). (1) We identify a "spinor" φ(t9q) = \φι(Uq),

φ2(t, 4)): R x R3^>C2 with an even supersmooth function u(t, x, θ) = uo(t, x) + uι(t, x)θίθ2:

/?x^3'2->Cίev. Here, 9ΐ3'2 is the superspace and uo(t,x\ wx(ί, x) are the Grassmann

continuation of ι/̂ (ί, q)9 ψ2(t> ί)» respectively. For example,

, )*=±u(θ) = u0 + u1θ1θ2e(ίeλ, w i t h uo = ψl9 uί = φ2.
φ2j b

(2) We represent the matrices {σ̂ } satisfying (1.2) and (1.3), which act on u(ί, x, θ)

as follows:

i dθj \ dθιdθ2)

(1.8) J
i dθj V dθxdθ2

9 i dθj x dθί

 2 dθ2 '

Here, the symbol λ is an arbitrary parameter in Cx =C— {0}.

REMARK. It is easily checked that only when | λ \ = 1, {bσ; (θ, —iλdθ)#} are unitary

matrices.

(3) Therefore, we may define a differential operator given by

Λ - , d2 \ d

i dθj V dθ.dθjdx,

dθ1dθ2jdx2 \ 30! dθ2jδx
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which corresponds to //, and we have the superspace version of the Weyl equation

β, - 4
\i dx i dθj

u(0,x,θ) = u(x,θ).

Moreover, the "complete Weyl symbol" of (1.9) (see Appendix B) is given by

(1.11) Jr(ξ,θ,π) = ίcλ-1(θ1θ2-λ2n-2π1π2

-icJc-\θ1π1+θ2π2)ξ3

Here, ίc is an arbitrary parameter in Rx or in iRx (Rx =R — {0}), related to the Fourier

transformation with respect to odd variables.

(4) We consider the classical mechanics corresponding to J^(ξ, 0, π) given by

d*jξ,θ,*)_Q f , k _ 1 2 3

, θ, π)

PROPOSITION 1.2. 77zer£ ^xwί5 α unique global solution (x(ί), ξ(ί), θ(ί), π(ί)) o/(l. 12)

w/ίw/ data (x(0), {(0), 0(0), π(0)).=fe ξ, β, π) e Ή 6 ' 4 .

REMARKS, (i) We also denote the above solution x(ή by x(t, x, ξ, θ, π), etc., if

necessity occurs.

(ii) Instead of 9 ί 3 | 2 x 9 ί 3 1 2 , we regard the space Ή 6 ' 4 as the cotangent space

f 9?312.

Moreover, we have

PROPOSITION 1.3. For any fixed (r, ξ, π), the map defined by

(x, θ) h^ (x = x(t, x, ξ, θ, π), θ = θ(t, x, ξ, θ, π))

g/vβ^ a supersmooth diffeomorphism 9?3|2—>9?3'2. Therefore, there exists the inverse map

given by

(x9 θ) -> (x=y(t, x9 ξ, θ, π), θ = ω(t, x, ξ, θ, π)),

which satisfies

= x(t, y(t, x, ξ, B, π), ξ9 ω(ί, x, ξ, θ, π), π ) ,

. ff = 0(ί, y(ί, x, ξ, ff, π), ξ, ω(ί, x, ί, θ, π), π ) ,

x = y(U x(U x, ξ, θ, π), ξ, θ(t9 x, ξ, 0, π), π ) ,

0 = ω(ί, x(ί, x, ξ, 0, π), ξ, 0(ί, x, ί, 0, π), π ) .
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We put'

(1.14) ST0(t9 x, ξ, θ, π) = Γ {<*(*) I ξ(s)> + (θ(s) | π(s)> - Jf{x{s\ ξ(s), θ(s), π(s))}ds ,
Jo

and

(1.15) x = y(t,x,l,θ_,π) .
θ = ω(t,x,ξ,θ,π)

PROPOSITION 1.4. Sf(t,x, ξ, B, π) can be expressed as

(1.16)

2)ff1ff2 + /^-H2^- 1-l)sin(cfc- 1ί |{ |)(^

Moreover, iffi = ίc, it satisfies the following Hamilton- Jacobi equation:

(1.17)

REMARK. For the meaning of | ξ |, | ξ | 1, sin| ξ | and cos| ξ |, see Appendix A.

Now, we put

( l . lδ )

dBdξ dBδπ

where "sdet" stands for the super-determinant, see [15]. Then, we get

PROPOSITION 1.5.

= %, then it satisfies the following continuity equation:

In the above, the argument of 2 is (t, x, ξ, B, π), those ofdJf/dξ and dJf/δπ are (Sfs, B, Sfs),
respectively.

From here on, we change the order of variables (x, ξ, B, π) to (x, B, ξ, π).



96 A. INOUE

We define an operator

(1.20) W ) u p , θ) = (2πtiy3l2n \dξdπ@1/2(t, x, ΰ, ξ, π)em~^^u-^&u(ξ, π),

where £F stands for the Fourier transformation defined for functions on the superspace.

The function u(t,x, θ) = (^(ί)w)(x, θ) will be shown as a desired solution for (1.10) if

n=tc.
(5) On the other hand, using the Fourier transformation, we have readily that

(1.21) j

where Jf7 is a (Weyl type) pseudo-differential operator with symbol 3tf(ξ, θ, π) defined

by

(1.22)

3 2 \ \ m 1 < ^ + m 1 < θ ^ > ( ^ ^ , π ^

THEOREM 1.6. (1) For t e R, tf/(t) is a well defined unitary operator in ^Ss,ev(^3 |2)

iftϊ = 1cand\λ\ = \.

(2) (i) R3t^W(t)eB(¥ά,ev(M3l2l ^slevOR312)) is continuous.
(ii) <%(iy%(s) - *( ί 4- 5) for any t,seR.

(iii) Put λ = i. For u e ?Ss,ev,o(^ 3 | 2 ) ? we put u(t, x, θ) = (<%(t)u)(x9 θ). Then, it satisfies

ifi — u(t, x, θ) = jfcu(t9 x, θ),

(6) We interpret the above theorem with % = ίc and \λ\ = 1 using the identification

maps

(1.24) #:L 2 (/? 3 :C 2 )-.J^ s

2

s , e v (9ϊ 3 ' 2 ) and b: Jfl^2)-+L2(R3 : C2).

That is, remarking b^φ = Hφ and putting £/(0^ = bΦ(ί)#^, we have

THEOREM 1.7. (1) Forte R, U(t) is a well defined unitary operator in L2(R 3 : C 2).

(2) (i) RBt^U(t)eB(L\R3 : C 2 ), L2(R3: C2)) is continuous.

(ii) U(t) U(s) = U(t + s) for any t,seR.

(iii) Putλ = ί. ForψeC£(R3: C2),weputφ(t,q) = b(^(tβ\j/)\^=q. Then, it satisfies

(1.25)

I ψ(0,q) = ψ(q).
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COROLLARY 1.8. H is an essentially self-adjoint operator in L2(R3 : C 2 ) .

REMARK. The main result in this paper is announced in Inoue [11].

2. Proofs of Propositions 1.2-1.5.

2.1. Formulation of the classical mechanics. On the superspace 9f3'2, we introduce

an even supersmooth function

(2.1) u(x,θ)

Here, for Uj(q)e C°°(/?3: C), we define its Grassmann continuation as in [8], [14]:

(2.2) uj(x)= Σ Λ W X B ) * S where x = xB + xse^°, xB = x[0] = qeR3.
|α | = o α!

REMARK. Supersmooth functions should satisfy a Cauchy-Riemann like equation

as explained in [14].

For ψ{q) = t{ψι(q), Ψi{q)) and iφc, θ) = uo(x) + u1(x)θ1θ2, we make a correspondence

defined by

J ~v"> -/ v-rX*> #) where W/-i(*) = Y, i = o(VaOdaiAi(*B)*s f° r j= 19 2 ,
(2.3) < ' '

[ (̂̂ f) = (bw)(̂ f) where ι̂ k + x(^) = uk(q) for A: = 0, 1 .

Or

We define the operators {e,} as

(2.4)

e1 = .hr[ei+- —

e = —lθ2 , e±= / \Θ2 +

Here, λ eRx or e z7?x, the branch of /̂oΓ is taken as | arg^/α"| < π/2 for α G C \ ( — 00, 0]

and put yfaL=iyf\ai\ for α e ( —00, 0], Then, they satisfy

(2.5) ejek + ekej=-2δjk.

Now, we put
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(2.6)
/ dθj 2 ** ι o/ V dθidθi

λ d \ i d d

~i~dθ)~~~ϊ e^βχβ ί~dθ^~ 2~dθ2~'

Then, it satisfies the relations (1.2) and (1.3). When λ = i, we have

(2.7) ^σ2(θ,

Therefore, we get the superspace representation of the Weyl equation given by

(1.10).

As is explained in Appendix B, we obtain "Weyl symbol" for operators σj(θ, — iλdθ)

as follows:

(2.8) σ2(θ, π)= -λ~i(θίθ2 + λ2ίc-2πiπ2),

Therefore, we have the complete Weyl symbol of (1.9) which gives (1.11).

Now, following [5], [6], we introduce the graded Poisson bracket {{,}} as

« /7 p XX — V I L ?__ ί_ L I j _ V I L ? ?_ L I

j=i \ βχ7 dζj dx; dζ: / k=ί\ dθk onk dθk dnk /

θk dπk

n xx- V /^δOi dθ2 d02d0Λ Λ /3C?! dθ2 dθ2 dθΛ
D ui))- L \-z Γ3—r-^ ^ ^ 1~ L \-zλ—5 1~^7}~^— I

j=i \ oXj oζj ΰXj oξj / k = i\ oυk oπk ouk όπk J

Here, E, Eu E2eψss^(3r*mmln) and O, Ou O2eψSSM(3r*<Rmln). Then, the classical

mechanics governed by He ^ss, e v(^*^m | M) is given by

mln) , φ(t) = φ(X(t)9 Ξ(t)).

Hamilton flows: In our case, we have (1.12). More precisely,
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— x1=icλ-1(θ1θ2-λ2ίc
dt

— x2=-cλ-\θίθ2 + λ2

dt

— x3= —ic1c~l(θίπί+θ2π2) = cσ3(θ, π)
dt

^ξj = O for 7 = 1 , 2 , 3 ,

(2.11) ^Lθ^icλn-^-iξJπz-ick-'ξJi ,
at

^θ2=-icλH-2(ζi-iξ2)π1-icft-1ξ3θ2
at

-Γπί = -icλ-1(ξί + iξ2)
dt

dt

2.2. Proof of Proposition 1.2. Rewriting the above, we have

dίθ\ ίΛ /θl(0)

(2.12) — I °2 \=icX\ ^ with /

0 0

where

-tt-ιξ3 o o xn-\ζ,
. o - ^ - ^ -m-\ξ,-iξ2) o

0 -λ-i(ξι + iξ2) Z-iξ3 0

(2.13) ektX = cos(cJc-lt\ξ\)

For notational simplicity, we put η = ξ1+iζ2, ή = ξι — iξ2.

Remarking ξj(t) = ξj, we have
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(2.14)
ιs\ ξ 1)0! + i| ξ \~' smictc-

^1 ξ\)-iξJξΓ1 sin(cίc-h\ξ\y]θ2-M-ιϊ\ξl'1 s™(*~N ξl)?i

s\ζχ) + ις?\ς\ sin(c^ ^| ς DJTΓIL — ΪA fa/|ς| sm(cκ s\ξ\)U2

n2(s) = cos(cίc~ 1s\ ξ | ) π 2 + /| ξ \~1 sin(c^~*s\ ξ |)[A~

= [cos(c^~^1 ξ\) + iξ3\ ξ\~ι sin(cίc~1s\ ξ|)]π2

On the other hand, putting

σ1(ί) = α- 1 (β 1 (ί)θ 2 (ί)-A 2 ^- 2 π 1 (ί)π 2 (ί)),

(2.15) σ2(ί)= — λ~l(θl(t)θ2(t) + λ21c~2πl(t)π2(ή),

σ3(ή= —ΐk~1(θί(ήπί(ή + θ2(t)π2(ή),

and differentiating with respect to ί, we get easily

d ( σ i \ ( σ i \ / 0 -ξ3 ξ2 \

(2.16) — σ2 = 2 ^ " ^ σ2 where Y= ί ξ3 0 -ξ, .
dt\σ3) V σ3 / V -ξ2 ξ1 0 /

As

S3 S2 S2S1 S3S1 \

S1S3 S2S3 S2 SI /

we have

(2.17) e2ck-1tγ_j _|_| ̂  | - i sin^cJE"1^ ξ | ) F + | £ |

This implies

σi(5) = σ 1 + s i n ( 2 c ^ - ^ K | ) | ξ r 1 ( - ί 3 σ 2 + ξ;

(2.18) σ2(s) = q2+sm(2c1c-1s\ξ\)\ξ\-ι(ξ3σ1-ξ1σ3)

h\ξ|))| ξΓ

Putting y = ck~1t\ξ \,
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-f'
Jo

β=

sin2γ

we have

(2.19)

Jo

As Xj = cσj, we have

Xj(t) = Xj + c dsGj{s) for j = 1, 2, 3 .
Jo

Therefore, we get

(2.20)

ί2?3^

2tξιξ_3σί + ξ2ξ3σ2

By (2.14) and (2.20), we prove not only the global existence in time of solutions of

(1.11) but also their explicit forms.

2.3. Proof of Proposition 1.3. Put

y = c'k~1t\ξ\ and δ = \ ξ\cosy — iξ3siny .

From (2.14), we get

which yield

(2 22) θ 1
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These imply

(2.23) 0 10 2 = | ^ | 2 5 - 2 C θ 1 θ 2 + /A^-1 |^r1^siri7<θ|7r>

(2.24) <θ|π> = |ξ |(5- 1 [<θ|π> + 2 / ^ - 1 | ξ

Therefore, substituting these, we have

σ1 = iλ-\θ_ίθ2-λ2ίc-2π1π2) = σί(t, ξ9 ff π ) ,

(2.25) σ_2 = -λ-\θιθ2 + λ2n-2πιπ2) = σ2{U ξ, B, π ) ,

σ3 = -ik~\θ1π1 + θ2π2) = σ3(t, ξ, θ, π ) .

That is, we have

x1=xί-c\ dsσί(s) = yί(t9x9ξ9B,π)9

Jo
Γt

(2.26) x2 = x2 - c\ dsσ2{s) = y2(t9 x, ξ9 θ9π)9

x3 = x3-c\ dsσ3(s) = y3(t, x, ξ, θ, π ) .
Jo

From the above (2.22), (2.26), we have proved the existence and explicit form for

χ.=yj(t, jc, ξ, θ, π) and θj = ω(t, ξ, θ, π).

2.4. Proof of Proposition 1.4. By simple calculation, we have

(2.27) £fo(t, x, ξ, θ9π)=\ ds[_(x(s) I ξ(s)} + <θ(s) I π(s)> - Jf(ξ(s), θ(s), π(s))]
" " " " Jo

= ds(θ(s)\π(s)} = cη dsσx(s) + ίcή dsσ2(s) + cξ3 dsσ3(s).
Jo Jo Jo Jo

Here, we used

= cξjσj + ic(ζισ2 — ξ2σγ) = cήσx + icήσ2 + cξ3σ3.

Now, we define

(2.28) ίf{t, x, ξ, 8, π) = <?(t, x, ξ, θ, π) l=y(t,t,ξj,πJ,β_=ω{uξj,πJ ,

where

ST{t, x, ξ, θ, π) = <x I ζy+JOc-^θ I π> + ̂ 0 (ί, x, ξ, θ, π ) .

By (2.26) and (2.27), we put S?(t, x, θ, ξ, π) = ̂ ( t , x, ξ, θ, π) l ^ ^ . ^ , , , and
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, x, θ, ξ, π) = ( Xj — c\ dsσj(s)\ξj-\-We ι(θ\π) + cη dsσ^s)
V Jo / Jo

+ icή dsσ2(s) + cξ3 dsσ^s)

\θ\π> + ic(ξ1 \
t
dsσ2(s)-ζ2

Remarking

ξA dsσ2(s)-ξ2\ dsσ1(s) = c~ίίc\ξ\~ίsinγcosγ(ξ1σ2-ξ2σ1)t
Jo Jo

and substituting this into (2.29), we get

sr{t9x9θ9ξ,π)=<x\o+m-\θ\πy+m\ξ\-Htf

-i1c\ξ\~ιsinγcosy{ξ2σ_γ-ξxσ2).

On the other hand, as

ξ1q2-ξ2σ1= -λ'^θ^-ΛJc'2^^ ,

ξ3(^?i + ί2?2)-hl2?3 = fc~Ί^

we get

Using (2.22) and putting S?(t, x, ξ, B, π) = S?{t, x, θ9 ξ, π) \β=ω(t,ξ,θ,πj> w e h a v e

(2.30)

It is easily checked that if /z = £, then Sf(t9 x9 ξ, θ, π) satisfies the Hamilton-Jacobi
equation (1.17). Indeed, as

yΣj = ξj for j = l , 2 , 3 ,

we get

Substituting these into Jf (cS ,̂ ff, .5%), we have
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(2.31) jr(Srs, θ, S?e) = ίcλ-1ηθιB2

On the other hand,

(2.32)

As we get easily

δt(δ~1) = cH-1\ξ\δ-2(\ξ\smy + iζ3cosγ) and

we have

(2.33) ^

Comparing (2.31) and (2.33), we proved that the Hamilton-Jacobi equation is satisfied

under the condition (We ~ι)2 - 2Wt"ι +1 = 0.

2.5. Proof of proposition 1.5. From (2.30), we get easily

,2.54)

dffdξ dffdπ

= (Htc-l\ξ\y2[\ξ\cos(ctc-lt\ξ\)-iξ3sm(c1c-lt\ξ\)Y,

and it is checked easily that it satisfies the continuity equation (1.19).

For future use, we derive the continuity equation from the Hamilton-Jacobi

equation in a more general situation, that is, without resorting to the concrete expression

oi2(t,x,ξ,B,π).

PROPOSITION 2.1. Let y(ί, x, ξ, θ, π) satisfy the Hamilton-Jacobi equation below

where (x, ξ, B, π) e jΓ*9Γl" = <R2«l2»;

(2.35) Sφ, x, ξ, B, π) + j?(x, 5% B, STS) = 0 .

Putting

π, - e ?τ N J / dxdξ δxδπ
3>(t, x, ξ, θ, π) = sdet| 5

dBdξ dθδπ

we have
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(2.36) βιt + ds(βtf£ + dθ(@jeπ) = 0 ,

where ^ = Jtf^x, Sf& 0, Sf$).

PROOF. Let ( ^ ) = (*/, 0fc)
 a n d (ΞΛ) = (ξj9π^. By differentiating the Hamilton-

Jacobi equation with respect to ΞΛ, we get

+ ^ j f - = 0 for 4 , C = l , . . . , m ,+
dΞA dΞA

Differentiating this once more with respect to XB, we have

f___j ffl \ί γ\p(B)(p(A) + p{C)) v^Ξc _Q

dXBdΞA dXBdΞAdXc

 Ξc SΞAdXc dXB

Here, p(A) denotes the parity of the variable indexed by A. Putting 9BA — ί

and rewriting the above, we get

(2.37) B A _j_ ( _ J\p(Q(p(i4) + p(B)) υJBA yp_ _^_, γy(A)p(B) + p(B)p(C) + p(C)p(A)cf U^ΞC _ Q

dt dXc " c dXB

In general, for any invertible (ra + «)x(m + n) even supermatrix 3C depending on a

parameter τ (regardless of whether τ is even or odd), we have

(2.38) — sdet 9C = s t r (#- x ^ t ) sdet£T =
dτ

Here, we use the following convention:

) ( 1 ) y
δτ / ^ δτ

(See Berezin [3, pp. 109-110] and Leites [16, p. 44].)

Defining 3) = sdet(<9^) = sdet 9* and using the first equality above, we have

Multiplying {-\)p{A)^AB

l to (2.37) and remarking

(2.39) (
dXc'

ί _ I\p{A)cf - 1 ( _ I\p(A)p(B) + p(B)p(C) + p(C)p(A)Cf U^ΞC __

dXB dXc

we get
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D

REMARK. The above proof is due to Manes & Zumino [17].

COROLLARY 2.2. Putting μ{t, x, ξ, θ, π) = $ll2{t, x, ξ, B, π), we have

(2.41) y

where the argument of ^ is (x, ^, θ,

3. Proofs of the Main Theorem.

It is easy to have

PROPOSITION 3.1. Operators {σ, (0, — iλδθ)} are unitary ί 'n^lsevί^ 0 ' 2) only w n e n

\λ\ = l.

Therefore, we assume that fi=k and \λ\ = 1.

3.1. Unitarity. In order to prove the unitarity of the operator ^(7), we rewrite

it as follows:

\\ dξdπμ(t, x, θ, ξ, π)em~ι^x^π)^u(ξ, π).

As ^u{ξ, π) = Mι(ξ) + fi-1ύo(ξ)πιπ2, we get

(3.1) «(ί)ιι(x, θ) = vo(t, x) + vi(t, x)θιθ2 ,

where

(3.2)

Here, we put

δ(t) = I ξ I cos γ(t) - iξ3 sin γ(t), δ~(t) = \ξ\ cos γ(t) + iξ3 sin γ(t),

γ{t) = cti-1t\ξ\, η = ξ1+iξ2, ή = ξι-iξ2,

Iδ(t)\2 = \ξ\2cos2γ(t) + ξisin2γ(t) = |η | 2 cos 2 y(I) + { | .

Simple but lengthy calculations using the Parseval equality lead us to

-3/2 Γ

,„ f
1̂ (1, ξ) = {2πh) 3'2 \dξμ{t)\δ(t) ιλ 1ηsinγ(t)ύ0(ξ) + δ(t) ι
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PROPOSITION 3.2.

J|Φ(ί)ιι|| = ||ιι|| in

3.2. Regularity.

PROPOSITION 3.3. When u(x, θ)e ^Ss,ev,o(^3|2)> * ( 0 M & dίfferentiable with respect

to(t,x,θ)eRx${312.

PROOF. From (3.1) with (3.2), the differentiability with respect to θ} is clear.

Differentiation with respect to x is formally formulated in (3.2), and Lebesgue's

dominated convergence theorem guarantees that procedure. Same for the time de-

rivatives. •

3.3. Calculation of infinitesimal generator. Applying the Hamilton-Jacobi and

continuity equations and remarking δ^(μ(ί, ξ)J^ξ(^ θ, 5^)) = 0, we have

(3.3) —(μem'ιy) = ( i m ' l y m l y

dt

where

(3.4)

Here, we substituted quantities before (2.31) and itself into Jfπ for deriving (3.4).

On the other hand, by simple calculation, we have

(-mdj, 5, -iλdg)ein"y

In the above, we put

(3.5) {•• } 1

Comparing (3.4) and (3.5), we have —/S[ ] = c{ •}, which implies

mAnt)u(χ,β)=A-~ Θ,--^-)ntHχ,β).

dt \ i dx i dθj

D

REMARK. In calculating the righ-hand side, here we used the exact form. But, in
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general, we must establish the composition formula of pseudo-differential operators of
Weyl type and Fourier integral operators of above type, by which the "infinitesimal
generator" is calculated. This will be given in a forthcoming paper.

3.4. Evolutional property.

PROPOSITION 3.4.

Φ(ί)*(φ = Φ(ί + s)u for any ue ^Ss,o(9*3|2)

PROOF. AS °U(S)U = φ , x, θ) = vo(s9 x) + v^s, x)θίθ2,

)κ(s, x, θ) = (2πHy3/2

- δ(t) ~ ιλfj sin γ(t)δ(s) ~ ι(λ ~ ιη sin γ(s)ύ0 + δ(s)ύί)']

Γ
+ (2π»)" 3 / 2 dξem~ 1<xlξ>μ(t)μ(s)lδ(ty U " ^ sin y(ί)(w0 ~

J

+ 5(ί)"^(OΦ)"\λ~xηsiny(s)w0 + δ(s)ύ1)']θiθ2 .

By simple calculation, we get

\ξ\~ \δ(t)δ(s) -1 η | 2 sin y(ί) sin y(s)K = | ξ | " '

- λ(δ(t)ή sin y(s) + δ(s)ή sin 7(0)"! = - λή\ ξ | " x sin y(ί + s)wx ,

and

| ξ Γ 1 ^ ί + s)«o-^lίΓ 1 s iny(ί4 s)i21=Mί + s) [ώo-^( ί + s)-1sin

Analogously, the coefficient of θγθ2 is calculated as

Therefore, we have the evolutional property. •

4. Concluding remarks.

There are many problems stemming from physicists' saying:
(1) They say that a neutrino does not interact with electro-magnetic field.
It is well-known that the Weyl equation itself is introduced as a model equation

following Dirac's derivation of the Dirac equation. The Weyl equation is considered
as meaningless because it does not preserve parity, until neutrino is discovered as an
elementary particle without parity conservation. Therefore, we mathematicians should
have a confidence of our intrinsic ability of recognizing the beauty of the equation itself.
But to do so, we pose a question whether we can interpret physicists' saying on the
insensibility of a neutrino with respect to any electro-magnetic field. One candidate for
this will be to construct an intertwining operator WA(t) such that
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WA(t)U(t)=UA(t;0)WA(0) for any teR.

Here, UA(t 0) is the fundamental solution of the following problem with a given external
electro-magnetic potential A(t, q) = (A0(t, q\ At(t, q), A2(t, q\ A3(t, q))\

^-φ(t, q) = HA(t)φ(t, q), HA(t)= ^ A k { U q)) + eA0(t9 q),
ι dqk )

In this case, we will have no "explicit" formula for UA(t; 0) or 9lA(t 0), in general, but
we will have

d

Ύt

and

UAt:s)=b\ hmWΛ(t9tn-Λ' '%A(tus)]% with t: = s-\ .

(2) Another very important problem: Whether a neutrino has or aquires a mass?
To answer this, it is useless to consider the Weyl equation itself, because it is derived

as a simplified version of the Dirac equation without mass term. But we have an
experience, though not proved mathematically, that the quantization of a Lagrangian
in a curved space aquires a mass term caused by the curvature (the problem of (l/12)i£,
see [12]). Therefore, we propose to do the above treatment in case where there exists
an external gravitational background. That is, for a given Minkowski metric
dt2 + 2hj(q, t)dqjdt — gij(t, q)dqιdqj on RxM, we take the square root of it using the
Pauli matrices and the frame bundle, formulate and solve that Weyl equation in the
same way as above. Here, M i s a Riemannian 3-dimensional manifold with metric
gij(t, q)dqldqj. See, for example, Antoine, Comtet and Knecht [1].

(3) The Weyl equation in the domain with suitable boundary conditions.
Berry and Mondragon [4] proposed to study "a Dirac Hamiltonian describing

massless spin-half particles ('neutrino') moving in a finite domain of the plane r = (x, y)
under the action of a 4-scalar (not electric) potential F(r)". See also [1].

Appendix A. Fundamentals of superanalysis. For symbols {σJJLi satisfying the
Grassmann relation

we put
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where

/ /T'I/T1^ / (( ( \ Λ-0 1 ΠrrfO 0

Besides trivially defined linear operations of sums and scalar multiplications, we

have a product operation in (£: For

V V V rrJ V X

Λ = 2_^ XjG ? -* = 2-

we put

χγ= % (XTjjσ1 with (XY)j =

Here, τ(/; /, K) is an integer defined by

PROPOSITION A.I ([15]). (£ forms an co-dimensional Frechet-Grassmann algebra

over (£, that is, an associative, distributive and non-commutative ring with degree, which

is endowed with the Frέchet topology.

REMARK. (1) Degree in (£ is defined by introducing subspaces

for 7 = 0 , 1 , . . .

which satisfy

(2) Define

proj7(J0 = Jfj for X=YJXIσ
Ie<i.

The topology in (£ is given by X^O in (£ if and only if projj(X)->0 in C, for any IeJ.

This topology is equivalent to the one introduced by the metric dist(X Y) =

dist(JT- Y) where dist(X) is defined by

digt(Jf)=Σ4n I P r ° J / W I with
t ^ 2 ' (/) 1+lproJXX)!

(3) We introduce parity in (£ by setting

undefined otherwise .
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We put

Analogous to (£, we define

l = {Xe<ί\πBXeR}9

We introduced the body (projection) map π B by

π B ^ = projδW = X~Q = Z [ 0 ] = XB for any

and the soul part Xs of X as

XS = X—XB= 2 ^ σ

We define the (real) superspace 9ίm|" by

The distance between Z, 7 e ^ m | " is defined by

distw|l,Cr, F) = dist m | n (X-

with

We use the following notation:

ί | π with

We generalize the body map π B from 5Rm|fl or 9ίm |° to /?m by putting

X=(x, θ) eSR«I" - π B ^ = Z B = (xB, 0 ) s x B = V = ( V i ,

We call x ; e9i e v and 0fce9iod a s e v e n a n c ^ odd (alias bosonic and ferminionic) variable,

respectively.

REMARK. For ξ = (ξl9..., ξm)e 9ϊm|° = 9le

m

v, we define | ξ | e 9tev as follows: Putting

i ί i = i ί i B + i ί i s with κ ι s = Σ \ξW, i δ i B > o , ι α e « ,
|/|=even>2
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we should have

m m

\ζ\2= Σ (ξj.B + ξj,s)(ξj,B + ξj,s)= Σ ξf.B+ Σ ξj,B(ξj,S + ξj,S)
j=ί j=ι 7=1

ξj,s= Σ ξjy, ^s= Σ ζ > '
|/|=even>2 |/|=even>2

with ξj j being the complex conjugate of ξjtI in C. Therefore,

m m

2\ξ\κ\ξ\*+ Σ \ξ\ι\ξ\j(-Ψκ- IJ)=Σ2ξj,Bmj,κ+ Σ Σ ^ AX-D I ( K ; / J )

/+J=K 7=1 I+J=Kj=l

which are solved by induction with respect to the length \K\. For example, if | K\

we have

If 1*1 = 4,

( m m

2 L ij,BsMj,κ+ L L ζ
j=l I+J=Kj=l

etc.

Supersmooth functions: For ua(q) e C°°(/?m: C), we put

00 1

^ 1̂̂^ == \ β au (xrΛxc for x==-

which is called the Grassmann continuation of ua(q). We define a function u e (

by

\a\<n

called a supersmooth function on $Rm|w. For example, we define sin| ξ |, cos| ξ \ as

\B+^)\ξ\ί9 cos|ί|= £ i-cosf|f |B+-^-)|{ β .

We may characterize this function as a solution of a certain Cauchy-Riemann type
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partial differential equation. See more exactly [15].

Derivations: For a given supersmooth function u(X) on $Rm|M, we define its deriva-

tives as follows: For j=l, 2,..., m and fc=l, 2 , . . . , n9 we put

Uj(X)= Σ 3Xjua(x)θa

9
\a\<n

Uk+JX)= Σ (-l)lkla)ua(χ)ΘV • • Θ?-1 • • • θ"n»,
\<x\<n

where lk{a) = Σk

jllaj and θfc~
1==0. UK(X) are called the partial derivatives of u with

respect to Xκ at ^ = (x, θ) and are denoted by

u(x,θ) = dx.u(x,θ) for j = l , 2 , . . . , m ,

όϋs

or simply by

f/κ(Ar) = aΛΓκM(X) for κ = l , . . . ,

F o r

, fl = ( f l l , . . . , an)e{0, \}n,

j=i fc=i

w e p u t

δ ^ = d * d a

e w i t h δ x

α = δ x

α ; di:, 5 β

β = 3 β

β ; ds:.

EXAMPLE. dθ2θίθ2θ3 = -θ^, dθldθ3θ1θ2θ3 = Θ2Φ-Θ2 = dβjdeβιθ2θ^ etc.

Integration: We define

dxdθu(x,θ)= dx< dθu(x,θ)

J [ J

, θ)>=\ dθdxu(x, θ).

Especially for odd integration, we have the following curious looking but well-known

relations
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dθn- •dθ1θι θn= 1 and dθn-" dθίl=O (Berezin integral).

Remarks for the need of oo number of Grassmann generators, (i) Though (£

does not form a field because X2 = 0 for any Xedod, but if X9 Yed satisfy XY=0 for

any Yedod, then A^O. This property holds only when the number of generators is

infinite. By this, we may determine the derivative dχu(X) uniquely.

(ii) In general, we need at least countable number of operations in doing analysis.

If the number of Grassmann generators is finite, then the effect of odd variables may

vanish after finitely many operations.

Scalar products and norms: Following [8], we introduce

%sA^mW) = \ W W = Σ ua(*)θa I ua(q) 6 C°°(J?m: C) for any a > ,
t |α|=even<« J

?ss,ev,o(9?m|") = |«(Z) = Σ K(x)θ" I «α(ί)e Q ( Λ m : C) for any a l , etc.
(. |α|=even<« J

We define the conjugation u(x, θ) = Σaua{x)θa, where θa = θ^n θf1, θj = θj and ua(x)

being the complex conjugate of ua(x). Then, we define

««,»: K= Σ (dχu>
\a\<k

k= Σ ((i
|α|+ί<fc

\\u\\2=(u,;

θdθe^

* > -

+ |Λ .I

« ) , II

' ^ M ( X , Θ)V(X, 6

|«| + |α |<k

V>»h(. + I

with

The space ^ss,ev(^m|π) is the completion of fSs,ev,o(^m |") i n t n e n o r m II * II I n our case,
we may identify

(See, more precisely, [8].)

Fourier transformations:
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dξein~1<xlξ>w(ξ),

(Fow){θ) = Hnl2ιn dπem~1<θ^w(π),
J 9ίoln

where

We put

) = c m , M ί

where

REMARK. Though the differential calculus on Frechet spaces has some difficulties
in general, such calculus on Frechet-Grassmann algebra holds safely in our case. For
example, the implicit and inverse function theorems, and the chain rule for differentiation
are established as in the standard case.

Appendix B. Derivation of the Weyl symbol. Let a function a{q, p)εCco(T*Rm)
be given. We define a pseudo-differential operator a(q, — itidq) with symbol a(q, p) as

m f ί
JjR

aίq, —ifida)u(q) = (2πfί) rn\\ dpdq'e {q q ) p a ( q , p ) u ( q ' ) .
JjR2m

Then, the Schwartz kernel Ka(q, q') of a(q, —ihdq) is defined by

Γ

Ka(q, q) = (2ntί) m dpeι ^q q ^pa(q, p),

which gives
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a(q, - ϊHdq)u{q) = dq 'Ka{q, q ')u(q']
J Rm

We introduce the Weyl symbol as

Conversely, for any (pseudo-)differential operator P(q, — itidq), we define its ordinary

symbol as

(B.I) P(q,p) = e-m-'<»>

The Schwartz kernel is given formally as

(B.2) KP(q, q') = (2πHym f dpe^'^^Piq, p).

Therefore, we have

(B.3) Pw(q,p) = (2πH)~m dq'dp'ein~ q'{P'~p]

EXAMPLE. Let P{q, -ϊhdq) = ( - fhdq-A(q))2 =-H2d2 + 2ίΠA(q)dq-f itidqA(q) + A2(q).

Then

P(q^ p) = p2 — 2A(q)p + A2(q) + ϊhdqA(q) and Pw(q, p) = (p — A(q))2 .

These procedures are extended to pseudo-differential operators on the superspace

without any serious change: For any differential operator Q(θ, d/dθ), we define its symbol

as

(B.4)

The Schwartz kernel and Weyl symbol are given as

f
(B.5) KQ{Θ, θ') = k2 dπeik~i<θ-ΘΊπ>Q(θ, π),

J 9 ? 0 1 2

and

(B.6) Qw(θ, π) = Jc2 II dθfdπfeik~ί<θ']π'-π>Q[ 0 + — , π ' ) .

Therefore, for differential operators with respect to odd variables, we have
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(B.7)
i dθ

Moreover, the Schwartz kernels are given by

(B.8)

and then

(B.9) σ?(θ, π)=-
lπ2) = σl(θ, π ) ,

2πίπ2) = σ2(θ, π)

For any differential operator P(x, —ίtidx,θ, —iλdθ) on the superspace 5R3'2 rep-

resented by

,θ, ) = ao[x, -f V aΛx, σ, θ, ,
i dx i dθj \ i dxj M J\ i dxj \ i dθJ

we define its complete Weyl symbol as follows:

x, ξ, θ, π) =
7 = 1

<(*> 0*7(0, π).

REMARK. In the context, we use σ ; (θ, π) abbreviating the upper index of σj(β, π).
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