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Abstract. By using the alternative method and the topological degree theory, we
obtain some sufficient conditions for the existence of 2π-periodic solutions of some
semilinear equations at resonance where the kernel of the linear part has an arbitrary
dimension

1. Introduction. The existence problem of periodic solutions for nonlinear
systems at resonance has been extensively investigated in the literature and many
existence results have been obtained for nonlinear systems of first order differential
equations at resonance that involve a small parameter (see Hale [1], Nagle [2] and the
references therein).

Many existence results have also been obtained for some nonlinear systems whose
nonlinearities satisfy the so-called Landesman-Lazer conditions. Several of these results
are mentioned in [3].

In the special case where the linear part has a two-dimensional kernel, some results
have also been obtained in [4]-[9]. However, considerably less is known for the case
where the linear part has dimension greater than two. In this direction, an example
with a three-dimensional kernel and a fourth order ordinary differential equation are
considered in [8] and [10] respectively. In a recent paper [11], the authors have extended
some results in [8] to semilinear equations with a three-dimensional or four-dimensional
kernel. By using some fixed point theorem, [12] studied the existence of periodic solutions
of the ^-dimensional Duffing system at resonance

xs + msXs + fs(t, x)=ps(t), s= 1, 2, . . . , n

with unbounded perturbations fs(t,x) (x = (xl, x2, - . . , xn)) and some additional
conditions.

For some related topics, we refer to [13], [14], [15] and the references therein.
In the present paper, we are concerned with the existence of 2π-periodic solutions

to the nonlinear system of first order functional differential equations of mixed type
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i , ι = l ,2 , . . . ,« ! ,

S /O, 7=1,2, . . . , / ϊ 2 ,

where ni9 n2 are nonnegative integers with nί+n2>l'9 x^eR2, y^ήeR; £te/?4;
x(t + )<=BC(R, R2nι) and y(t+ )<=BC(R, R"2) are defined by x(t + s) = (x1(t + s)9 x2(t +
s\...9 xnι(t + s)) and y(t+s) = (yi(t+s)9 y2(t + s)9..., yn2(t + s)) respectively; p{eC(R, R2)
and EJ e C(R, R) are 2π-periodic in f, and

Ff: Λ x 5QJΪ, /?2M1) x BC(R9 R"2) ->I?2 ,

ft: RxBC(R9 R2nι) x£C(#, /?"2)->/?,

are continuous, bounded and 2π-periodic with respect to the first variable t.
In this paper, we assume that

-wif

where m{ (i= 1, 2, . . . , n^ are some positive integers.

2. Statement of Main Result. We need the following two hypotheses

(F) There exists a permutation fcl5 &2, . . . , ̂ Λl consisting of 1, 2, . . . , w x and for
any / with 1 <i<nl9 there exist τ/1}e/?, HtEBC(R2, R2) such that the asymptotic limits
#i( ± , ± ) = limr,s^ ± ,, #t.(r, 5) exist, and there exists Gf : Λ x ^C(/?, Λ 2ni) x £C(/?, l?n2) -̂
/?2, which is continuous, bounded and 2π-periodic with respect to its first variable ί,
such that for any teR, φeBC(R, R2"1) and ψeBC(R, Rn2\

Ft(t9 φ9 ^) = //ί(φ2fc|-1(-τ/1>), φ2kt(-τl1})) + Gi(t9 q>9 ψ) .

(f) There exists a permutation /15 /2, . . . , /Π2 consisting of 1, 2, . . . , «2 and for any
7 with I<j<n29 there exist τ ]2) 6 /?, A^ e BC(R, R) such that the asymptotic limits
A/ ± ) - lim_ ± ,, hj(r) exist, and there exists gj : R x ^C(/?, /? 2nι) x BC(R, R"2) -> /?, which
is continuous, bounded and 2π-periodic with respect to its first variable t, such that for
any teR, φeBC(R, R2nί) and ψeBC(R9 Rn2\

fj(t9 φ, ̂ ) = Aχ^(-τj2))) + ̂ (ί, φ, ^r) .

To state our main theorem, we also need some notation as follows. For any positive
integer n, we shall denote by | | the Euclidean norm in Rn. Whenever the assumptions
(F) and (f) are satisfied, for ί= 1, 2, .. .,nί and/— 1, 2, . . . , n2 we set

1 Γ2 π/cosm^
(2.1)

2π Jo Vsinra^ cosmts

(2.2)

(2.3) MGi : = sup{| Gt.(ί, φ, ^)| : teR, φeBC(R, R2nί), ψeBC(R, R"2)} ,
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(2.4) EJ:=
o

(2.5) Mβi: = sup{\gj(t9 φ,ψ)\: teR,

The main result in this paper is the following Theorem 2.1, which provides a
sufficient condition for the existence of 2π-periodic solutions of the equation (1.1).

THEOREM 2.1. In addition to (F) and (f), we assume that mkι = mi (ί= 1, 2, . . . , n^)

and that

(H) l^tf^M^ + I^K)!, ι = l , 2 , . ..,«!,
(h) hj( + )hj(-)<09\hj(±)\>Mgj + \Ej\9j=l929...9n2

hold. Then the equation (1.1) has at least one 2π-periodic solution.

3. Preliminaries. To prove Theorem 2. 1 , we need to state some basic facts about

the degree theory.
Let X and Z be real normed spaces and L: domL<=:X-+Z be a linear Fredholm

mapping of index zero, i.e. ImL is closed and dim ker L = codim Im L < oo . It follows
that there exist continuous projections P: X ^>X and Q: Z-»Z such that ImP^kerL,
ImL = ker Q = lm(I— Q). Moreover, the restriction LP: domLnkerP->ImL of L to
ker P is invertible. We denote its inverse by KP : Im L -> dom L n ker P. We shall denote
by KPQ: Z-^domLnkerP the generalized inverse of L defined by KPQ = KP(I—Q).

Let Ω be a bounded open subset in X such that domLn£2^0 and N: Ω-+Z is
a nonlinear mapping. The mapping N is said to be L-compact on Ω if QN: Ω-+Z is
continuous, QN(Ω) is bounded and KP QN: Ω-+Xis compact (i.e. it is continuous and
Kp QN(Ω) is relatively compact). This definition does not depend upon the choice of P
and Q.

Let L : dom L c X-> Z be a Fredholm mapping of index zero and Ω c X a bounded
open set. In the above notation, let CL(Ω) denote the class of mappings F: domL n Ω -» Z
which is of the form F=L — N, with TV: Ω-+Z L-compact on Ω, and which satisfies
the condition 0 φ F(dom L n dΩ).

We say that the mapping DL( , Ω) : CL(Ω) -> Z is the degree of F in Ω relative to
L if it is not identically zero, and if the following axioms are satisfied: (i)
Additivity-excision axiom: If Ωί and Ω2 are disjoint open subsets of Ω such that
QφF(domLnΩ\(Ω1uΩ2)\ then

DL(F9 Ω) = DL(F9 Q,} + DL(F, Ω2) .

(ii) Axiom of homotopy invariance: If F: (dom L n Ω) x [0, 1]->Z is of the

form F(x,λ) = Lx-N(x,λ) with TV: D x [0, 1] ->Z L-compact on Ox[0, 1], and 0^
F((domLndΩ) x [0, 1]), then the mapping λ^DL(F( , λ\ Ω) is constant on [0, 1].

An important property of the degree is the following existence property: If Fe CL(Ω)
and DL(F, ΩJ^O, then 0 e F(dom L n Ω), i.e. the equation
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(3.1) Fx = 0

has at least one solution in dom L n Ω.
To prove our main theorem, we shall use the following theorem of Borsuk proved

in [17].

THEOREM 3.1 (Borsuk). I f F e CL(Ω) with Ω symmetric with respect to 0 andQeΩ,
and ίfF(-x)= -F(x}for every xεdomLndΩ, then DL(F, Ω) = I(mod2).

In order to use the above degree theory, we next rewrite the equation (1.1) as an
equivalent operator equation.

Let n be any positive integer. Let

, Rn): x(t + 2π) = x(t)9 for any teR} .

\\x\\ =sup\x(t)\ = SUP WO I -
teR ίe[0,2π]

Then P(

2l is a Banach space.

In the sequel, we shall denote P^1+"2) by P2π. It ιs c^ear to see

p _ p(2wι) v p(ιi2)
^2π — r2π X ^ 2π '

Suppose Z) = diag(5l9 B2, . . . , Bnι, On2) is a (2n1 +n2) x (2ni+n2) matrix with On2

an n2 x n2 zero matrix. Define the operator L : P2π -> P2π ^Y

(3.2) Lx(t) = x(t)-Dx(t),

domL = {xeP2π : x(r) exists and is continuous} .

Obviously, we have

: x(t) = eDta, aeR2nι+"2} ,
2π

o

where D τ denotes the transpose of D. Moreover, Im L is closed and we have the direct
sum decomposition

which implies that

dim ker L = codim Im L = 2nί + n2 < oo ,

and thus L is a Fredholm mapping of index zero. Let P=Q: P2n~^^2n be the
projections defined by

(3.3) Λt(0 = - eDt eDTsx(s)ds .
2π Jo

2π

DTs
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Then we have

ImP^kerL , ker Q = lmL .

LEMMA 3.1. Let KP : ImL-»dom L n ker P be the (unique) right inverse of L
associated to P. Then KP is a compact operator with \\KP\\ <2π.

PROOF. It is easy to know that for z e Im L,

1 Γ2π [a

eDTsz(s)ds- eDt eDTτz(τ)dτds .
o 2π Jo Jo

Since γQeDTsz(s)ds is 2π-periodic, it follows that

\KPz(t) <π||z|| , for all teR,

\KPz(t1)-KPz(t2)\<(l+π(m2 + m2 + + m2)1/2)| |z | | \t,~t2 \ , for all tl9 t2eR

and Lemma 3.1 is then a consequence of the Arzela-Ascoli theorem.

It is also easy to see that H: R2nί+"2~+kerL defined by

H(a) = eDta, for aeR2nι+"2

is an isometry. In what follows, we identify aeR2nί + n2 with its image //(α)ekerL, i.e.,

H(a) = a, aeR2nί+n2.

Define the operator N: P2π -^ P2π by

(3.4) N(x, y)(t) = (

(3.5) 7V(2Ml)(x, yW = (N?ni\x

(3.6) Nt2nι\x,y)(t) = Fi(t,x(t+ \y(t+ ) ) + p i ( t ) , i= 1, 2 , . . . , ΛI ,

(3.7) 7V(^}(x, y)(0- (Λf 2)(x, y)(ί), ^n2)(x, y)(ί), - - . , N}**(x, y)(t)),

(3.8) Nj»*\x, yM=fj(t, x(t+ ), y(t+ )) + ̂  (0 , 7= 1, 2 , . . . , /ι2 ,

where xeP(2^\yeP(^ and (x,j;)eP2π defined by (x,y)(t) = (x(t\y(t)). Then TV is
continuous and bounded, and hence is L-compact on Ω for any bounded open set Ω
in P2π with dom L n Ω / 0.

Let ^0 = (*ι(0,*2(0, ••• »̂ι(0) with ^ePg (!</<«!) and y(t} = (yl(t\y2(t\
. . . , . . . , JM2(/)) with yj&P^ (1 <j<n2}. Then the assumptions (F) and (f) imply that

(3.9) N\2n^y}(t} = Hi(xkι(t-τ^}} + Gi(t^(t+ ),y(t+ ))+A (0,

z'=l,2, . . . ,« ! ,

and

(3.10) ^f2>(x,yXO-^(y^ί-τ]2))) + ̂ (ί,x(ί+ ),y(t+
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In the above notation, the equation (1.1) is equivalent to the operator equation

(3.11) F(x,y) = Q , (x, y)e domL ,

where x e P(

2

2

π

nι\ y e P^ andF=L-N: domLcP2π-»P2π.

4. Proof of Theorem 2.1. In proving our main theorem, we also need some
lemmas.

Let

Y={HεBC(R2,R2):H(±, +)= lim H(r, s) exist} ,
r,s-* ± oo

||#H = sup|#(r,s)|<oo.
r,seR

Then (7, || ||) is a normed space. Define the mapping W: Y-+R2 as in (2.2). Then W
is linear and continuous. Moreover, if H(r, s) = H( — r9 — s), then

(4.1) W(H)=-W(H).

The following Lemma 4.1 is obvious.

LEMMA 4.1. Lέtf #e Γ α«J

(4.2) 77(r, s) =

(4.3) W(H}=W(H).

LEMMA 4.2. Let HeY, peR and veBC(R, R2). Let

i Γ2 π

(4.4) M(p,υ) = e^Hr((psins,pcos,s)r

2π Jo

where

A = i ° 1

-1 0

(4.5) lim Af(p, υ) = e^T(π/

p-» oo

(4.6) lim M(p,v)=-eAT(πl4)W(H]
p-* — oo

uniformly for \ v(t) \<M9 where M is a constant.
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PROOF. Fixed ε>0 (ε< 1/4). Let M0>0 be large enough so that

\H(x,y)-H( + , +)\<ε, for any x, y>MQ .

Define p0 = (M0 + M)/sin ε. Then for any p > p0? we have

"π/2

eATsH((p sin j, p cos ^)
π/2

έ
o

,+)ds

π/2-ε

π/2

ί

π/2-ε

inί, pcos^)

where ||//"|| =supr?seR /f(r, s) | < oo. Hence
fπ/2

(4.7) lim eATsH((psms,pcoss)τ

p-^™ Jo

uniformly for \υ(t)\<M.
A similar argument shows that

π/2

(4.8) lim
) π / 2 J π / 2

ί
3π/2 pπ/2

eATsH((p sin s, p cos s)τ + υ(s))ds = eATsH( -
i Jπ
f 2 π

(4.10) lim
^~>0° J3π/2 J3π/2

uniformly for | v ( t ) \ < M .
It follows from (4.4), (4.7)-(4.10) that

i r r*/2

-}ds ,

, - }ds ,

lim M(p, ι;) = -
π/2

3π/2

(-, -)ds+

, -)ds

+ }ds
sπ/2

uniformly for | v ( t ) \ < M .
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By using a similar argument, we can show that

lim M(p, v) = -eAT(π/4) W(H] ,

uniformly for \v(t)\<M, and this completes the proof.

LEMMA 4.3. Condition (h) holds if and only if

(4.11) J=l92,...,n2

PROOF. Suppose that (h) holds, that is,

(4.12) hj( + )hj(-)<0, \hj(±)\>Mβj+ E j \ , J=l929...9n2.

For any j with 1 <j<n2, without loss of generality, we assume that

(4.13)

From (4.12) and (4.13), we find

(4.14) l

and

(4.15) l|

Then (4.11) follows from (4.14) and (4.15).
Conversely, suppose that (4.11) holds. Then

Case 1. /7/ + )>0,/z/-)<0.
If λ/ + ) + λ/-)>0, then (4.11) implies that

j( + ) + hj(-)<09 then (4.11) implies that

Therefore, we always have

\hj(±)\>M βj

Case 2. Aχ + )<0, A/-) >0.
A similar argument shows that
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The proof is complete.

We are now in a position to prove our main theorem.

PROOF OF THEOREM 2.1. Let

(4.16) Hfr,

and

(4.17) hj(r) = -^(hj(r)-hj(-r)) , 7= 1, 2, . . . , /ι2 .

Then

(4.18) H£-r, -s)= -fffr, s) , ι= 1, 2, . . . , ΛI ,

(4.19) K j ( - r ) = - K j ( r ) 9 j=l,2, ...9n2 .

Hence by virtue of Lemma 4.1, we get

(4.20) W(Hi)= W(Ht) , /= 1, 2, . . . , Λ! .

Define the operator TV: P2π x [0, 1] -+P2π as follows:

N(x, y, λ)(t) = (N(2n>\x, y, λ)(t\

?ni\x, y, λ}(t\ . . . ,

A[/f.(^

\y(t+ )) + λpi(t), ι=l ,2, . . . ,« ! ,

(t - τ^}} +

+ λgj(t, x(t+ ), Xί + )) + λEj(t) , 7= 1, 2, . . . , n2 ,

where x = (A: l9 x2, . . . , xΠl)eP^Πl) with ̂ ePg (ί= 1, 2, . . . , nj vu\dy = (yl9 y2,..., yn2)
€

P(
2^ with yjeP2^ (j= 1 , 2 , . . . , n2). Then TV is continuous and bounded, and hence is

L-compact on Ώ x [0, 1] for any bounded open set Ω in P2π with άomLr\Ω^0.
Define F: domL x [0, 1] -+P2π by

(4.21) F(x, y, λ) = L(x, y)-TV(x, y, λ) ,

where xeP^2" l} and yEP^"π

2) Then it is easy to see that F ( x , y 9 l ) = F(x9y) and
F0(x9 y) : — F(x, y9 0) satisfies
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(4.22) F0(-x9-y)=-F0(x9y)9 for any xePft* 9 yeP(

2

n* .

Let p > 0, and

Ω° = {(w, ι;)ekerL: u = (r^pa^ r2pa2, . . . , rnιpanι)9 a^dB^c. R2 , 0<r;<l ,

/= 1,2, ...,«! ,

v = (σ1ρ,σ2ρ, ...9σnzρ)9σj€R9 \σj\<\J=\,2, ...,n2} ,

where J?1(0) = { Λ e Λ 2 : |«|<l}e:/?2. Then Ω° is a bounded open set in kerL.
Put

[ Hi «2 Ίl/2

Σ (11^ I I +MGι + ||A. ID2 + Σ(^,+^,+ll^ll)2 + ι ?f = l 7=1 J

where Mh. = suprejR | A/r) | < oo .
Since ||AΓP(/-β)|| <4π, it follows from (4.16), (4.17) and the definition of TV that

(4.23)

for any xeP(

2

2

π

nι\ yeP^ and λe[09 1].
Again set

Ωp = {(x,y)eP2π:xεP2

2

π

n>\yεP%\ \\(I-P)(x, y)\\ <M, P(x,

Then βp is a bounded open set in P2π, UGί2p and ί2p is symmetric with respect to 0.
Moreover, dΩp = Γ1 uΓ2, where

We claim that for p sufficiently large,

(4.24) 0 φ F((dom L n dΩp) x [0, 1]) .

Indeed, the equation F(x9 y 9 λ ) = 0 is equivalent to the system of equations

(4.25) Qfi(x,y,λ) = 09

(4.26) (/- P)(x, y) = KP(I- Q)N(x, y9 λ) .

For any (x, j/)eΓ l 5 (4.23) implies that

(7-P)(x, j;)^^P(/-ρ)TV(x, 3;, λ) , for any A e [0, 1]

and hence F(x9 y, λ)^09 for any (x, j)eΓ! and λe [0, 1].

For any (x, y)eΓ2, we can assume that

ι = l , 2 , . . . , / ι l 9



SEMILINEAR EQUATIONS AT RESONANCE 523

) = (σίρ,σ2p, . . . , σΛ2p)+y(t)9 σ^R, |σ, |<l , j= 1, 2, . . . , n2 ,

where xeP(

2

2

π

nι\ yeP{^\ (x9y)eImL9\\(x,y)\\<M and either rk.Q=l (I<z 0<«ι) or

By the definition of TV, we find

(4.27) QN(x, y, λ) = ((QN(x, y, A))'2"'*, (QN(x, y, λ))"">) ,

(4.28) (Qft(x, y, 1))<2"'> = ((QN(x, y, λ))^\ (QN(x, y, Λ))<2">>, ..., (QN(x, y, l))<2-">) ,

(4.29) (Qft(x, y, A))P"'> = J- \ eB?sN\2n<\x, y, λ)(s)ds , ι= 1, 2, . . . , n, .
2π Jo

(4.30) (QN(x, y, λ))M = ((QN(x, y, λ))^}, (QN(x, y, λ))^\ ..., (QN(x, y, λ))^) ,

(4.31) (QN(x, y, λ))f* = ~ Γ" Nj"*\x, y, λ)(s)ds , j= 1, 2, . . . , «2 .
2π Jo

Now we consider the following two possible cases:
Case 1. τk. =1 (l^io^nj.
Since mki =mio, by (4.29) and the definition of N, it is not hard to verify that

(4.32) (QN(x, y, λ))/0

2" > = eBT^Φ,(p, akίo) + λeBT0^Φ2(p, aki) + λX(x, y) + λpio(mίo) ,

where

(4.33) φl(p>α^ = _ e^'ff^e^a +χ (S))ds,

(4.34) Φ2(p, aklj = -ϊ- ί2

4π Jo

(4.35) *(x, y) = ̂ - β'TosGίo(5, x(s+ ), XJH- )}ds .
2π Jo

Let α be defined by sinα^βί1^ cosα = βί2), where α fe. =(βίυ, ^ί2))τ. Then we findj κlQ> κlQy κlQ \ κlQy κlQ/

2π - /
^β^0 (P sin»v,

θ

ίn ^5 P cos 's>)

2π

o

+ Hiol(-psmmios, -pcosmios)τ -xk.is -- M Ids
\ \ ^ί'θ / / -I
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1 A* ATseATs[_Hio((p sin j, p cos *)r + φ))

+ Hio(( — psins, — pcoss)τ — v(s)J]ds ,

where

's + 2(k-l)π-<x

Hence, by (4.20) and Lemma 4.2,

(4.36) lim I Φ,(p, aki) \ = \ W(Hίo) \ = \ W(Hio) \ ,
/9~>00

1
(4.37) lim I Φ2(p, ak ) |= — \eA (π/4)M#. )-eA (π/4)M/ί, ) |=0,

_^ ιo 9 ° °

uniformly for any ak. edBv(ϋ)aR2 and xkι εP^ with \\xk. \\ <M.
By (4.35), we also have

(4.38) \X(x,y)\<MGiQ.

Therefore, by the assumption (H), (4.36), (4.37) and (4.38) imply that for p sufficiently
large,

(4.39) I Φ,(p9 akι) I > | Φ2(p, akij \ + 1 X(x, y) \

for any a^edB^ty^R2 and xkiQ with \xkiQ(t)\<M, which together with (4.32) yields
that for p sufficiently large,

,A))/ 0

2 Λ l )^0, for any (x,y)eΓ29

and hence QN(x, y, λ)^0. Therefore, for p sufficiently large, F(x9 y, A)^0, for any

(x,y)eΓ2 and Ae[0, 1].
Case 2. σtj. = ± 1 (1 <j0<n2).
Without loss of generality, we assume that σtj = 1 . The case σl} = — 1 may be

treated in a similar way.
By (4.31) and the definition of N, we may verify that

(4.40) (Qft(x, y, λ))^ =Ψ1(p} + λΨ2(p) + λ Y(x, y) + λEjo ,

where

(4.41) ΪΊ(P) = ̂ - Γhjo(p+yljo(s))dS,

(4.42) P2(P) = - \h]o
o
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1 2π

(4.43) Y(x, y)=—\ g}o(s, x(s + ),y(s+ ))ds .
2π Jo

Clearly, we have

(4-44) lim Ψ,(p] = KJo( + ) = 1 (hjo( + ) - hjo( - )) ,
p-»oo 2

(4.45) lim Ψ2(p) = 1 (ΛJo( + ) + AΛ( - )) ,
p^ ao 2

uniformly for ytj with | yij(t) 1 < M.
By (4.43), we also have

(4.46) \Y(x9y)\<Mg.o.

Therefore, by the assumption (h) and Lemma 4.3, (4.44), (4.45) and (4.46) imply that
for p sufficiently large,

(4.47) Ψ,(p] I > I Ψ2(p) I + 7(x, 3,) | + 1 EJo \ ,

for any ytj with \yt (t)\<M9 which together with (4.40) implies that for p sufficiently
large,

(QN(x,y9λ))%**09 for any (x,y)eΓ2, λe[0,l],

and hence QN(x,y,λ)^Q. Therefore, for p sufficiently large, F(x9y9λ)^09 for any
(x,y)eΓ2 andλe[0, 1].

Thus, we have proved that for p sufficiently large, (4.24) holds.
Now it follows from (4.24) that for p sufficiently large, the degree DL(F( , A),

Ωp) is well-defined and is constant on [0, 1], Therefore, by (4.22) and the Borsuk
theorem, we have

= DL(F( 9 Q ) 9 Ω p ) = l (mod 2),

so the existence of a solution of the equation (3.11) follows from the existence property
of the degree, and thus the equation (1.1) has at least one 2π-periodic solution. The
proof is complete.

5. Examples. Finally, we shall give some specific examples to illustrate our
main result.

EXAMPLE 5.1. Consider the system
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*!=;>

x'2 = — x1 + arctan x2 + 3 arctan x

x'3 = x4 + ̂ /~2 sinx 3 + xse~x* +p3(t),

x'4 = — x3 + y/ΊΓ cos x3 — 2 arctan x6 +p4(t),

x'5=x6 — 2 arctanx2 + ̂ /~2 arctanx5 +p5(t),

x'6= — x5 + 2arctanxl+^/~2 arctanx 6 +p 6 ( t) ,

where Pj(j= 1, 2, . . . , 6) are continuous 2π-periodic functions. In this example, nί = 3,
n2 = Q, τp ) = 0 (z= 1, 2, 3), and (&19 A:2, A:3) = (2, 3, 1), we set

Γ(t . ( arctan ̂ (0) \
. , > G1(i,^) = i I,

\ 3 arctan x4 / \ arctan φ2(v) /

-2 arctan x6

— 2 arctan x2 \ ( *J 2 arctan Φ5(0) \
I , <-73(ί, φ) = I I .

2 arctan ̂ ! / \ ^/Y arctan φ6(0) /

where φeBC(R, R6). A straightforward computation shows that

,3^/2/27

By Theorem 1.1, the equation (5.1) has at least one 2π-periodic solution provided

kι|<3—— , |c2 |<2~x/T, Ic 3 |<4 — π ,1 1 1 /» 3 I Z . I \/ 5 I O I 7

where

1 f 2 π / rns 9 —sin e \ / n.M \
ώ,

2π Jo V sins cosί /\p2(s)

C2=^Γ(coss -sins}(p^}ds,2π Jo \ sins coss J\p4(s)J

1 Γ 2 π /coss -

2π Jo V sins coss J\p6(s)

EXAMPLE 5.2. Consider the system
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(5.2)

*H --

l+xf

x'3 = 3x4 + — arctan xi + arctan x3 + — arctan Λ;

x4 = — 3x 3 H -- arctan y + e~*3-\ -- arctan x

'= — arctan j> + sin Λ:

where ̂  (7= 1, 2, . . . , 5) are continuous 2π-periodic functions. In this example, we take

(A:1,Λ2) = (1,2), /1 = 1, τί1> = τi1) = τi2) = 0, and

arctan x1 + x2e

*ι
- + - Gί(t9φ9\l/) =

/ arctan x3 + \ arctan x4

\ e "X3 -}_ -L arctan x4

h(y) = — arctan y , g(t, φ, ψ) =

\ arctan φ4(0) \

-y arctan φ3(0) / '

-y arctan φ^O) \

+(φ3(0))2) ,

where ίe/?, φeBC(R, R4), \j/eBC(R, R). A straightforward computation shows that

/2 /2
2π

By Theorem 1.1, the equation (5.2) has at least one 2π-periodic solution provided

where
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1 Γ 2 π /cos2s -sm2s\fpi(s)\,
^ = - ( I V*8

2π Jo V sin 2s cos 2s J\p2(s) J

f p3(s)\ 1
]ds

\pA(s)J

2 π/cos3s -sm3s\
2 = - )

2π Jo V sin 3s cos 3s J
c? =

2π o

ACKNOWLEDGEMENT. The authors would like to thank the referee for his helpful
suggestions and some detailed corrections.

REFERENCES

[ 1 ] J K HALE, Ordinary Differential Equations, Wiley Interscience, New York, 1969

[ 2 ] R K NAGLE, Nonlinear boundary value problems for ordinary differential equations with a small

parameter, SIAM J Math Analysis 9 (1978), 719-729

[ 3 ] S. FUCIK, Solvability of Nonlinear Equations and Boundary Value Problems, D Reidel Publishing,

Dordrecht, Holland, 1980

[ 4 ] A C LAZER AND D E LEACH, Bounded perturbations of forced harmonic oscillations at resonance,

Ann Mat Pura Appl 82 (1969), 49-68

[ 5 ] L CESARI, Non-linear problems across a point of resonance for non-self-adjoint systems, Academic

Press (1978), 43-67

[ 6 ] R IANNACCI AND M N NKASHAMA, Unbounded perturbations of forced second order ordinary

differential equations at resonance, J Differential Equations 69 (1987), 289-309

[ 7 ] R K NAGLE AND Z. SINKALA, Semilinear equations at resonance where the kernel has dimension two,

in Differential Equations: Stability and Control (Edited by S Elaydi), Marcel Dekker, New York,

1991

[ 8 ] R K NAGLE AND Z SINKALA, Existence of 2π-periodic solutions for nonlinear systems of first-order

ordinary differential equations at resonance, Nonlinear Analysis (TMA) 25 (1995), 1-16

[ 9 ] S W MA, Z C WANG AND J S Yu, Coincidence degree and periodic solutions of Duffing equations,

Nonlinear Analysis 34 (1998), 443-460

[10] J D SCHUUR, Perturbation at resonance for a fourth order ordinary differential equation, J Math

Anal Appl 65 (1978), 20-25

[11] S W MA, Z C WANG AND J S Yu, An abstract existence theorem at resonance and its applications,

J Differential Equations 145 (1998), 274-294

[12] T R DING, Unbounded perturbations of forced harmonic oscillations at resonance, Proc Amer

Math Soc 88 (1983), 59-66

[13] P DRABEK AND S INVERNIZZI, Periodic solutions for systems of forced coupled pendulum-like equations,

J Differential Equations 70 (1987), 390-402

[14] D Y HAO AND S W MA, Semilinear Duffing equations crossing resonance points, J Differential

Equations, to appear.

[15] I RACHUNKOVA AND S STANEK, Topological degree method in functional boundary value problems

at resonance, Nonlinear Analysis (TMA) 27 (1996), 271-285

[16] K DEIMLING, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985

[17] J MAWHIN, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Vol 40,

Amer Math Soc, Providence, RI, 1979



SEMILINEAR EQUATIONS AT RESONANCE 529

[18] J MAWHIN, Equivalence theorems for nonlinear operator equations and coincidence degree theory
for some mappings in locally convex topological vector spaces, J Differential Equations 12 (1972),
610-636

DEPARTMENT OF APPLIED MATHEMATICS
HUNAN UNIVERSITY
CHANGSHA, HUNAN 410082
PEOPLE'S REPUBLIC OF CHINA






