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Abstract. In this article, we describe the order of the Galois-invariant part of the
p-Sylow subgroup of the ideal class group in the cyclotomic Z,-extension of a certain
totally real number field & in terms of the residue at 1 of the p-adic zeta function of k,
where p denotes an odd prime number. By using this, we obtain an alternative formulation
of Greenberg's theorem on the vanishing of the cyclotomic Iwasawa A- and u-invariants
of k for p. We also give some computational data for totally real cubic fields and p=3.

1. Introduction. Letk bea number field and p a prime number. For the cyclotomic
Z -extension k, of k, let k, be the n-th layer of k, over k and A, the p-Sylow subgroup
of the ideal class group of k,. Then there exist integers A, u and v, depending only on
k and p, such that #4,=p**#7"*> for sufficiently large n (cf. [12]). Here, #G denotes
the order of a finite group G. The integers A=4,(k), p=pu,(k) and v=v,(k) are called
the (cyclotomic) Iwasawa invariants of k for p. It is conjectured that, for any totally
real number field & and any prime number p, both 4,(k) and u,(k) always vanish, that
is, #4, remains bounded as » tends to infinity (cf. [8], also [13, p. 316]). This is often
called Greenberg’s conjecture. It is known to be valid for (k) if k is an abelian num-
ber field (cf. [3]), but not yet for 4,(k) even if k& has low degree except when k= Q.

Recently, several authors invesitgated Greenberg’s conjecture in the case where p
is an odd prime and £ is a real abelian number field with degree prime to p (cf. [7],
[10], [16], [17] and their references). For instance, after Greenberg’s conjecture for
many real quadratic fields was verified by various methods in several papers, Ichimura
and Sumida showed in [9] and [10] that A3(Q(/m))=0 for all positive integers
m<10,000. Also, Kraft and Schoof determined in [16] the structure of the Iwasawa
module associated to 4, in the cyclotomic Z5-extension for certain real quadratic fields
with small conductor. However, in general, it is too difficult to determine the structure
or even the order of 4, in the cyclotomic Z ,-extension of totally real number fields.

Throughout this paper from now on we assume that & is totally real and p is an
odd prime number. Denote by I' the Galois group Gal(k,./k) of k., over k, and let A
be the subgroup of A4, consisting of ideal classes which are invariant under the action
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of I', namely, Al is the I'-invariant part of 4,. In this paper, we give a formula for the
order of A} in terms of the p-adic zeta function of k. Let {,(s, k) be the p-adic zeta
function of k, which is continuous on Z,— {1} and has simple pole at s=1 if Leopoldt’s
conjecture is valid for k& and p (cf. [2]). Let us put

{yfs, k)
Lofs, Q)

Note that if k is a real abelian number field, then {}(s, k=[] c#1 Lp(8, 1), where the
product is over all non-trivial p-adic Dirichlet characters y of Gal(k/Q) and Ls, x) is
the p-adic L-function associated with y. Let v, be the p-adic valuation normalized by
v,(p)=1. Then the following is our main result, which was shown by a different method
in [20, Proposition 1] for real quadratic fields.

(s, k)=

THEOREM 1.1. Let k be a totally real number field and p an odd prime number.
Assume that p splits completely in k and also that Leopoldt’s conjecture is valid for k and
p. Then

#A'{:pvptép(l»k))

for every n sufficiently large. Furthermore, the right hand side of the above is given by

PO R) — g 4 pop Ry —k:QI+ 1

where R (k) denotes the p-adic regulator of k and [k : Q] the degree of k over Q.

In the case where & is a real quadratic field in which p splits, Fukuda and Komatsu
defined n, as the integer with the property that p"2|{ (¢~ ! — 1) in k, & being the fundamental
unit of k and p a prime ideal of k lying above p, and showed that

AT =4A4,pm !

for all integers n>n,—1 (cf. [4, Proposition 1] or [5]). Theorem 1.1 can be regarded
as a generalization of this. In deed, If k is a real quadratic field in which p splits, then
we see that n, =v,(R,(k)) by Lemma 5.5 in [22]. Also, this theorem can be regarded as
an explicit version of a formula for the order of A% given by Inatomi [11, Proposition
2]. Further, by Theorem 1.1, we see that v,(R,(k))=[k: Q]—1.

REMARK 1.2. The formula #A4l=#4,p"»®*)-k:Q1*1 which is obtained in
Theorem 1.1 does not hold in general without the assumption on the decomposition
of p in k/Q. In fact, if only one prime ideal of k lies over p and if this prime is totally
ramified in k/k, then one can see that #47 =%#4, for all integers n>0 (cf. [8, The
proof of Theorem 1]). However, v,(R,(k)) is not always equal to [k: Q]—1. For exam-
ple, v3(R3(0(/257)))=3 and v3(R3(Q(/326)))=2 (cf. [19, Section 4]). Therefore, the
formula above does not hold in these cases.

Let O, be the ring of integers in &, and O, the ring of p-integers in k,, namely,
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0, =0,[1/p]. Then an invertible O,-submodule in %, is called a p-ideal of k,. Let A4, be
the p-Sylow subgroup of the p-ideal class group of k,. Here, the p-ideal class group
C,=1,/P, of k, is the multiplicative group I, of p-ideals of k£, modulo the subgroup P,
of principal p-ideals of k,. Then the surjective homomorphism from the multiplicative
group I, of ideals of k, to I, defined by

ar a0,
induces a surjective homomorphism from A4, to A4,. Now we put
D,=ker(4,— A,) .

Then D, is the subgroup of A, consisting of ideal classes represented by products of
prime ideals of k, lying above p. It is clear that D,c A4}, Let L, be the maximal
unramified abelian pro-p-extension of k,, and let L* be the maximal unramified abelian
pro-p-extension of k., in which every prime of &, lying above p splits completely.
Using Theorem 1.1, we obtain the following alternative formulation of a theorem of
Greenberg [8, Theorem 2] (see Theorem 3.1 in Section 3) on the vanishing of the
Iwasawa invariants.

THEOREM 1.3. Let k be a totally real number field and p an odd prime number.
Assume that p splits completely in k and also that Leopoldt’s conjecture is valid for k and
p. Then the following six conditions are equivalent:

(1) 2k)=pyk)=0,

(2) 4D, =p"r R for every n sufficiently large,

(3) #D,=p"r 0 for some n>0,

(4) #D,=4#A,p rReNI:QHL £ oyery n sufficiently large,

(5) #D,=4#A,p rReN- A+ L0 some n>0,

(6) #Gal(L,/L¥) :pup(;;,( Lk))

Although Theorem 1.3 seems to be only a little different from a theorem of
Greenberg [8, Theorem 2], Theorem 1.3 suggests that the validity of Greenberg’s
conjecture can be regarded as based on a deep arithmetic relation between an analytic
object and an algebraic object. Moreover, using (5) in Theorem 1.3 for n=0, we obtain
the following which is a partial generalization of a result of Fukuda and Komatsu [5,
Theorem 1].

CorOLLARY 1.4.  Under the same assumptions as in Theorem 1.3, if v, (R,)=
[k:Q1—1 and if Ag=D,, then Afk)=p,k)=0. In particular, if v, (X1, k))=0, then
k)= k) =0,

We will prove Theorem 1.1 in Section 2 and Theorem 1.3 in Section 3. Further,
using these, we give in Section 4 some computational examples for totally real cubic
fields and p=3.

Finally we mention that for real abelian number fields with degree prime to p, we
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can also give more precise results of our theorems in which each object is replaced by
its ¥-component, where ¥ denotes an irreducible Q,-character of Gal(k/Q) (cf. [21]).

2. Proof of Theorem 1.1. In this section, we prove the main theorem, i.e.,
Theorem 1.1. We use the same notation as in the preceding section. Assume that p
splits completely in k& and also that Leopoldt’s conjecture is valid for k& and p. Let M
be the maximal abelian pro-p-extension of k which is unramified outside the primes of
k lying above p. Then the validity of Leopoldt’s conjecture for k and p assures that
M/k, is of finite degree (cf. [1, Lemma 8 in Appendix]). First, we show the following
lemma.

LEMMA 2.1. Under the assumptions stated above, $Gal(M/k )= p"»r(1-),

PrOOF. Let A(k) be the class number and d(k) the absolute value of the discriminant,
respectively, of k. We also denote by N the norm map from & to Q. Then a result of
Coates [1, Lemma 8 in Appendix] says that
W(k(C))K)R (k) I

(I—=N(p)~ l)> ,
d(k) plp

v, ($Gal(M/k )= up(

where {, denotes a primitive p-th root of unity, w(k({,)) the number of the roots of
unity contained in k({,), and the product is over all prime ideals p of k lying above p.
Since p splits completely in k, it follows that

v, (#Gal(M/k ,,)) = v, (Wk(C ) + v (h(k)) + v, (R (k) — [k : Q] .
Further, in our case, since k is real and kn Q({,)= Q, we see that w(k({,))=2p. Hence,
0)) v, (#Gal(M/k ,,)) = v,(h(k)) + v, (R (k) —[k: Q] +1 .

On the other hand, Colmez [2, Main theorem] proved that

. 2B R (k
lim (s— 1¢,(s, k)= RO TTa-vw.

s>1 Jd(k) plp

where the product is over all prime ideals p of k lying above p. Since p splits completely
in k, it follows from the above limit formula that

£¥(1, ky=Tim L (s, k) :lims_,l(s—l)Cp(s, k)

T st s Q) lim, (s—1(s, O)

_ 2MO YRR, K) [T, (1= N(p) )
dk)1—p~")

_EORK) (e




p-ADIC ZETA FUNCTIONS AND Z,-EXTENSIONS 25

Hence, taking the p-adic valuation, we have
(2) vC (1, k) =v,(h(k)+v,(R (k) —[k: Q] +1 .
Therefore, combining (1) with (2), we obtain v,(#Gal(M/k ,,)) = v,({ ¥(1,k)). |

REMARK 2.2. It is easy to see that Lemma 2.1 also holds when the degree of k&
over @ is prime to p, regardless of the decomposition of p in k (cf. [21]).

Let L, be the maximal unramified abelian p-extension of k&, and L, the maximal
abelian extension of £ contained in L,. Then, by genus theory and the fact that k_ /k
is totally ramified at p, one can easily see that

#4, =[L,:k)=[Lk.,:k.].

for all integers n>0. Note that if Leopoldt’s conjecture is valid for k& and p, then #47
remains bounded as n — oo (cf. [8, Proposition 1]). Next, we show the following lemma,
the idea of whose proof was suggested by Manabu Ozaki. The author would like to
thank him very much for this discussion.

LEMMA 2.3.  Assume that p splits completely in k. Then M is an unramified extension
over k. In particular, M=k L, for every n sufficiently large.

ProOF. Let p be a prime ideal of k lying above p, T, the inertia group of p for
the abelian extension M/k, and k, the completion of & at p. Then k,~Q, by the
assumption on the decomposition of p in k/Q. Local class field theory (cf. [18, Theorem
3a]) says that the inertia group /3" for the maximal abelian extension of k, is isomorphic
to the unit group of &, and hence I;°~Z . Since T, is a pro-p-group, it follows from
this that T, is isomorphic to a quotient group of Z,. On the other hand, p is totally
ramified in the cyclotomic part k. /k of M/k, whence T,,~Z,. This isomorphism implies
that 7,,n Gal(M/k,) is trivial. Indeed, if T, n Gal(M/k ) were non-trivial, then the rank
of T, over Z,/pZ, would be at least two because M/k, is the non-cyclotomic part of
M/k. Therefore M/k, is an unramified p-extension.

Finally, since a finite unramified extension of k. is obtained by lifting an unramified
extension of k,, for some integer m, to k. (cf. [12, Lemma 6.1]), it immediately follows
from the definitions of M and L, that M=k L, for sufficiently large n. |

Now, Lemmas 2.1 and 2.3, and the fact mentioned before Lemma 2.3 yield
#47 =#Gal(k, L,/k )= $Gal(M/k ) =p'rCr1-k)
for sufficiently large n. This completes the proof of Theorem 1.1.
3. Proof of Theorem 1.3. We continue with the same notation as in the previous

sections. In this section, we prove Theorem 1.3. First, we recall the following theorem
on the vanishing of the Iwasawa invariants of k with p splitting completely.
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THEOREM 3.1 (cf. Theorem 2 in [8]). Let k be a totally real number field and p a
prime number. Assume that p splits completely in k and also that Leopoldt's conjecture is
valid for k and p. Then the following two conditions are equivalent:

(1) 2,k)=p,(k) =0,

(2) #AI=4D, for every n sufficiently large.

Now we prove Theorem 1.3. By the theorem above and Theorem 1.1, it is clearly
seen that (1), (2) and (4) in Theorem 1.3 are equivalent one another. Also, since k. /k
is totally ramified at p, the norm map from D,, to D, for m>n=>0 is surjective. Thus
#D,<%D,, for m>n>0. Hence, from Theorem 1.1 and the fact that #D,<#A4! for all
integers n>0, it follows that in Theorem 1.3, (2) (resp. (4)) is equivalent to (3) (resp.
(5)). Therefore, it suffices to show only that (1) and (5) in Theorem 1.3 are quivalent.

Let L* be the maximal extension of k, contained in L,, in which every prime of
k, lying above p splits completely. Then we have L, =J,., L, LX=U,.,L¥ and

Gal(L ,/L*)=projlim Gal(L,/L}),

where the projective limit is taken with respect to the restriction maps. By class field
theory, it is easy to see that

Gal(L ,/L*)~projlim D, ,

where the projective limit is taken with respect to the norm maps. As already mentioned
before, since AL remains bounded as n— o0, so does D,. Hence, it follows that there
exists an integer n such that D,,~ D, with respect to the norm maps for all integers
m=>n. Therefore Gal(L,/L%)~ D, for sufficiently large n. Consequently, Theorems 1.1
and 3.1 imply that (1) is equivalent to (5) in Theorem 1.3. This completes the proof of
Theorem 1.3.

4. Some examples. In the simplest case where k is a real quadratic field with
small discriminant and p is a small odd prime number which splits in k, the order of
Ay, i.e., the value v,({ J(1, k)), was already computed in [4], [5] and [7] by calculating
the integer n, mentioned in Section 1. Also, we gave in [21] some computational data
for p=35, 7 and cyclic cubic fields with small discriminant in which p splits completely.

In this section, for p=3 and totally real cubic fields & in which p splits completely,
we calculate the order of 4! for sufficiently large n by using Theorem 1.1. We also give
some examples of k with A;(k)=pu;(k)=0 by applying Theorem 1.3 or Theorem 3.1.
Our computation has been carried out by means of the excellent number theoretic cal-
culation packages “KASH 1.7 which is available by ftp at ftp://ftp.math.tu-berlin.de/
pub/algebra/Kant/ and “UBASIC86 Ver.8.8” which is available at ftp://rkmath.
rikkyo.ac.jp/. Note that most of the previous effective methods to verify Greenberg’s
conjecture have been developed in the case where p is an odd prime number and & is a
real abelian number field such that the exponent of Gal(k/Q) divides p—1 (cf. [7],
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[10], [16], [17] and their references), though Greenberg’s conjecture for an odd
prime number p and a real cyclic number field of degree p was studied barely in [6],
[8] and [15].

ExaMmPLE 4.1. Let k be the cyclic cubic field defined by f(x)=x>—x?—30x—27.
Then the discriminant of & is 8281 (the conductor of k£ is 91=7-13) and p=3 splits
completely in k. Note that p;(k)=0 by Ferrero and Washington [3] (or by Iwasawa
[14]). Let 0 be a root of f(x)=0 and 6’ one of its conjugates. By using KASH 1.7,
we see that a system of fundamental units of k is {146, (3+50+02)/3}. Put g, =1+0
and &,=(3+50+02)/3. Further, put ¢;=1+0" and &,=(3+50"+0'%)/3, which are
conjugates of ¢; and ¢, respectively. Since we may take the following values as 0 and
0" (other pairs are possible and we obtain the same conclusion for any other pair):

0=5735755845 (mod3?"),
0'=10181147757 (mod 32'),
we obtain
£, =2248971445 (mod 329),
£,=2980924492 (mod 329),
£7=3207578956 (mod 327,
£,=679402073 (mod 329).
Taking the 3-adic logarithms of these, we get
logy &, = 10385055 (mod3'°),
log; e,=34739103 (mod3'®),
log; e, =8307618 (mod3'®),
log; e5,=18692673 (mod3'®).
Hence it follows that R;(k)=7534224 (mod 3'®), so that
Ry(k)=3? (mod3?).

Thus, v5(R5(k))=2. Again, by using KASH 1.7, we see that h(k)=3, Ag~Z/3Z and the
primes of & lying over p =3 are non-principal in k. Hence #4,=#D,=3. Therefore, by
Theorem 1.1, #45' =3 for sufficiently large n. Since #D,<#D, <#A4" for m>n>0, we
have #D,=3 for sufficiently large n. Hence it follows from Theorem 1.3 or 3.1 that

A3(k) (= p3(k)=0.

ExampLE 4.2. Let k be a totally real cubic field defined by f(x)=x3—7x—3
which is unique up to isomorphism. Then the discriminant of k is 1129 and p=3 splits
completely in k. (This k is the totally real cubic field with smallest discriminant where
p=3 splits completely.) Let 6 be a root of f(x)=0 and 0’ one of its conjugates. By



28 H. TAYA

using KASH 1.7, we see that a system of fundamental units of k is {1+360+672,
1+20—6%} and hk)=1, so Ag=D,=1{1}. Put ¢;=1+30+62 and e,=1+20—07
Further, put &;=1+360"+0'% and ¢, =1+20"—0"%2. We may take the following values
as 6 and 0":

0=6155444868 (mod 3?!),
0'=3577471696 (mod 3?!).
After a computation similar to that in Example 4.1, we see that
Ry(k)=2-3% (mod33),

whence v3(R;(k))=2. In particular, Leopoldt’s conjecture is valid in this case. Now, by
Theorem 1.1, we obtain #4% =1 for all integers n>0, which implies that #D,=1 for all
integers n>0. Hence it follows from Theorem 1.3 or 3.1 that A5(k)=us(k)=0.

ExampLE 4.3. Let k be a totally real cubic field defined by f(x)=x>*—40x—84
which is unique up to isomorphism. Then the discriminant of & is 16372 =22 - 4093 and
p =173 splits completely in k. Let 6 be a root of f(x)=0 and 6’ one of its conjugates. By
using KASH 1.7, we see that a system of fundamental units of k is {31+ 160+207,
527+3240+450%} and h(k)=1, so Ao=Dy={1}. Put ¢, =31+160+20% and ¢,=
527 +3240+4502. Further, put &;=31+160"+20"% and &;=>527+3240"+450"%. We
may take the following values as 6 and 0":

6=8256609024 (mod 3?'),
0’'=2636878198 (mod3??).
After a computation similar to that in Example 4.1,
Ry(k)=3"7 (mod3?),

and hence v3(R;(k))=7. In particular, Leopoldt’s conjecture is valid in this case. Now,
by Theorem 1.1, we obtain #4~ =3°=243 for sufficiently large n. However, we cannot
determine the order of D, only by these data concerning the base field. Hence we do
not know whether Greenberg’s conjecture is valid or not in this case.

Finally, for p=3, we give some computational data of totally real cubic fields &
with p splitting completely and with discriminant less than 100,000. In this calculation,
we use the polynomials generating totally real cubic fields in a table made by Olivier,
which is available at ftp://megrez.math.u-bordeaux.fr/pub/numberfields/. There exist
exactly 347 such cubic fields up to isomorphism. Since we can see that R;(k)#0 for all
of these, Leopoldt’s conjecture is valid when p=3. We find that there exist exactly 226
cubic fields which satisfy 4] ={1} (in these cases, A3(k)=p3(k)=0). Table 1 gives some
data for the 121 remaining cubic fields. In this table, f(x) is a polynomial generating k,
#A4" and #D, are the order of A} and D,, respectively, for sufficiently large n, and the
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TaBLE 1. All k’s with d(k) <100,000 satisfying 4%, #{1} and p=3 splits completely.

29

d(k) f(x) Gal h(k) $4, #D, v3(R3(k)) $AL ¥D,
5329 X3 —x?—24x+27 C3 1 1 1 3 3 *
6601 x*—13x-9 S3 1 1 1 4 9 *
6901 XP—x?—25x-2 S3 1 1 1 3 3 *
7153 X —19x-27 S3 1 1 I 5 27 *
8281 X —x?—30x-27 C3 3 3 3 2 3 3
13189 x*—22x-33 S3 1 1 1 4 9 *
13537 X*—x?—32x+33 S3 1 1 1 3 3 *
13549 P —x2-31x+4 S3 1 1 1 3 3 *
14197 xX*—16x—9 S3 2 1 1 3 3 *
14653 x*—25x—12 S3 1 1 1 5 27 *
15412 x*—16x—6 S3 1 1 1 5 27 *
15529 X —19x-21 S3 2 1 1 3 3 *
15700 x3—x?—33x+427 S3 1 1 1 3 3 *
16372 x*—40x—84 S3 1 1 1 7 243 *
17581 x*—28x—51 S3 1 1 1 6 81 *
17689 X3 —x?—44x—69 C3 3 3 3 2 3 3
17929 XP—x?—34x+7 S3 1 1 1 4 9 *
19348 X —x?—35x+21 S3 1 1 1 3 3 *
20353 x*—43x—105 S3 1 1 1 3 3 *
22228 X —x?—39x—27 S3 1 1 1 3 3 *
22996 X—x?=37x+19 S3 1 1 1 3 3 *
25465 x3—37x—38l S3 1 1 1 3 3 *
25645 x*—x2—41x-30 S3 1 1 1 3 3 *
27193 X*—19x—3 S3 1 1 1 3 3 *
27925 x?—x?—43x—-38 S3 1 1 1 3 3 *
28936 XP—x2—42x+54 S3 1 1 1 3 3 *
30904 X3 —x2—46x+82 S3 1 I 1 3 3 *
31069 xP—x?—4lx+24 S3 1 1 1 3 3 *
35101 x*—37x—48 S3 1 1 1 4 9 *
35416 X3 —34x—-24 S3 1 1 1 3 3 *
36469 x*—6lx—168 S3 1 1 1 3 3 *
36961 x*—x?—44x+39 S3 1 1 1 3 3 *
37300 x*—40x—-90 S3 3 3 3 5 81 *
38344 x*—37x—78 S3 1 1 1 3 3 *
38917 x*—49x—108 S3 1 1 1 3 3 *
39505 x?—x2—46x+55 S3 1 1 1 7 243 *
39700 x*—40x—60 S3 1 1 1 3 3 *
40156 x*—x2—52x+106 S3 1 1 1 3 3 *
40180 x*—28x—42 S3 3 3 3 2 3 3
41332 X2 —x2—53x+111 S3 3 3 3 3 9 *
41944 X3 —49x—126 S3 3 3 3 4 27 *
42817 x3—25x-27 S3 3 3 3 2 3 3
43444 X3 —x2—57x+135 S3 1 1 1 3 3 *
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TABLE 1. (continued)

d(k) f(x) Gal h(k) #4, #D, v3(R5(k)) $A4% #D,.
44617 N —x2—48x-27 S3 1 1 1 3 3 *
45541 NP —x2—55x+118 S3 1 1 1 4 9 *
47089 N —x2—T72x+225 C3 3 3 3 2 3 3
47860 N —x2—51x+8l1 S3 3 3 3 2 3 3
48481 N3 —x2—50x+69 S3 1 1 1 3 3 *
49681 N=37x—12 S3 1 1 1 3 3 *
49825 N —x2—48x+27 S3 1 1 1 3 3 *
50104 N3 —43x—66 S3 7 1 1 5 27 *
50737 X3 —-37x-175 S3 2 1 1 3 3 *
53176 =32 —-62x—114 S3 1 1 1 3 3 *
53401 A3 —43x—-99 S3 2 1 1 6 81 *
53752 N3—25x—18 S3 1 1 1 3 3 *
54292 N —x2-51x-27 S3 3 3 3 2 3 3
55672 3—73x—78 S3 1 1 1 4 9 *
56665 X3 —x?-50x+15 S3 1 1 1 3 3 *
57985 X3 —x2—60x+135 S3 1 1 1 4 9 *
59212 X3 —55v—126 S3 1 1 1 3 3 *
60037 N3 —x2—57x+4108 S3 1 1 1 3 3 *
60337 xI—x2—58x—77 S3 1 1 1 4 9 *
61009 X3 —x2-82x+64 C3 3 3 3 2 3 3
61528 x3-25x—6 S3 1 1 1 4 9 *
62041 N3 —61x—177 S3 1 1 1 3 3 *
62113 N3 —49x—123 S3 1 1 1 3 3 *
62572 X3 —x?-52x-2 S3 1 1 1 4 9 *
63028 N3 —40x—12 S3 3 3 3 2 3 3
63508 x3—-28x—30 S3 1 1 1 4 9 *
64924 P —67x—78 S3 1 1 1 3 3 *
65908 X3 —x2—59x—75 S3 3 3 3 2 3 3
67081 X3 —x?—-86x—48 C3 3 3 3 2 3 3
67384 x3—x?—54x—18 S3 1 1 1 3 3 *
67741 N3P —x2—57x—54 S3 2 1 1 4 9 *
69061 X3 —x?—55x 464 S3 1 1 1 3 3 *
69196 X3 —43v—-96 S3 1 1 1 4 9 *
70021 N3 —49x -84 S3 3 3 3 2 3 3
70984 X3 —x2—66x+162 S3 1 1 1 3 3 *
72169 B3—=79xv—174 S3 1 1 1 4 9 *
72817 X —x?—62x—87 S3 1 1 1 3 3 *
73177 X —x?—56x—27 S3 3 3 3 2 3 3
73432 x3—43x-30 S3 1 1 1 4 9 *
73441 X3 —x?—90x—261 C3 1 1 1 4 9 *
73768 x> —x?—58x—50 S3 1 1 1 3 3 *
74089 x3-73x-216 S3 1 1 1 3 3 *
74137 S3 3 3 3 3 9 *

x3—x2—72x—153
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TABLE 1. (continued)

d(k) () Gal k) 44,  #D,  vy(Ryk))  #4L D,
75085 X3 —x2-55x+10 S3 1 1 1 4 9 *
75313 X3 —x2—-58x+85 S3 3 3 3 2 3 3
75724 x3—x?—-56x+54 S3 1 1 1 6 81 *
75901 X3 —28x—21 S3 3 3 3 2 3 3
77320 2 —43x—18 S3 1 1 1 4 9 *
78853 X3 —40x—81 S3 1 1 1 5 27 *
78973 X3 —79x—162 S3 1 1 1 4 9 *
79060 N3 —28x—18 S3 1 1 1 3 3 *
80101 X3 —x2—57x+54 S3 1 1 1 3 3 *
80116 N —x2—79x~191 S3 1 1 1 4 9 *
80692 X3 =32 —87x+297 S3 1 1 1 3 3 *
81769 N —x2—64x—89 S3 1 1 1 3 3 *
83077 N3 —82x—69 S3 1 1 1 4 9 *
84172 X3 =31x-36 S3 1 1 1 3 3 *
84616 N —x?—82x—206 S3 1 1 1 3 3 *
85300 N3—=x2—63x+117 S3 1 1 1 5 27 *
86485 X3 —x2—65x—90 S3 3 3 3 2 3 3
86989 x3—34x-51 S3 1 1 1 3 3 *
87013 NP —61x—144 S3 2 1 1 4 9 *
87349 x3—x2-81x+252 S3 1 1 1 4 9 *
88084 X3 —76x—228 S3 3 3 3 3 9 *
90601 x3—x?—100x+379 C3 3 3 3 2 3 3
90988 X3 —x2—84x+270 S3 1 1 1 3 3 *
91732 N3 —40xv—78 S3 1 1 1 3 3 *
92185 N3 —85x-175 S3 1 1 1 3 3 *
92488 N —x?—74x+198 S3 1 1 1 5 27 *
94168 X3 —70x—192 S3 1 1 1 4 9 *
94249 N —x2—102x +216 C3 1 1 1 3 3 *
94345 X3 —x2—76x+211 S3 1 1 1 3 3 *
94636 N —v2—80x—186 S3 3 3 3 2 3 3
95992 N —91x—234 S3 6 3 3 2 3 3
96724 N —x?=T7Ix—123 S3 1 1 1 3 3 *
97645 N3 —x2—61x—20 S3 1 1 1 3 3 *
98809 I —x2—62x+75 S3 1 1 1 3 3 *
99208 X3 —x?—90x+ 306 S3 1 1 1 3 3 *

others are the same as before. In the column labelled “Gal”, S3 means that it is a
non-Galois extension over @ (i.e., the Galois group of its Galois closure is the symmetric
group of degree 3), and C3 means that it is a Galois extension over Q (i.e., it is a
cyclic extension of degree 3). For 19 cubic fields in the table, we can determine the
order of D, and show that Greenberg’s conj  re holds, only by these data of the base
field. On the other hand, the asterisks in the column labelled “#D_ >~ mean that we
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cannot determine the order of D, for n>1. Therefore we do not know whether
Greenberg’s conjecture in these cases is valid or not merely from our calculation here.
However, concerning u-invariants, it follows from a theorem of Iwasawa [14, Theorem
3] that u;(k) =0 for not only any Galois cubic field but also any non-Galois cubic field,
because a non-Galois cubic field is a subfield of a Galois extension of degree 3 over a
quadratic field.
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