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Abstract. We show that the fundamental solution of the initial value problem for
the time dependent Schrόdinger equation is bounded and continuous for a class of
non-smooth potentials. The class is large enough to accomodate Coulomb potentials if
the spatial dimension is three.

1. Introduction. We consider the Cauchy problem for the time dependent Schrό-
dinger equation

(1.1) i — =—l-Au+V(x)u, (t,x)eR1xRm; u(0, x) = wo(x), xeRm

dt 2

in the Hubert space L2(Rm). We assume that the potential V(x) is real-valued and the
operator -(1/2)Δ+ V on Co(Rm) defines a unique selfadjoint extension H in L2(Rm).
Then, the equation (1.1) has a unique solution u(ή = e~ίtHu0. The distribution kernel
£(ί, x, y) of the propagator e~itH is called the fundamental solution (FDS for short) of
(1.1):

κ(ί, x) = e-
itHu0(x)= £(ί, x, y)uo(y)dy .

The FDS E(ί, x, y) is a solution of (1.1) with the initial data £(0, x, y) = δ(x — y). In this
paper, we show that E(t, x, y) is continuous and bounded, \E(t, x, y)\<Cτ\ t \~m/2 for
0 < 111 < T< oo, for a class of potentials V(x) which can be as singular as | x | ~(m~ε)/(m- ̂
and decay at infinity as slowly as F(x) = o(l). The class is wide enough to accommodate
Coulomb potentials V(x) = Yd*!=ι Zj/\x — Rj\ in dimension three.

When V(x) is C00, it was recently shown that the smoothness property of the FDS
is determined mainly by the growth rate of V(x) at infinity: The FDS is smooth and
bounded for tφQ if Fis subquadratic, viz., | F(x)| = o(|x|2) roughly speaking ([20], see
also [21], [11], [3]); whereas E(t, x, y) is nowhere C 1 if Fis superquadratic in dimension
one, viz., F(x)>C|x| 2 + ε, ε>0 near infinity ([20]); and at the borderline case | V{x)\~
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C\ x | 2 , E(t, x, y) is smooth and bounded for at least small time ([5]) but it can in general

become singular at certain later times ([21], [12]). These properties of the FDS may

be explained, at least at a heuristic level, as the result of the propagation of singularities:

The singularities of the initial data propagate along the limit set as energy tends to

infinity of the classical trajectories x(t) = p(t), p(ή= - VK(x) ([20]).

On the other hand, if V is not smooth, e.g., if V is the Coulomb potential in

dimension three, the singularities of V create those of the FDS and E(t, x, y) is not

smooth everywhere. However, the strong dissipation property of the free propagator

e-ιtH0 m o c ι e r a t e s the singularities and we expect that E(t, x, y) is bounded and continuous

for /φθ if V is bounded at infinity in a suitable norm and is not too singular locally

(see Simon [14] who conjectures that this is true if Kis of Kato class). Indeed it has

been long known that E(t, x, y) is bounded and continuous on [ε, T] x R2 for any

0 < ε < T< oo, if the spatial dimension m= 1 and VEL1(R) ([14]). In higher dimensions,

the same is known under various conditions. For example, in dimension m = 3, the FDS

is bounded and continuous on [ε, T~\ x R6 if V satisfies either of the following condi-

tions:

(a) For some ε>0, || V\\3/2+ε + || V\\3/2_ε is sufficiently small ([13]).

(b) Forsomeε>0, II F | | L 2 ( { y : | ; c _ y |< 1 } ) <C<x>- ( 1 1 / 2 + ε) ([18], [19]. We remark that

the spectral conditions on H in [18] and [19] are not necessary when applied to the

finite time problem).

(c) V is the Fourier transform of VEL1(R3). If V is a measure of bounded

variation, E(t, x, y) is bounded for 0 < ε < ί < T< oo ([7], [4], [8], [10]).

Unfortunately, however, none of these results apply to physically important Coulomb

potentials: (a) and (b), though they allow singularities as strong as of L3/2~ε functions,

require Fto be either small or decay rapidly at infinity; (c) requires Fto be continuous.

The purpose of this paper is to prove that the FDS of (1.1) is bounded and con-

tinuous for another class of potentials which is large enough to accommodate Coulomb

potentials in dimension three. We write m^ = (m— l)/(m — 2).

THEOREM 1.1. Assume m>3. Let V= V(x) be real-valued. Suppose that, for any

ε>0, V can be decomposed as V= VίE+ V2ε so that Vlε satisfies for some σ> 1/râ  and

(1.2) ^ )

and the Fourier transform V2ε of V2ε is a signed measure of bounded variation. Then,

the FDS E(t, x, y) 6>/(l.l) is bounded with respect to (x, y) for tΦQ and, for any T>0,

there exists a constant Cτ such that for 0 < 11 \ < T

(1.3) \E{t,x,y)\<Cτ\t\-^2, 0 < | ί | < 7 \ (x,y)eR2m.

Moreover, if V2εeL1(Rm), E(t, x, y) is continuous with respect to (ί, x, y) for tφO.

REMARK 1. When m = 3, the condition (1.2) reads ||<^>δ<^>>y^i,εllL2(j|3)<ε for
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some <5>3/2 and y>0 and the sum of Coulomb potentials V(x) = Σ1}=ίZj/\x — Rj\

obviously satisfies the condition of Theorem 1.1. When ra>4, the potentials with local

singularities of type YjCj\x — aj\~mt{m~i) + ε satisfy the condition of the theorem.

Since the propagator e~ιtH is unitary in L2(Rm), the estimate (1.3) and the inter-

polation theorem imply the following Lp-Lq estimate.

COROLLARY 1.2. Let V satisfy the conditions of Theorem 1.1 and \<q<2,

l/p+\/q=\. Then, for any T> 0, there exists a constant Cτ such that for 0 < 11 \ < T,

(1.4) l k " i ί H / l l L P ( ^ ) < Q U r m ( 1 / 2 " 1 / p Ί l / l l L ^ ) , feL%Rm)nL2(Rm).

The rest of the paper is devoted to the proof of Theorem 1.1. The basic idea is to

combine the method in [18] with the one used for the case VeL1(Rm). We explain it

here more precisely. We denote by X=(XU . . . , Xm) (resp. D = (D1,..., Dm)) the vector

whose components are the multiplication operators Xj with the variable Xj (resp. the

differential operators Dj= —id/dXj), 1 <j<m. We define the Fourier transform by

V(ξ) = e~ixξV(x)dx.

Here and hereafter, the integrals should be taken over the whole space if no domains

of integration are specified. For Banach spaces X, Y, B(X, Y) stands for the space of

bounded operators from X to Y. B(X) = B(X, X).

If V satisfies the conditions of Theorem 1.1, H= — (1/2)Δ+ V is selfadjoint with

the domain H2{Rm) and C%(Rm) is a core. The solution w(ί) = exp(-ϊrJJ)u0 of (1.1)

satisfies the integral equation ([15]):

(1.5) u(ή = e~itHouo -i\ e~κ-s^° Vu(s)ds ,

where Ho= — (1/2)Δ. We consider in the interaction picture and set

Γ(s) = eisHoV(X)e-isHo.

By iterating the integral equation (1.5) repeatedly, we have at least formally

00

(1.6) e-itHuΰ = e~itH° £ {-i)nGn{t)u0 = e-
itH°Gx(t),

n = 0

where G0{t) = I, and for n= 1, 2 , . . . ,

(1.7) Gn(t)=\ Γ(tn) - Γitjdt, - dtn.
J 0 <ti <••• <tn<t

We recall the argument that proves Theorem 1.1 if V1 ε = 0, that is, if V is a measure

dμ of bounded variation. The following lemma is well known ([16], [10], [8]).
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LEMMA 1.3. Let V(ξ)dξ = dμ(ξ) be a (signed) measure of bounded variation. Then

(1.8) Γ(t)f(x)=

and, for any l<p<ao, Γ(t) is bounded in L"{Rm):

(1.9)

where \μ\ is the total variation of the measure dμ. Moreover, Γ(t) is strongly continuous

in Lp(Rm), 1 < / ? < O O .

PROOF. The operators e~ιtHo and e~ιχ2/2t are unitary in L2(Rm) and as selfadjoint

operators eitH°Xe~itHo = X + tD = e~iχ2/2t(tD)eiχ2/2t. Functional calculus then shows

(1.10)

as bounded operators in L2(Rm). By using the Fourier transform, we have

(1.11) V(tD)f(x)= ίeίxξV(tζ)f(ξ)dξ= (f(x + tξ)dμ(ξ).

Inserting (1.11) into (1.10), we obtain (1.8). It follows from Minkowski's inequality

applied to (1.8) that Γ(t) extends to a bounded operator in Lp(Rm) for any \<p<co

and that the estimate (1.9) is satisfied. The strong continuity of Γ(t) follows immediately

from (1.8). I

In virtue of Lemma 1.3 and (1.7), Gn{t) is bounded in Lp(Rm) and

\\Gn(ή\\B{LP)<\μ\n\t\n/nl Hence the series in (1.6) converges in the norm of B(Lp(Rm))

for any \<p<oo and \\GJt)\\B(LP)<exp(\μ\\t\). Since e~itHo maps L\Rm) to L°°(/?m)

with the operator norm bounded by (2π| t | ) ~ m / 2 , we see that

(1.12) Ik-^ l lβ^^co,^ lk-it^||B(^,ioo)||G«(i)llB(JLM

Thus, if V is a measure of bounded variation, E(t, x, y) is a bounded function of (x, y)

If VeLι(Rm), we may approximate Fby V^^{Rm) so that || Vj- K||Li-»0 asj->oo.

It is well known the FDS Ej(t9 x, y) for H~ -(1/2)Δ+ Vj is C00 for tφQ ([21], [20])

and (1.6) and (1.9) imply that e~ιtHj converges to e~ιtH in the topology of operator

norm of B(Lι,L™) uniformly with respect to 0 < ε < | t\<T< oo. Hence Ej(t, x, y)

converges to E(t, x, y) uniformly on [ε, T]x Rm x Rm and £(ί, x, y) is jointly continuous

in (t, x, y).

When V satisfies the conditions of Theorem 1.1, we again show that G^{t) is a

bounded operator in Lp(Rm) for any \<p<co with \\GOD{t)\\B{LP) bounded on every

compact interval. The argument above does not apply because V decays slowly at

infinity and is not integrable any more. For controlling the slow decay of V or the

singularities of V, we utilize the oscillation property of e~itHo with respect to (ί, x, y) as
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in our previous papers ([18], [19]). This will be done by integration of Γ(t) with respect

to t which transforms the oscillation into the decay property. Thus we insert into (1.7)

the expression (1.8) of Γ(t) in the operator form:

(1.13) Γ(ή= LiXξeitiDξ+tξ2/2)V(ξ)dξ

and integrate the resulting formula with respect to the variables ( ί 1 ? . . . , tn) first.

However, as we shall see in the text the estimation of the resulting expressions

requires certain smoothness of V or decay of V at infinity. Recall that the argument

above for the case where V is a measure did not require V to decay at infinity, though

it did require F t o decay instead. Thus we decompose V= Vί -f V2 into the singular but

decaying part Vί and the bounded but continuous part V2 as in Theorem 1.1 and

combine those two methods as follows. In what follows, we omit the subscript ε > 0 of

Vus and K2 f,

Denote by Γx(ί) and Γ2(t) the operator Γ(t) corresponding to Vί and V2 respectively.

Insert Γ(t) = Γι(t) + Γ2(t) into (1.7) and expand Gn(t) into 2n summands. If we denote,

for a subset A:Rί< <Rtof {1, 2 , . . . , w}, by G^{t) the summand which has the factors

Γ2(tj) at j = Ru . . . , Rrth places and Γ^tj) elsewhere, then, Gn(t) is a sum of G*(t) over

all subsets A of {1, 2 , . . . , n}\

(1.14) Gn(t)
A

Combining the consecutive factors Γ^tj) together, we write G^(t) in the form

(1.15) Gftt) = f F(t, tR,)Γ2(tRl)F(tRι, ( « , _ ! ) • •
Jo<tRι< <tRι<t

• Γ2(tR2)F(tR2, tRι)Γ2(tRι)F(tRι, O)dtRι dtRl,

where the first factor F(t, tR) and the last F(tRί, 0) should be understood as the identity

operators if Rt = n or Rx = 1, and otherwise,

(1.16) F(tRj + ί, tRj)= ί
JtR

Γ^) - Γ&^dti, dtEj.
tB.<-<tEj<tRj + ί

Here we set Ro = 0, Rι + ί=n+l, tRo = 0 and tRι + ι = t and

(1.17) Rj<Bj< <Ej<Rj+1 is a sequence of consecutive integers .

For estimating the operator norm in Lp(Rm) of F(tRj + l, tRj), we insert the expression

(1.13) for Vγ into (1.16) and integrate the result with respect to (tB ,..., tEj) first. In

Section 2, we perform this integration and rewrite the result in a form convenient in

proving the main estimate

(1.18)
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for 0< tR.< tRj+ι < T. The estimate (1.18) will be proved in Section 3. Combining (1.18)

with the estimate \\Γ2(t)\\BiLP)<C\μ\ obtained in Lemma 1.3, we have

By summing (1.19) up with respect to A and n, we see that, if \

is small enough, then G^fί) is bounded in Lp(Rm) for any 1 <p<oo and ||GOO(0IIB(LP) *S

uniformly bounded on compact intervals. This implies that the FDS is bounded on

[β, T] x R2m as explained above. An approximation argument necessary for performing

the estimation and for proving the continuity of the FDS will be given in Section 4

thereby the proof of Theorem 1.1 will be completed.

We adopt the following convention. When precise values are not important, various

constants are denoted by the same letter C. ΊJ norms are denoted by || | |p as well as

by II | | L P.
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2. Preliminaries. In this section, we rewrite the operator F(tRj+ί, tRj) defined by

(1.16) in a form suitable for the estimation to be done in the following section. In

Sections 2 and 3, we assume Vγ e C£(Rm). As a prototype we deal with

(2.1) F{t9s)= Γ1{Q -Γ1(t1)dtί...dtH9 0<s<t<T.
J s < ί i < < ί π < ί

To make the following computation legitimate we insert the damping factor e~ε^?=lti

and write as Γίε(t) = Γι(t)e~εt. We have, in the topology of operator norm in L2(Rm),

(2.2) F(u s) = lim Flu s)= Um Γ l f β(O • Γ.βi)^, dtn
ε^ + O β - + θ j s<tl<...<tn<t

uniformly with respect to 0<s<t<T. We insert into (2.2) the expression (1.13) for

Γ^tj), 1 <j<n. Writing Ξ = (ξu . . . , ξn) and dΞ = dξι dξn, we have

(2.3) Flu s) = V,{ξn) V^ζJLlU s, Ξ)dΞ ,

where we define the strongly continuous operator-valued function Lε(t, s, Ξ) by
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(2.4) Lε(t, S,Ξ)= eiXξneitnΦξn + ξ2J2 + iε) . . . eiXξ,eit!(D$i + ξj/2 + iε

J s<tι<-<tn<t

We set, for

(2.5)

Define for Ξ = (£ l9 . . . , ξn)eRnm and a (decreasing) consecutive sequence C = {b,..., a}c

{1, ...,*}:

(2.6) [C,S]e = K 6 + + ξβ,s]J-«+l)eK>-l+ ' + ξa\h-a)ε * * * Kale,

(2.7) [ c , s ] l i β = κ f c + +ξa, ί ] ( r-a + i ) ε κ,-i+ + £ j M κ j β .

L E M M A 2 . 1 . Let ^ = {D} be the set of decompositions D = {C^^,..., C J o / { l , . . . , n}

subsets of consecutive integers:

Cι = {n,...,nι_ι + \) , . . . , C 2 = { « 2 , . . . , n 1 + 1} , Q = {«i, . . . , 1} ,

Lε(ί, 5, Ξ) o/(2.4) is equal to the sum of

! , ^ ••• [ c 1 ? Ξ ] ε

over all D = (Cί,...,Cι)e@.

In what follows we omit the variables Ξ in [C, Ξ]ε, etc.

PROOF. We prove the lemma by induction on n. By integration

itφξ1+ξ\l2 + iε)_ isiDξi+ξj/2 + iε)

κe Λ κ1, ]
iiDξi+ξf/2 + ιe)

which proves the lemma when n = 1. We now suppose that the lemma is already proved
for n = l , . . . , k— 1 and prove it for n = k. By the induction hypothesis, we may write

Lε(t,s,Ξ)= ίdt

where D runs over all the decompositions D — {Ch . . . , Cx} of {1,..., fe— 1} into sub-
sets of consecutive integers and [CJ ε is defined by (2.7) with ίk in place of t. Since
[Q] ε [Q-i] ε ' ' ' [ Q ] ε i s independent of ίk, we may compute as in the case n=\ and
obtain
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(2.8)

On the other hand, using the equation

e iXξe it(Dξ + ξ2/2 + iε)e iXηe ίt(Dη + η*/2 + ijε) _ £ iX(ξ + n)£ it{D(ξ + η) H

we may compute

t

eiXξkeitk(Dξk + ξi/2 + iε)^^ t^f*dtk = [ξk + η, ί ] * +

Hence, recalling (2.6) and (2.7), we obtain

(2.9)

Since the decompositions of {1, ...,&} into subsets of consecutive integers may be

uniquely obtained from a decomposition of {1,.. .,k— 1} either by adding the singleton

{k} or adjoining the element k to the subset containing k— 1, (2.8) and (2.9) show that

the lemma holds for « = & as well. This completes the proof. I

It follows from Lemma 2.1 that Fε(tRj, tRj + ι) decomposes into the sum over all

decompositions into consecutive numbers { Q , . . . , C\} of {Bj9 . . . , Ej} (recall (1.17) for

the terminology):

Since the variables ξ/s contained in [C7 ] ε and [ Q ] ε are different among themselves if

jφk, the integral (2.10) breaks up into factors and is equal to the product of

(2.11) f([Q]£ + [C t ] u ) Π Vi(U Π
J

and

(2.12)

We deal with the operators (2.11) and (2.12). Note that all factors [ Q ] ε ,

[Q-i] ε > •••» [ Q l ε n a v e similar form and [C k ] 1 > ε and [C fc]ε differ only by sign and

parameters tRj and tRj + ι. Hence, we have only to study the integral containing the factor

[ Q ] ε

 a s a prototype. We assume, for notational simplicity, Ck = {«,..., 1} and tRk = s

and tRk + ί = t. Then, making the change of variables (ξί9 ξ2, . . . , ξπ)ι—•(ξi, ^2~^i ? •>

ξn-ξn-iX we obtain
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(2.13) ^ E E ( - I ) " - 1 [ [ { M - l , . . . , i a Π Vi(ξj)dΞ

= (-l) n~ 1 [[«„+ * +ξl9 s]U.ξn-l+' ' +5l](π-l)β KJe Π ^ l ( ^ ) ^

where ζo = 0. Recalling (2.5), we have

Hence, we have, writing dS = dsι dsn,

(2.14) K»,s]iK 1 ,-i], 1 ,-i,,---K

Combination of (2.13) with (2.14) yields

s J[O,αo)"

We introduce polar coordinates ξj = rjωj, \<j<n, 0<r ;<oo and COJEΣ, Σ being the

unit sphere of Rm and make the change of variables s^s^Vj, \<j<n. Write R =

(R\ rn) = (rί9..., rn),S = (S\ sn) = (su . . . , sπ), Ω = ( ω l 9 . . . , ωn),dR = dR'drn = drί - drw, etc.

Then

1
+ p)dS'dsn >dRdΩ ,

[0,oo)nxΣn I J J J

where p = X j*= i ̂  ω7- and

(2.15) ^ ( ^ 0 ) = ̂ ! ••• rX" 2 Π ^ ( r ^ - r . ^ ω ^ O , roωo = 0.
7 = 1

We then change the order of integrations with respect to R and S to obtain

(2.16) WJ(x)=
J tJo Jto,^)"-1 J

where the first integration is taken over [0, oo)" x Σn and it should be understood that

= 0 and that sjs = co if s = 0. We denote Wf= Wof:
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CSn/s

(2.17)
J l J θ

LEMMA 2.2. Lei 1 < p < oo andfeLp(Rm). Then as ε ^ 0, || J F J -

PROOF. We apply integration by parts to (2.16) with respect to the variables

r l 9 . . . , rn, twice each, using the identities

e - iSj(rj/2 + ijε

Ksj/2yH-2yB/rf)drj

p isn(rn/2 + inε/rn) + irnxωn __ i

i{sn/2 + xωn)(l-inε'/rϊ) drn

where ε' = snε/(sn/2 + xωn). Then, the lemma follows by applying the argument of the

proof of Lemma 2.3 of [18] to the resulting integrals. The boundary terms which appear

from the end point sjs of rM-integration are easier to handle. We omit the details. I

It follows by applying Lemma 2.2 to (2.2) and (2.10) that the operators F(tRj, tRj + ί)

are the product of operators of the form (2.17) with different n's and different s's.

Introducing the notation

(2.18) Gn(rH, S\ Ω)= eιV=iwl2KH(R9 Ω)dR'

and

(2.19) Kn((x9 τ, S'9 O ) = ί eiτr»Gn(rn9 S'9 Ω)drn ,
Jo

we write Wf(x) in the form

(2.20) Wf(x) = Kn{sjs9 sn/2 + χωn9 S', Ω)f(x + p)dSdΩ .

We recall p = Σ"= ί

 sjωj

3. Estimates. In this section, we show that the operator ^defined by (2.20) is

bounded in Lp(Rm) for any 1 <p< oo and estimate || W\\B{LP) in terms of a certain norm

of Vl9 assuming Vx e Co(Rm). When s = 0, Wis nothing but the operator Wn studied in

[18] and [19] and the estimates in Proposition 3.2 below are known. Thus we assume

s > 0 in what follows. The following argument is a modification of what is given in [18]

and [19] to the case ,

LEMMA 3.1. Let W be the operator defined by (2.20). Then:
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(3.1) \\Wf\\L1<\\f\\L! sup \ \Kn(sJs,sJ2+{x-ρ)ωn,S',Ω)\dSdΩ.
R J[O,oo)"xΣ"

(3.2) || Wf\\L. < | | / | | L . sup | Kn(sjs, sJ2 + xωm S', Ω) \dSdΩ .
xeR™ J [O,oo)" x l "

PROOF. The estimate (3.2) is obvious. We prove (3.1). Integrating the modulus of
both sides of (2.20) with respect to x, we have

II Wf\\L1 < I Kn(sjs, sJ2 + xωn, S\ Ω)f(x + p) \dSdΩdx .
J[0,ao)nxΣnxRm

Change the variables (S, Ω, x)ι—>(S, Ω, x — p) and integrate the result with respect to
(S, Ω) first. The estimate (3.1) follows immediately. I

The integrals appearing on the right of (3.1) and (3.2) are estimated as follows.

PROPOSITION 3.2. Let l/m^<σ<\ and y>0. Then there exists a constant C>0
independent of V and s such that both integrals

(3.3) sup \Kn{sJs,sJ2 + (x-p)ωn9S'9Ω)\dSdΩ

and

(3.4) sup \Kn(sJs,sJ2 + xωn9S',Ω)\dSdΩ
xeR™ J[o,oo)nxln

are bounded by (1 + | s |1/m*)(C|| J*Γ(<(x)σ + 1<(Z)))'F)||Lm,)π.

PROOF. We prove the proposition for (3.3) only. The proof for (3.4) is similar.
Using the identity

etιr = - I l-ίτ—}eiτr

dr

and applying integration by parts to (2.19), we obtain

Kn(a9 τ, S\ Q) = I1(α, τ, S\ Q) + I2(α, τ, S', Q) + I3(α, τ, S\ Ω),

where

I^α, τ, S', Ω)=-P^Ύeh«Gn(<x, S', Ω),
1 + τ 2

and

l r .
I2(α, τ, S', fl) = - e'τrGn(r, S', Ω)dr ,

1 + τ 2 Jo
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I3(α, τ, S\ 0) = - ^ - \eiw4-Gn(r9 S\ Ω)dr .
l + τ 2 j o dr

Note that the boundary term does not appear from the zero end point since m>3.

We first estimate the contribution of I x to the integral (3.3). Write g(τ) = — iτ/(\ + τ2)

and <S'>sep = Cs*i> < Λ _ I > . Whenra>4, take δ and λ so that δ + λ = σ, λ > l / ( w - l )

and δ>(m — 3)/(m— 1); and when m = 3 set λ = σ and δ = 0. Using Holder's inequality

with ( m - 3 ) / ( m - l ) + l / ( m - l ) + l / ( m - l ) = l , we have

[0,oo) n - J

<S'>s"ep * I g(sJ2 + (x-p)ωn) |<S'>-p

Λ <S'Xep | G(sjs, S', Ω)\dS'

The first factor on the right is clearly bounded by C". We integrate both sides with

respect to sn and estimate the right hand side by using Holder's inequality with

m^ = l. Then,

(3.5) I I I^sjs, sJ2 + (x-ρ)ωH9 S\ Ω) \dS
J

[0,oo)n

m*/(m-l) ^ 1/m*

It is easy to see by changing the variables (S\ sn)\->(S\ 2(sn — (x — p)ωn)) that the first

integral on the right is bounded by Cn with a possibly different constant C. We then

further integrate both sides with respect to Ω. Changing the variable sn \—> ssn and using

Holder's inequality, we obtain

(3.6) I I ^ s , sn/2 + (x-p)ωn, S\ Ω) \dSdΩ
J

α
\\Π(<! V O\/<\'\σ \\m* riϊ rlQ \

0 /

where | Σ \ is the measure of Σ. We estimate the last integral by interpolating the estimates

for the case σ = 0 and for σ=\. Remembering (2.18) that G(rn, ,Ω) is the Fourier
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transform of X( , rn, Ω), we apply Hausdorff-Young's inequality to the S' integral. Then,

([
\J[0,oo)xI'1

J

[0,oo)xI"a n \l/m

('i rnY~l Π I VΛrjωj-rj.,ω^,) ΓdRdΩ
[0,oo) x I " 7 = 1 /

— Cn\\ V II"
— C II ̂ l l l m *

Here we used the relation mj^m — 2) = m— 1 and (rί rn)
m~1dRdΩ = dξ1 d<̂ w. To

estimate the case σ = 1, we let α = (αj , . . . , ccn_ j) be a multi-index whose entries are either
0 or 1. The integration by parts shows that

S'«Gn(rn, S; Ω)= e'^i^'2(-2DR,rKn(R, Ω)dR'.

Here we used the assumption that m > 3 and, hence the boundary term from the zero
end point did not appear. The argument which was used in the estimate (3.7) produces

(3.8)
J[0,oo)χl"

n m* \l/m*

<Cn[ I (-DR)*{(rx - - rn)
m~2 Π Ϋάrjωj-rj.&j-J) dRdΩ )

[O,oo)

The effect of the rj derivative is either to decrease the power of rf 2 by one or to
differentiate Vί{rjωj — rj_ιωj-ι) or V^Tj+^j — r^j). Hence, applying Hardy's
inequality, we obtain (cf. [18, p. 569]) that

(3.9) ί I I
\ J[0,oo)xIM

Interpolating (3.7) and (3.9) by the multi-linear complex interpolation theorem, we
conclude

vl/m*

(3.10) I I IK XepG(sπ, ,Ω)||;
\ J[O,oo)xIf1

and, hence we obtain the desired estimate

(3.11) sup
xeR™
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To estimate the contributions of I 2 and I 3 to the integral (3.3), we use the following

lemma.

LEMMA 3.3. Let \<p<oo. Suppose geLpt(p-γ)(R)nLpl{p-l)+\R) for some 0<ε.

Let A(u, v) be defined by

eivxf(x)dx.
o

Then there exists a constant C > 0 depending only on g andp such that

(3.12) supΓ \A(t/s,x±t/2)\dt<c(\\f\\p+\ -|-| |/( +h)-J\\pdh

^ K J - O O \ J - l |Ί|

where the Fourier transform j is taken after setting f(x) = 0 for x<0.

PROOF. We set f(x) = 0 for x < 0 . Writing the Heaviside function by θ(x): θ(x)= 1

for x > 0 and θ(x) = 0 for x < 0, we compute

Γu /*oo i Λoo iyu

eivxf(x)dx= eivxθ(u-x)f(x)dx = — Γ ^f(y-v)dy

1 i f 0 0 eiyu

= -τ-?(-v) + — p.v. Άy-v)dy
2 2πι J-oo J7

where p.v. means Cauchy's principal value. We decompose the singular integral as

follows:

f °° eiyu f eiyu

p.v. f(y-υ)dy= f(y-v)dy
J-oo y J\y\>i y

Γ 1 eiyu Γ 1 eiyu

- 1 V - 1 V

Correspondingly, we decompose

(M)

and estimate the contribution of each summand to the integral (3.12) separately: By

Holder's inequality we have for any 1 <p < oo

(3.13)

We estimate as

I H2(u, v)\ < I g(v]
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and use Holder's inequality and Young's inequality for the convolution to obtain

Γ 0 0

("\ i Λ\ I I T T if / c v- —I- f ι ) \ \At <^ 77 II /r II II # II II v I v I
J — oo

where </> 1 and r>\ should be taken so that l/p+ l/^f+ l/r = 2. Since

1 f %̂ I J i n yx/v

p.v. I dy = 2ι ay
y Jo J

is uniformly bounded with respect to u, we have as in (3.13)

(3.15) P° |Π3(ί/s,x±ί/2)|Λ^C|| f f | |p / ( p_1 ) | |/| |J (.
J — oo

Finally we estimate

|π>^)l<l^)l ^
\y\

and use Holder 's inequality and Minkowski's inequality to obtain

(3.16) I II 4 ( i/s, jc±i/2) |di<7r- 1 | | f i r | | J , / ( J ,_ 1 )

 υ κ y } n )llp dy.
J J I i

The combination of the estimates (3.13), (3.14), (3.15) and (3.16) yields (3.12). I

We now estimate the contribution of 12 to the integral (3.3). Noting that sJ2 — pωn =

— sJ2 + p'ωn and p ' = Σ " l ί Sj<£j is independent of sn, we apply Lemma 3.3 to f(r) =

Gn(r, S', Ω) with g(υ)=l/(l + υ2) andp = m-1. It follows that

(3.17) sup \I2(sJs9sJ2 + (x-p)ωn9S',Ω)\dsnxeRmJo

<c(||GM( ,S',Ω)L_1+ ί1 -]-\\Gn(-+KS\Ω)-Gn( ,S\Ω)\\m_ί<
\ J - i \n\

where GM( , S\ Ω) is the Fourier transform of Gn(s, S\ Ω) with respect to the first variable

s after setting Gn(s, S',Ω) = 0 for s<0. We integrate both sides of (3.17) with respect to

S' and Ω. Using Holder's inequality, we estimate the integral with respect to S' of first

summand on the right as

f / f ^ \l/(m-l)
(3.18) \\Gn(

m, S\ Ω)\\m_1dS'<Cnl \ (S'yζepGn(s, S\ ί 2 ) | m - 1 dS I
J[O,oo)n-1 \J[0,oo)n /

Note that Gn(s, S\ Ω) is nothing but the Fourier transform of K(R, Ω) with respect to

the all radial variables R = (rl9 ...,rn). Hence the argument similar to the one used for

obtaining the estimate (3.10) implies the following for the dΩ integral:
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(3-19) I \\Gn( ,S',Ω)\\m_1dS'dΩ<(C2\Σ\ιnm-l)\m(xyσV1)\Lf-

In virtue of the modulus of continuity estimate for the functions in the Sobolev spaces

(cf. [1]) we have for arbitrarily small y>0.

(3.2) ί ( Γ T^-ll^ί- + h9S'9Ω)-On( 9S'9Ω)\\m-1dh)dS'dΩ
C o o ) " " 1 xΣ"\J - 1

<c

The integral on the right may be estimated entirely similarly as in (3.19) and is bounded

by

Thus we have for arbitrary small y > 0:

(3.21) sup \I2(sJs,sJ2 + (x-p)ωn,S',Ω)\dSdΩ
x e R m J[0,oo)»xl"

< (sup \I2{sJs9 -sJ2 + (x-p')ωn,S\Ω)\dsnjdS'dΩ

The contribution of I 3 may be estimated entirely similarly as above by replacing

G(r, S', Ω) by (d/dr)G(r, S\ Ω), and we obtain

xeRr
(3.22) sup \I3(sJs,sJ2 + (x-p)ωn,S\Ω)\dSdΩ

R J

Here we used the condition σ < 1 and the fact that the variable rn appears only once

on the right side of (2.15). Combining the estimates (3.11), (3.21) and (3.22), we have

proven the required estimate for (3.3) and have completed the proof of Proposition.

I

The right hand sides of (3.1) and (3.2) of Lemma 3.1 are both bounded by the

same quantity as in Proposition 3.2. Thus the complex interpolation theorem implies

the following:

COROLLARY 3.4. For y >0 there exists Cγ>0 such that for any 1 <p<oo

We now fix Γ>0 and assume that all relevant time variables are in the interval
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[0, Γ\. We apply Corollary 3.4 to the factors (2.11) and (2.12) of F(tRp tRj+1) in (2.10)
and obtain the bound on the operator norm in Lp(Rm):

(3.24) \\F(tRj9 tRj + ί

In virtue of Lemma 1.3, it is obvious that

(3.25)

where Var(μ) is the total variation of the (signed) measure μ. Applying the estimates
(3.24) and (3.25) to (1.15), we see that, for all | ί | < Γ , the operator norm ||G^(ί)l| in
B(Lp(Rm)) is bounded as follows:

(3.26) \\Gn

A(t)\\

Now we suppose

(3.27)

and write Var(K2) = Cκ. Then

and

oo oo n VΊ( VΊ 1 ̂  . . . ί ΊΛ / _ι_ 1 \

(3.28) J o IIĜ OII ̂ Σ o Σ J -^ψ ~(CκT)ικ"-'
0 0 (C TV °° / rl \ l oo (Γ ΎΛl / Λ \«

\

expf
\-K \\-K

4. Proof of the Theorem. We take and fix T> 0 arbitrarily and choose ε > 0 small
enough so that Cyε = κ< 1 in (3.27) is satisfied when we decompose V— Vx + V2 as in
the Theorem. We then take a sequence of smooth functions V[j)eC^(Rm) such that

(4.1)

Denote /(,•= —(1/2)Δ+ F[J)+ F2. In virtue of (4.1) and Young's inequality, we have

and (Hj-z)~ i^(H-zΓ: in B(L\Rm)) for all ze C\Λ. It follows that έΓίfH-' converges
to e'itH strongly in L2(Rm).

Denote the GJt) corresponding to V[j)+ V2 by G^fί)01. Note that G f(ί) is multi-
linear in V1. It follows by the argument used for proving (3.26) and (3.28) that G^W01

converges uniformly for | t\<T in the topology of operator norm in Lp(Rm) for any
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1 <p<oo, the limit of which is denoted by G^it) = \imj^O0 G^ί) 0*. It follows by taking

the limit y-> oo in

that, as operators in L2(Rm),

and that e~itH extends to a bounded operator from Lq(Rm) to Lp{Rm) for any 1 <q<2

and p = q/(q— 1) with norm

II - i ί H i i ^ p I f\-m(l/2-ί/p)

for | ί | < Γ . Moreover, as the operators from Lq{Rm) to Lp(Rm) thus extended, the

convergence of e~itHj to e~itH is uniform with respect to 0<δ<t<T in the topology

of operator norm.

It follows that the FDS E(t, x, y) of (1.1) is bounded by Cτ\ t\'m/2 and, if V2 is of

L 1 ^ " 1 ) , E(t, x, y) is continuous since the FDS Ej(t, x, y) is continuous and converges

uniformly to E(t, x, y) with respect to (ί, x, y) e [(5, Γ]x/? m x/? m . This completes the

proof.

REFERENCES

[ 1 ] R. A. ADAMS, Sobolev spaces, Academic Press, New York-San Francisco-London, 1975.
[ 2 ] J. BOURGAIN, Fourier transform restriction phenomena for certain lattice subsets and application to

nonlinear evolution equations I, Schrodinger equations, Geom. Funct. Anal. 3 (1993), 107-156.
[ 3 ] W. CRAIG, T. KAPPELER AND W. STRAUSS, Microlocal dispersive smoothing for the Schrodinger equation,

Comm. Pure and Appl. Math. 48 (1995), 767-860.
[ 4 ] H. CYCON, R. G. FROESE, W. KIRSCH AND B. SIMON, Schrodinger operators, Springer-Verlag, Berlin,

1987.
[ 5 ] D. FUJIWARA, Remarks on convergence of the Feynman path integrals, Duke Math. J. 47 (1980), 41-96.
[ 6 ] J. GINIBRE, Y. TSUTSUMI AND G. VELO, On the Cauchy problem for the Zakharov system, preprint,

Orsay (1996).
[ 7 ] K. Iτo, Generalized uniform complex measures in the Hilbertian metric space with their application

to the Feynman integral, in Proc. Fifth Berkeley Symposium on Math. Statistics and Probability,
Univ. California Press, 1966, pp. 145-161.

[ 8 ] A. JENSEN, Results in Lp(Rd) for the Schrodinger equation with a time dependent potential, Math.
Ann. 299(1994), 117-125.

[ 9 ] A. JENSEN AND S. NAKAMURA, Mapping properties of functions of Schrodinger operators between
ZΛspaces and Besov spaces, Spectral and scattering theory and applications, Advanced Studies in
Pure Math. 22, Kinokuniya, Tokyo, 1994, pp. 187-210.

[10] J. L. JOURNE, A. SOFFER AND C. D. SOGGE, Decay estimates for Schrodinger operators, Comm. Pure
Appl. Math. 44 (1991), 573-604.

[11] L. KAPITANSKI AND I. RODNIANSKI, Regulated smoothing for Schrodinger evolution, Internat. Math.
Research Letters 2 (1996), 41-54.

[12] L. KAPITANSKI, I. RODNIANSKI AND K. YAJIMA, On the fundamental solution of a perturbed harmonic

oscillator, to appear in Topological methods in nonlinear analysis 1 (1997).



TIME DEPENDENT SCHRODINGER EQUATION WITH SINGULAR POTENTIALS 595

[13] T. SCHONBEK, Decay of solutions of Schrδdinger equations, Duke Math. J. 46 (1979), 203-213.

[14] B. SIMON, Schrόdinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526.

[15] K. YAJIMA, Existence of solutions for Schrόdinger evolution equations, Comm. Math. Phys. 110 (1987),

415-426.

[16] K. YAJIMA, On smoothing property of Schrόdinger propagators, Lect. Notes in Math. 1450, Springer-

Verlag, Berlin, 1990, pp. 20-35.

[17] K. YAJIMA, Schrόdinger evolution equations with magnetic fields, J. d'Analyse Math. 56 (1991), 29-76.

[18] K. YAJIMA, The ^' '-continuity of wave operators for Schrόdinger operators, J. Math. Soc. Japan 47

(1995), 551-581.

[19] K. YAJIMA, The W^-continuity of wave operators for Schrόdinger operators III, J. Math. Sci. Univ.

Tokyo 2 (1995), 311-346.

[20] K. YAJIMA, Smoothness and non-smoothness of the fundamental solution of time dependent Schrόdinger

equations, Comm. Math. Phys. 181 (1996), 605-629.

[21] S. ZELDITCH, Reconstruction of singularities for solutions of Schrόdinger equations, Comm. Math.

Phys. 90 (1983), 1-26.

DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITY OF TOKYO

KOMABA, MEGUROKU

TOKYO 153-8914

JAPAN






