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Abstract. We show that a non-conformal harmonic map from a Riemann surface
into the Euclidean ^-sphere can be considered as a component of minimal surfaces in
higher dimensional spheres. In the same principle, we show that the generalized Gauss
map of constant mean curvature surfaces in the 3-sphere globally splits into two
non-conformal harmonic maps into the 2-sphere. Using this, we obtain examples of
non-trivial harmonic map deformations for compact Riemann surfaces of arbitrary
positive genus. In particular, we give a lower bound for the nullity (as harmonic maps)
of the generalized Gauss map of compact CMC surfaces in the 3-sphere. Furthermore,
we obtain an affirmative answer to Lawson's conjecture for superconformal minimal
surfaces in 4m-spheres.

1. Introduction. In this paper, we are interested in constant mean curvature
surfaces including minimal surfaces in the 3-sphere, which we call CMC surfaces for
short.

A harmonic map φ from a Riemann surface M into the Euclidean sphere Sn or
into the complex projective space CPn is associated with two important families of
maps, the harmonic sequence {φj} and the associated S1 -family {φθ}. Using the latter,
we construct a harmonic map φ into higher dimensional spheres or complex projective
spaces, by taking direct product S^cJ x x S^cJ^S^"*1^1 or Cn + ί -{0} x x
Cn+1-{0}/~czCPk{n + 1)-\ and defining a map by φ = (\/J~c^φθ\ . . ., l/yfc^φθk) =
®)=ιΦθjlyfcj where £ l/cj= 1, or by φ = [(fθ\ . . . , fθk)] using local sections fθj's of
φθj's (cf. [L2], [M]). In [M], we investigated superconformal harmonic maps in this
method, while we now apply it to the CMC surface theory.

Choosing suitable θ/s, we find a harmonic map φ having the isotropy dimension
larger than that of φ (Theorem 3.4). An easy application of this yields conformal
harmonic maps from a non-conformal harmonic map (Corollary 3.5). Even the simplest
case implies an interesting result:

COROLLARY 3.2. Let φ be a non-conformal harmonic map into S2. Then
φ = (φ ζ&φ^/^/Ύ is a minimal surface in S5.

This turns out to be the splitting of the bipolar surface in [LI] of a minimal
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surface in S3 (see Theorem 5.3). In fact, because of Gr^ (/?4) ^S2 x S2, the global splitting
of the generalized Gauss map of a surface in /?4 would be obvious (cf. [HO]). We
clarify this splitting for CMC surfaces in S3 by connecting directly the generarized
Gauss map with the adapted secondary Gauss map (for the definition, see §4).

THEOREM 6.2. For a CMC-// surface φ: M-+S3, there exists a pair of non-con-
formal harmonic maps φ, φ2θ : M—• S 2 such that the generalized Gauss map φofφ splits
into (φζ&φ2θ)/yfY. In fact, φ is the adapted secondary Gauss map ofφ, and θ is given
by cos-1^/z2/(Λ2 +1). Moreover, φ can be deformed into φ and/or φ2θ through
harmonic maps φ2θ = cos s φ® sins φ2θ into S5.

The deformation of harmonic maps is important in investigating the moduli spaces.
For harmonic maps from a compact Riemann surface with genus greater than one,
nothing is known except some existence theorems (cf. [LI], [Kl], [K2]). When we
apply the theorem to the generalized Gauss map of Lawson's compact minimal surfaces
in S3, we obtain examples of non-trivial global deformations of harmonic maps from
a compact Riemann surface of arbitrary positive genus. As an application, we show
that the nullity (as harmonic maps) of the generalized Gauss map of CMC surfaces (of
positive genus) in S3 is at least 16. The classifying problem of surfaces having Gauss
map with small Killing nullity would be interesting.

Recently, Aiyama and Akutagawa [AA] obtain Kenmotsu-Bryant type represen-
tation formula of CMC surfaces in S3, using the framing matrix and the secondary
Gauss map. After we obtain our theorem, we know that the first statement of Theorem
6.2 independently follows from their argument. However, our idea comes from the
splitting of harmonic maps in various dimensional spheres as in Theorem 3.4.

Eventually, a global correspondence between CMC surfaces in RP3 and a pair of
associated non-conformal harmonic maps into S2 is obtained in [AAMU].

Another application of our argument is to show:

THEOREM 7.3. A full superconformal minimal surface in SAm cannot be isometric
to a minimal surface in S3.

This generalizes the result by Sakaki [S] for minimal surfaces in S 4 and gives a
partial answer to Lawson's conjecture [L2], together with the odd dimensional case
given in [M, Corollary 6.6].

The author is very grateful to the referee for his useful suggestions.

2. Preliminaries. For details in this section, see [M, Part II]. We denote by Sn(c)
the ^-dimensional Euclidean sphere of radius l/yfc and Sn = Sn(\). Let φ: M-^Sn be
a harmonic map from a Riemann surface M into Sn. Let U be a simply connected open
domain of M with a complex parameter z, and put d = d/δz. Then we have

(2.1) <Φ,Φ> = 1,



GENERALIZED GAUSS MAP 37

(2.2) ddφ=-\dφ\2φ,

where < , > is the complex-linearly extended inner product. Moreover, defining

φo = φ
.φj+i=dφj-dlog\φj\2φj,

we obtain

^ ' / ) i n / <Λ i i / 12

(2.4) dφj= J φj-.1 .

When we put Wj = \og\ φj\9 the integrability condition ddφj = ddφj is given by

(2.5) 2ddwj-e2{Wj + 1~Wj) + eΆwj~Wj-l) = 0, jeZ,

which is known as the 2-dimensional affine Toda equations. Periodic solutions to this,

(for instance, a solution to the sinh-Gordon equation (4.9), (7.1)), correspond to

superconformal harmonic maps into odd-dimensional spheres (cf. [M, §6]).

Because of the reality of φ, we get inductively:

• Φ-
(2.6) (/>_ , = ( — I ) 7 — ί ^ — , jeZ.

J \Φj\2

The quadratic differential φ1dz2 = (φί, φ^ydz2 is holomorphic by (2.1), and is called

the (first) Hopf differential. The isotropy dimension r of φ is defined by

φ. = /(Λ. ^ Λ Ξ O , for 1 < / < Γ , and (φr+i. φr + <)>̂ =0 .

Then, φr+ίdz2(r+1) is a holomorphic differential by (2.3) and (2.4), and is called the

(r+l)-st Hopf differential Note that φ is conformal if r > l , and recall that a full

map φ is superminimal if r = oo, and superconformal if r = m — 1, when n — 2m or 2m — 1.

3. Construction of minimal surfaces from a non-conformal harmonic map.

FACT 3.1 (cf. [M, Theorem 10.1]). Let φ: U->S2m be a full superconformal

harmonic map. Then g = (φ ® φn)/yf2 : U-^S4'm+1 is a harmonic map whose isotropy

dimension is 2m — 1.

A non-conformal harmonic map into S2 is superconformal, hence we get im-

mediately:

COROLLARY 3.2. From a non-conformal harmonic map φ: M-^>S2, we obtain an

Sι-family of minimal surfaces φθ = (φθ®φθ + π)//2 : U->S5, 0e[O,2π), of isotropy

dimension 1.

To obtain more general results, we show:

PROPOSITION 3.3. Let φ: M —• Sn be a non-superminimal harmonic map of isotropy

dimension r with the (r+ \)-st Hopf differential φ. Let U be a contractible domain of M.
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Then the associated S1-family consists of harmonic maps φθ: U-*Sn ofisotropy dimension

r with the (r+ \)-st Hopf differential φθ, satisfying

(3

(3

•1)

•2)

If this is shown, we obtain:

Φj\ = \ Φj 1,

φθ = eiΘφ .

THEOREM 3.4. Let φ: M-+Sn be a non-superminimal harmonic map of isotropy

dimension r and let {φθ} be the S1-family of harmonic maps ofisotropy dimension r. Then

for any k>2,

φ' = φβ , θ, = 2πl/k,

is a harmonic map of isotropy dimension at least r+1.

COROLLARY 3.5. From a non-conformal harmonic map φ: M^>S", we obtain an

S1-family of minimal surfaces

!

for any k>2, where φι = φθι, θ^θ + lπl/k, 0e[O, 2π).

REMARK. (1) A non-conformal harmonic map into a sphere is thus characterized

as a component of a minimal surface of higher-dimensional spheres.

(2) The image of φ lies in Sn(k)x xSn(k)czSk{n + ί)~ί, but is not necessarily

full.

(3) A similar argument implies that we can construct harmonic maps into

complex projective space, having larger isotropy dimension than the original one.

PROOF OF THEOREM 3.4. By Proposition 3.3, we have

< < # , # > = 0, 7 = 1 , . . . , r

and φθdz2{r+1) = eιθφdz2(r+1). Since each φθ satisfies the harmonic map equation

and since \φ{ \2 = e2wί does not depend on θ, φ satisfies the harmonic map equation.

Moreover,

'k 1=1
V

implies
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7 = 1 ,

~Σe
k j=

r ,

r + 1. •which means that the isotropy dimension of φ is not less than

Proposition 3.3 might be well-known, but we show the proof for completeness.

PROOF OF PROPOSITION 3.3. Let π : SO(n+ \)-+Sn be the orthonormal frame

bundle of S"1, and take a framing of φ by orthonormalizing (φθ9 9?0 l 5 301, . ., ^φm^
£3Φm)> where n+l= 2m -f ε, ε = 0 or 1, and 9iφj (30/» respectively) denotes the real part

(the imaginary part, respectively) of φy Extending SO(n +1) to SO(n+\)c and

orthonormalizing (φθ9 φl9 φ_l9 φ29 φ~2, . . . , φm, εφ-m), we obtain the SO(n+l)c

framing Φ = (u0, uί9 . . . , un). Recall that any 2r + 2 consecutive maps in the harmonic

sequence are mutually orthogonal (cf. [BW, Theorem 2.4]). When r = 0, putting

φ = (φί9 (/>!>, we have

Φi \Φi\2

Thus we get 5MO = I 0 I I M

l) c-valued 1-form (x =

and

/0 -

(3.3) A =

• — <wl9 duoy= — φ/\ φγ I, and hence
rz, B= —*A is given by

... *\

where rj = eWj Wj~\ Let g =

5Λ, where p is given by

\0

be the symmetric decomposition of Q = $o(n+1) for

0 ξ
ιt 0

Let α = αp + αI) + αp be the decomposition of α into the p ( 1 ' 0 ) , ί) and p ( 0 ' υ components,

respectively. Then the extended framing ΦA is given by integrating

(3.4) αA = λ~ 1 α p + αi) + λαp/• / I G ^ 1 ,

where

/ 0 —λrίdz — (λ~iω/r1)dz * ••• *\
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U=

/ 0 — rγdz — (λ 2φ/rί)dz * ••• * \

or

(3.5) Ad U(Aλ) =

/ 0 -λ~2φ/rι *

\ 0

By this, the harmonic map φλ = πoφλ satisfies \Φi\ = rι = \Φi\ Since all \φf\2 are

determined from two consecutive ones by (2.5), and we have | φ£ \2 = 1, we obtain (3.1).

Comparing (3.3) and (3.5), we know that φλ is non-conformal and has the Hopf

differential λ~2φ. Thus putting λ~2 = eίθ, φθ = φλ satisfies (3.1) and (3.2).

When r > 1, φ is lifted up to a unique primitive map φ into the flag manifold

Fr(S") = SO(n + l)/(SO(2)x SO(2) x SO(n- 2r)) (cf. [B, Theorem 3.2]), by φ = (φ1ci

φ2cz cn/fr) where

^.(z) = span c{0 I (z), 1 </<y} ^(Tφ{z)S
n)c , z e £ / , 7 = 1 r .

A primitive map exists in an S^-family φθ (cf. [BP, 3.3, p. 247]), and by [BP, Theorem

3.7], using the projection w: Fr(Sn)^Sn, we obtain an S^family of harmonic maps

φθ = m°φθ, which, by construction, has isotropy dimension r. We show that φθ satisfies

(3.1) and (3.2). The SO{n+\f framing Ψ = (u0, uu . . . , un) satisfies

(3.6)

(

(3.7)

(3.8)

_ Φ-J _

CLAIM.

\ΦJ\

We have

\Φ-j\
=(-iy A

W?,+ i = -
ΦrΛ

-u-dwjUzj, 7 = l , . . . , r ,

for \<i<n-2r, 0<k<2r-l
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<du2r+uΰ2ry=(-ιγ φ

\Φr\\Φr+l\

Indeed, the first two are easily obtained from (3.6) using (2.3) and (2.4). Note that
u2j = (— I)jΰ2j-I,j= 1, . ., r. For 1 <k = 2j—\ <2r— 1, we have

by (3.8), and for 0<k = 2j<2(r-l\

by (3.7). Finally,

(du2r+!, ΰ2ry = (-\)r+1(u2r+u rr+ xu2r+! + dwru2r_

φ
=(-\γ

\Φr\\Φr+l\

and we obtain the claim.
Put Ψ~ιdΨ = Adz + Bdz, B=-lA. Then we get

/ 0 Mι 0

A =

0 \

No

0

A, . .

• . Nj ••. M r 0

. ••. Kr Mr+ί

{ 0 0 Nr Kr+ι

where

M 1 = ( 0 rx)9

0 •• 0
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^ o
0 -5w

rr+1 0

0 0

0 0

0 0
7 = 1 ,

and Kr+ι is an (« — 2r) x (n — 2r) matrix, Nr is an (n — 2r) x 2 matrix.

Let g = m ® ϊ be the homogeneous decomposition of so(n+l) for Fr(Sn)9 and

decompose the gc-valued 1-form α=!P~ 1rfϊ i ί = α^ + αt + α^ into the m ( l l 0 ) , ϊ and m ( 0 ' 1 )

components, respectively. Then the f component of A consists of Ko, ..., Kr+1 and the

rest is the m component. Ψμ is given by integrating

;; μeS1 ,

which yields ψμ = πro ψμ9 where πr: SO(n + 1) -» ̂ (S") is the coset projection, and further
φ» = πoψμ. Let

U=

/ I 0

0 U,

\0 •••

o \

t/r 0

o ur+ι/

et/(/ι +

where

Then we get

Ad U{AΛ =

0 M, 0

0 Nί '•. Mj .

V o
where

Nj * . M , 0

• o ivr K'

o ••• o

* *

Comparing Mr + 1 with M'r+U we obtain | φf \ = \ φj|, and 0 μ has the (r+l)-st Hopf
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differential μ~2(r+1)φ. Then for eίθ = μ-2{r+ί\ φθ = φμ satisfies (3.1) and (3.2). Finally

comparing Φλ given by integrating (3.4) with Ψμ, we obtain Ad UΨμ = Ad VΦλ, where

/ I 0 0 \

0

\0

V=

and A = D

COROLLARY 3.6. The S1-family of harmonic maps obtained by projecting the

S1-family of primitive maps coincides with the S1-family obtained from the extended

framing (3.4).

4. CMC-surface theory and the natural Lawson correspondence. A non-conformal

harmonic map φ: M-+S2 is locally the Gauss map of a CMC surface in R3. More

generally, by [LI, Theorem 8], we obtain S1 -families of isometric CMC-^/H2 — c surfaces

{ΨlH: U->S3(c\θe[0,2π)} for any H^O and c<H2 from φ (we do not treat the
hyperbolic case c<0 here).

We briefly review this fact. We fix the orientations of M and /?4, and use the star

operator * of I?4 to identify R4= Λ 3 / ? 4 , * Λ2R4'= Λ 2 /? 4 . For an isometric immersion

φ0: M->/?3

φc: M-+S3(c), o O ,

with metric ds2 = 2F\dz\2, we define its unit normal vector by

The CMC-//C surface equation for φc where Hc =

(4.1) ddφc + Fcφc

Define the quadratic differential Q = βdz 2 by

(4.2) β=<d2ψe9ψ*>=±(β11-β22-2iβ12),
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where β ^ is the coefficients of the second fundamental form with respect to z = xι+ix2.

We have

dF
(4.3) d 2 φ c _ _ d φ c = βψ*

(4.4) dψc=Hcdψc;dψc

I β \ 2

(4.5) 2 ^ ^

(4.6)

(4.7)

Note that when Hcc = 0, ψ* is harmonic by (4.5) and (4.7). As is well-known, β is

holomorphic for any c by (4.1), (4.2) and (4.4). Now, taking an oriented framing

consider the system of ordinary differential equations

'dΦc = ΦcAc

(4.8) , c c c

From (4.1),

A

Ac —

(4.3)

/o
[ 1
Γ

and (4.4), we

0

dF/F

0

β

-cF

0

0

HCF

easily obtain

0 \ /

~H< 1 B-l
-β/F ' ' \

o / x

/o
0

1

vo

-cF

0

0

HCF

0

0

dF/F

β

0

0

where we ignore the first column and row when c = 0. The integrability condition of

(4.8) is dAc-dBc-\_An Bc~] = 0 which turns out to be

(4.9)

where we put F=\ dφc\
2=e2w. When either one of H=H0 and β does not vanish

identically, Φo can be rewritten as a framing of a harmonic map φ: = ψξ: M^S2 by

(4.4). This means that when we are given a non-conformal harmonic map φ: M^S2

with a real number H2 and a holomorphic function β satisfying <3</>, dφ} = 2Hβ, and

if we define F by

\β\2

(4.10) ^
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w = (log F)β must be a solution of

(4.9') 2ddw + H2e2w-\β\2e-2w = 0.

Then putting H2=H? + c and βθ = eiθβ, we obtain an ^-family of
surfaces ψlH in S3(c), ce[0, # 2 ] , 0e[O, 2π), having the metric ds2 = 2F\dz\2 and the
differential Qθ = βθdz2. We call ψlH the associated CMC-y/H2-c surfaces of φ.
(Note: Fis chosen in two ways. The corresponding CMC surfaces form a Bonnet pair.)

REMARK. By the homothety x \-> λx in /?4, the mean curvature of a surface changes
h^h/λ. Thus a different choice H' instead of//yields a CMC-J(H')2 — c' surface ψ°tH>
in S3(c') which is homothetic to a CMC-jH2 — c surface \j/θ

cJί in S3(c), where

We do not treat the case where φ is holomorphic or anti-holomorphic, which
occurs when H=0, hence for the moment, we put H2 = l and ψc=Φc,H' The associated
surfaces {ψj!} have two parameters c and 0. We define a one-parameter subset {ψ?,
σ = cos~1Jl—c} consisting of surfaces naturally corresponding to each other in the
following sense. When φ0: U-+R3 is a CMC-1 surface having the second fundamental
form (βij), we define the naturally corresponding minimal surface in S3 by

xj/l12: U-+S3 .

Then, the differential Qπ/2 is given by iβ = (2βl2 + i(β11-β22))/4, so that \\ι\12 has the
second fundamental form

.-(011-022V2 -012 /

Similarly, we define the naturally corresponding CMC-^/1 — c surface in S3(c) by

which has the second fundamental form

of which the mean curvature is given by

1

We say elements in {̂ c

σ, σ = cos~1

N/l— c} are in natural Lawson correspondence. In
this paper, we call (/> the adapted secondary Gauss map of ψ° for each c, i.e. the Gauss
map φ of t/̂ o is called the adapted secondary Gauss map of ψ? for 0 < c < 1.

5. A local behavior. Put ψc = ψ? for simplicity. When c>0, we define the
generalized Gauss map of ψc by
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Since *ψc = (dψcΛd\l/c)/iF, we may put

ψo = φ: M->S2 .

The map ψc is a map into the oriented Grassmannian Gr^(/?4) ̂  S2(2) x S2(2) (cf. [HO]),

but we consider it as a map into S5 because:

LEMMA 5.1. φc — \/~^4/cAll/^: U^>S5 is a harmonic map satisfying

(5.1) ^

(5.2)

(5.3)

( f)F
(5.4) ( a 2 ^ d2ψ} 4β2(l2)2Hβi

(5.5) <δ3^c,33ιAc>-8//c(l-4^3 + 4 ( 2 c - l ^ 2 ( ^ + a 2 W ^

in (5.5), we wse coordinates so that β is constant.

REMARK. (1) By (5.1)~(5.3), φί is regularly minimal with respect to the induced

metric (the bipolar surface in [LI]), and ψc is non-conformal harmonic for 0<c<\.

In this paper, we occasionally regard the generalized Gauss map as a harmonic map

into S5.

(2) For φl (5.1)-(5.5) hold if we replace β by eiθβ.

PROOF. When c = 0, (5.1)^(5.3) follows from (4.5)-(4.7), while for (5.4) and

(5.5), see the proof of Lemma 5.2. When c > 0 , put \j/c = ιl/cΛψ*. Using (4.1) and

(4.3)^,(4.7), W e obtain,

(5.6) dφc = dφcΛψ*-HcψcΛdψc-ζψcΛdψc
Γ

(5.7) 32^=-^# fΛ^*-^-a^Λ#c

F F
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(5.8)

where in (5.8), we use coordinates so that β is constant. Thus noting that ψc = *J c φc,

we obtain (5.1) -(5.5).

Because of Corollary 3.2, it is natural to ask the relationship between φc and

φω = (φ ®φω)/JY: U-+ S5 for φ, φω belonging to the S1 -family of the secondary Gauss

map of ψc.

LEMMA 5.2. Let φ: M-^S2 be the Gauss map of a CMC-1 surface ψ: M->/? 3

with F=\dφ\2 and β=(d2ψ,φ}. Then φω^{φ®φω)lsj~2: U->S5, ω e [ 0 , 2π), is a

harmonic map satisfying

(5.9)

(5.10) ddφω=-ίl

(5.11) (dφω, dφωy = β(l +eιω)

(5.12)

V " / \ ~ T ~J ~ i / i \ / §~ \ / l l i~i

F

3 2 j

where we use coordinates so that β is constant.

PROOF. Differentiating

(4.4') dφ= —dφ0 —

and using (4.1) and (4.3), we obtain

dF



48 R. MIYAOKA

from which follows

Then noting (dφω, dφω) = 2eiωβ, we obtain the lemma.

THEOREM 5.3. Let φ: U-+S2 be a non-conformal harmonic map with the Hopf

differential 2βdz2 = ζdφ, dφ}dz2. Take σe[0, π/2] satisfying cosσ = ̂ /l—c, and let

ψc' U-+ S3(c) be an isometric CMC-^/l — c surface associated with φ having Qσ = eiσβdz2.

Let {ψ?)* be the unit normal vector. Then the harmonic map

is congruent to the harmonic map

PROOF. This follows from Bolton and Woodward's congruence theorem in [BW,

Theorem 4.1] and from Lemmas 5.1 and 5.2. Indeed, by (5.1) and (5.9), and by the

congruence theorem, it is sufficient to prove that

<5J'ι?c

σ, δJι?;> = (dψ°, dψ°y for j= 1, 2, 3 .

Noting Remark (2) after Lemma 5.1 and 2cosαe ί a = 1 +e2ict, we obtain from (5.3) and

(5.11),

(5.14) < # c

σ , dψ?y = 2Hce
iσβ = 2cosσeiσβ = (\ +e2iσ)β=(dφ2σ, dφ~2σ) .

From (5.4) and (5.12), using (5.14), we get

(d2ψ?,d2ψ?)=4e2iσcos2σβ2-2e'σHcβ(~)

Similarly, from (5.5) and (5.13), we get

ij) ij} -4sin2σ)e3iσβ3-
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+ 2cosσeiσβd2Fd2(~

δ^+d^~yy(\+e^)βd2Fd^

D

6. A global behavior. Let ψc: M^S3(c) be a CMC-^/l-c surface. Then the
Gauss map

ψc: M^S5

is defined globally, which is a harmonic map into S5. Let φ be the adapted secondary
Gauss map of ψc such that ψc = ψ?. By Theorem 5.3, we have a local congruence of \j/°
with φ2σ = (φ® φ2σ)/yJΎ: U^S5. In this section, we show the global congruence. By
an isometry of S3(c), if necessary, we may assume that

in a coordinate neighborhood U of M. Then using this splitting, we define

so that

φ: U^S2czR3, φσ: U-+S2<=LR3.

Let πi be the projection R6 -+R?, i= 1, 2, and define maps $ f = ̂ /ΊΓπ^f, /= 1, 2. Noting
that φι = φ and ψ2 = φ2σ on £/, we obtain:

PROPOSITION 6.1. i^1 α«ί/1^2 αr^ global non-conformal harmonic maps from M into
S2.

This proposition is obvious from G r ^ ( / ? 4 ) ^ 5 ' 2 ( 2 ) x S 2(2).

PROOF. N o t e that the coordinate functions (ψ1, ...9ψ
6) of \ji? satisfy

(6.1) ddψj=-\dψc\
2ψj,

so are real analytic. Thus the same is true for coordinate functions of φ1 =(φι, ψ2, φ3)
and ψ2 = (ψ4,ψ5,ψ6). Since

(6.2) | ^ | 2 = | ^ 2 | 2 = 1 on U,

this holds all over M, and hence φι is a global map from M into the unit sphere S2 of
/?;3. In particular on [/, we have

(6.3) | # T = I # I 2 = I # 2 Ί 2 - I # C Ί 2 , i = i , 2

because of Theorem 5.3. By analyticity of ψι again, (6.3) holds in any coordinate
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domains. This fact and (6.1) imply

ddψί=-\dψ?\ψ=-\dψί\2ψί, on M,

that is, ψι: M-> S 2 , i = 1, 2 are global harmonic maps from M into S2. •

THEOREM 6.2. For α CMC-Λ surface φ: M - > £ 3 , there exists a pair of non-

conformal harmonic maps φ, φ2θ: M-+S2 such that the generalized Gauss map ψ of ψ

splits into (φ®φ2θ)/yJΎ. In fact, φ is the adapted secondary Gauss map ofφ, and θ is

given by cos~ι^/h2/h2 +1. Moreover, φ can be deformed into φ and/Or φ2θ through

harmonic maps φ2θ = cos sφ® sin sφ2θ into S5.

PROOF. Put H2=h2 + \. Then by the Remark in §4, ψ is homothetic to a CMC-

y/l — c surface φc in S3(c), where c=\/H2. Since the generalized Gauss map of φc

coincides with that of φ, we may consider φc instead of φ in the proof. Take the adapted

secondary Gauss map φ of φc such that ψc = ψ?, then θ = σ satisfies the first statement.

We may prove the last part. Since

dφ2σ = cos sdφ® sin sdφ2σ ,

we obtain | dφ2σ \2 = cos 2 s | dφ \2 + sin2s\ dφ2σ\2 = \dφ\2 and

which implies that φ2σ is a harmonic map into S5. Then the theorem follows from

φ = φl\ Φ2σ = Φlh and rc = φ%. D
EXAMPLE. When ψ: T2 -+S3 is the Clifford torus, each of φ and φπ degenerates

to a map onto a geodesic of S 2 . In this case, ψ is congruent to ψ, and φ = {φ®φπ)/λ/Ύ:

Γ2-> S\2)xS1(2)^S3. The deformation φπ

s is essentially the one in [Mu].

A deformation of a harmonic map φ: M-+S5 yields a Jacobi field along φ. When

M is compact, we call the dimension of the space of Jacobi fields the nullity of φc,

which is finite because Jacobi fields are solutions of an elliptic partial differential

equation. Because the dimension of the Killing Jacobi fields is 15 and because we have

another non-Killing Jacobi field by Theorem 6.2, we obtain:

COROLLARY 6.3. The generalized Gauss map of a compact CMC surface of positive

genus in S3, has nullity {as harmonic maps) at least 16.

REMARK. (1) When we define the Killing nullity to be the dimension of the fields

given by the normal component of the Killing fields of S 5 , the classification of CMC

surfaces of which Gauss maps have small Killing nullity ( = big homogeneity) would be

interesting. The generalized Gauss map of the CMC surface S2(a), a> 1 has the smallest

Killing nullity 3, and of S 1 ^) x S1{a/(a—l)),a>l (parallel surfaces of the Clifford torus)

has Killing nullity 4.

(2) When c and θ tend to 0 independently, φ° tends to
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and hence gives a local harmonic map deformation from ψf! to φ which is different

from the global deformation through φ2σ.

(3) Examples of compact CMC-^/1 — c surfaces in S3(c) are given in [LI] for c = 1

and [ K l ] , [K2] for c = 0, but we do not know examples of 0 < c < l except those of

genus 0 and 1.

(4) We call a harmonic map reducible if it splits into harmonic maps into lower

dimensional spheres (cf. [M]). Harmonic maps from a compact Riemann surface seem

irreducible, but the splitting occurs in the bipolar surface case.

7. Lawson's conjecture.

LEMMA 7.1. A minimal surface φ: M^>Sn is isometric to a minimal surface in S 3 ,

if there exists a local coordinate z in which the induced metric is given by ds2 = 2e2w\ dz | 2 ,

where w is a solution of the sinh-Gordon equation:

(7.1)

In this coordinate, Wj = log | φj \ satisfies w2j = 0 and w = w4j+1 = — w4 j + 3 , je Z.

PROOF. This follows from wo = 0 and (4.9), where c + H2 = \ and we choose the

parameter satisfying β = 1.

Note that this is a special expression of the (spherical) Ricci condition (cf. (6.6),

[M, §6]). A superminimal minimal surface fully lies in S2m and satisfies φm+ ^ 0 , hence

we get immediately:

COROLLARY 7.2. A superminimal minimal surface in S2m cannot be isometric to a

minimal surface in S3.

In [M, Lemma 9.4], we showed that a superconformal harmonic map into S2m

exists when w} = log | φj | satisfies

(1) wo = 0

(2)

(3)

where rm = eWm~Wm-\ G=\ φm\2/\ φm\4, and | ^ | 2 = |5G| 2 /4G(1-G), for any coordinate.

Suppose that there exists a coordinate in which the induced metric satisfies (7.1). In

this coordinate, when m = 2k, (3) is rewritten as

so that

(7.2)
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Since dφ is holomorphic, we obtain

(7.3) 2ddwm_1=2dd\og(l-\φ\2)=-2\dφ\2/(\-\φ\2)2=-Se-2w-i.

On the other hand, by assumption and by Lemma 7.1, w= ±wO T_ 1 satisfies (7.1), and

we get e2w = 3 or 1/3. This contradicts both (7.1) and (7.3). Hence we obtain:

THEOREM 7.3. A full superconformal minimal surface in S*m cannot be isometric

to a minimal surface in S3.

Full minimal surfaces in S4' are either superminimal or superconformal, thus we

obtain:

COROLLARY 7.4 (cf. [S]). Full minimal surfaces in S4' cannot be isometric to a

minimal surfaces in S3.
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