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Abstract. In this article, we describe the order of the Galois-invariant part of the

/ -Sylow subgroup of the ideal class group in the cyclotomic Zp-extension of a certain

totally real number field k in terms of the residue at 1 of the /?-adic zeta function of /:,

where/? denotes an odd prime number. By using this, we obtain an alternative formulation

of Greenberg's theorem on the vanishing of the cyclotomic Iwasawa λ- and μ-invariants

of A: for/?. We also give some computational data for totally real cubic fields and/? = 3.

1. Introduction. Let k be a number field and/? a prime number. For the cyclotomic
Zp-extension k^ of/c, let kn be the n-\h layer of k^ over k and An the/?-Sylow subgroup
of the ideal class group of kn. Then there exist integers λ9 μ and v, depending only on
k and/?, such that #An=pλn+μpn + v for sufficiently large n (cf. [12]). Here, #G denotes
the order of a finite group G. The integers λ = λp(k), μ = μp(k) and v = vp(k) are called
the (cyclotomic) Iwasawa invariants of k for p. It is conjectured that, for any totally
real number field k and any prime number /?, both λp(k) and μp(k) always vanish, that
is, %An remains bounded as n tends to infinity (cf. [8], also [13, p. 316]). This is often
called Greenberg's conjecture. It is known to be valid for μp(k) if k is an abelian num-
ber field (cf. [3]), but not yet for λp(k) even if k has low degree except when k = Q.

Recently, several authors invesitgated Greenberg's conjecture in the case where p
is an odd prime and k is a real abelian number field with degree prime to p (cf. [7],
[10], [16], [17] and their references). For instance, after Greenberg's conjecture for
many real quadratic fields was verified by various methods in several papers, Ichimura
and Sumida showed in [9] and [10] that λ3(Q(yJm )) = 0 for all positive integers
m< 10,000. Also, Kraft and Schoof determined in [16] the structure of the Iwasawa
module associated to An in the cyclotomic Z3-extension for certain real quadratic fields
with small conductor. However, in general, it is too difficult to determine the structure
or even the order of An in the cyclotomic Z^-extension of totally real number fields.

Throughout this paper from now on we assume that k is totally real and p is an
odd prime number. Denote by Γ the Galois group Galik^/k) of k^ over k, and let A{
be the subgroup of An consisting of ideal classes which are invariant under the action
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of Γ, namely, AΓ

n is the Γ-invariant part of An. In this paper, we give a formula for the

order of ΛΓ

n in terms of the /?-adic zeta function of k. Let ζp(s, k) be the />-adic zeta

function of &, which is continuous on Zp — {1} and has simple pole at s = 1 if Leopoldt's

conjecture is valid for k and p (cf. [2]). Let us put

Note that if Λ: is a real abelian number field, then ζ*(s, fc) = { ] ^ 1 Lp(s, χ), where the

product is over all non-trivial /?-adic Dirichlet characters χ of Gal{k/Q) and Lp(s, χ) is

the /?-adic L-function associated with χ. Let υp be the /?-adic valuation normalized by

υp(p)= 1. Then the following is our main result, which was shown by a different method

in [20, Proposition 1] for real quadratic fields.

THEOREM 1.1. Let k be a totally real number field and p an odd prime number.

Assume that p splits completely in k and also that Leopold fs conjecture is valid for k and

p. Then

for every n sufficiently large. Furthermore, the right hand side of the above is given by

pVp(ζρ( 1 ,*)) _ #y[ pVp{Rp(k)) -[k:Q]+l

where Rp(k) denotes the p-adic regulator ofk and [k: Q] the degree ofk over Q.

In the case where k is a real quadratic field in which p splits, Fukuda and Komatsu

defined n2 as the integer with the property that p"21| (εp ~J — 1) in k, ε being the fundamental

unit of k and p a prime ideal of k lying above />, and showed that

for all integers n>n2 — 1 (cf. [4, Proposition 1] or [5]). Theorem 1.1 can be regarded

as a generalization of this. In deed, If A: is a real quadratic field in which p splits, then

we see that n2 = vp(Rp(k)) by Lemma 5.5 in [22]. Also, this theorem can be regarded as

an explicit version of a formula for the order of AΓ

n given by Inatomi [11, Proposition

2]. Further, by Theorem 1.1, we see that υp{Rp{k))>[k:Q\-\.

REMARK 1.2. The formula ^A^ = ̂ Aop
v^iR^k))-[k:Q] + ί which is obtained in

Theorem 1.1 does not hold in general without the assumption on the decomposition

of p in k/Q. In fact, if only one prime ideal of k lies over p and if this prime is totally

ramified in kjk, then one can see that $A{ = $A0 for all integers n>0 (cf. [8, The

proof of Theorem 1]). However, vp(Rp(k)) is not always equal to [fe: Q] — 1. For exam-

ple, v3{R3(Q{J25Ί))) = 3 and v3(R3(Q(j326))) = 2 (cf. [19, Section 4]). Therefore, the

formula above does not hold in these cases.

Let On be the ring of integers in kn and O'n the ring of /^-integers in kn, namely,
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O'n = On[\lp]. Then an invertible O^-submodule in kn is called a/>-ideal of kn. Let A'n be

the /7-Sylow subgroup of the /?-ideal class group of kn. Here, the /?-ideal class group

C'n = ΓJP'n of kn is the multiplicative group Γn of/?-ideals of kn modulo the subgroup P'n
of principal /7-ideals of /:„. Then the surjective homomorphism from the multiplicative

group /„ of ideals of kn to Γn defined by

α κ-> aθ'n

induces a surjective homomorphism from Λn to A'n. Now we put

Then £>„ is the subgroup of An consisting of ideal classes represented by products of

prime ideals of kn lying above p. It is clear that DnaAΓ

n. Let L^ be the maximal

unramified abelian pro-/?-extension of k^, and let L* be the maximal unramified abelian

pro-/?-extension of k^ in which every prime of k^ lying above p splits completely.

Using Theorem 1.1, we obtain the following alternative formulation of a theorem of

Greenberg [8, Theorem 2] (see Theorem 3.1 in Section 3) on the vanishing of the

Iwasawa invariants.

THEOREM 1.3. Let k be a totally real number field and p an odd prime number.

Assume that p splits completely in k and also that Leopoldfs conjecture is valid for k and

p. Then the following six conditions are equivalent:

(1) λp(k) = μp(k) = 0,

(2) %Dn=pVp{ζp(ί'k)) for every n sufficiently large,

(3) %Dn =/?M^ ( 1 'fc)) for some n>0,

(4) %Dn = #Aop
vr{Ri>ik})-[k:Q] + 1 for every n sufficiently large,

(5) %Dn = #Aop
v>>{R*>{k))~[/c:β] + 1 for some n>0,

(6) r 1 f c

Although Theorem 1.3 seems to be only a little different from a theorem of

Greenberg [8, Theorem 2], Theorem 1.3 suggests that the validity of Greenberg's

conjecture can be regarded as based on a deep arithmetic relation between an analytic

object and an algebraic object. Moreover, using (5) in Theorem 1.3 for n = 0, we obtain

the following which is a partial generalization of a result of Fukuda and Komatsu [5,

Theorem 1].

COROLLARY 1.4. Under the same assumptions as in Theorem 1.3, if vp(Rp) =

[k:Q]-l and if A0 = D0, then λp(k) = μp(k) = 0. In particular, if vp(ζ*(l, fc)) = 0, then

λp(k) = μp(k) = 0.

We will prove Theorem 1.1 in Section 2 and Theorem 1.3 in Section 3. Further,

using these, we give in Section 4 some computational examples for totally real cubic

fields and p = 3.

Finally we mention that for real abelian number fields with degree prime to p, we
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can also give more precise results of our theorems in which each object is replaced by

its ^-component, where Ψ denotes an irreducible (^-character of Gal(k/Q) (cf. [21]).

2. Proof of Theorem 1.1. In this section, we prove the main theorem, i.e.,

Theorem 1.1. We use the same notation as in the preceding section. Assume that p

splits completely in k and also that Leopoldt's conjecture is valid for k and p. Let M

be the maximal abelian pro-/?-extension of k which is unramified outside the primes of

k lying above p. Then the validity of Leopoldt's conjecture for k and p assures that

M/k^ is of finite degree (cf. [1, Lemma 8 in Appendix]). First, we show the following

lemma.

LEMMA 2.1. Under the assumptions stated above, $Gdλ(Mlkaa)=pVp{^p(l*k))>

PROOF. Let h(k) be the class number and d(k) the absolute value of the discriminant,

respectively, of k. We also denote by TV the norm map from k to β. Then a result of

Coates [1, Lemma 8 in Appendix] says that

p\p
V

where ζp denotes a primitive p-th root of unity, w(k(ζp)) the number of the roots of

unity contained in k(ζp), and the product is over all prime ideals p of k lying above p.

Since p splits completely in k, it follows that

) = vp(w(k(ζp))) + vp(h(k)) + υp(Rp(k)) - [fc: β ] .

Further, in our case, since k is real and knQ(ζp) = Q, we see that w(k(ζp)) = 2p. Hence,

(1) v^GaW/kJ) = vp(h(k)) + vp(Rp(k)) - [fc: β] + l .

On the other hand, Colmez [2, Main theorem] proved that

k) 2[k:Qi

where the product is over all prime ideals p of k lying above p. Since p splits completely

in /:, it follows from the above limit formula that
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Hence, taking the />-adic valuation, we have

(2) υp(ζ*(l, k)) = vp(h(k)) + vp(Rp(k))-[k:Q] + 1 .

Therefore, combining (1) with (2), we obtain vp($Gal(M/kJ) = vp(ζ*(l9k)). I

REMARK 2.2. It is easy to see that Lemma 2.1 also holds when the degree of k

over Q is prime to p, regardless of the decomposition of p in k (cf. [21]).

Let Ln be the maximal unramified abelian ^-extension of kn and L'n the maximal

abelian extension of A: contained in Ln. Then, by genus theory and the fact that kjk

is totally ramified at />, one can easily see that

for all integers n>0. Note that if Leopoldt's conjecture is valid for k and p, then %AΓ

n

remains bounded as n -• oo (cf. [8, Proposition 1]). Next, we show the following lemma,

the idea of whose proof was suggested by Manabu Ozaki. The author would like to

thank him very much for this discussion.

LEMMA 2.3. Assume that p splits completely in k. Then M is an unramified extension

over k^ In particular, M = kQOL'nfor every n sufficiently large.

PROOF. Let p be a prime ideal of k lying above /?, Tp the inertia group of p for

the abelian extension M/k, and kp the completion of k at p. Then kp~Qp by the

assumption on the decomposition of/? in k/Q. Local class field theory (cf. [18, Theorem

3a]) says that the inertia group /pb for the maximal abelian extension of kp is isomorphic

to the unit group of kp, and hence /p b ~Z p

x . Since Tp is a pro-/>-group, it follows from

this that Γp is isomorphic to a quotient group of Zp. On the other hand, p is totally

ramified in the cyclotomic part kjk oϊMjk, whence Tp~Zp. This isomorphism implies

that ΓpfiGaKM/Zc^) is trivial. Indeed, if Tp n GaliM/k^) were non-trivial, then the rank

of Γp over Zp/pZp would be at least two because M/k^ is the non-cyclotomic part of

M/k. Therefore M/k^ is an unramified /^-extension.

Finally, since a finite unramified extension of k^ is obtained by lifting an unramified

extension of km, for some integer m, to k^ (cf. [12, Lemma 6.1]), it immediately follows

from the definitions of M and L'n that M=koz,L'n for sufficiently large n. I

Now, Lemmas 2.1 and 2.3, and the fact mentioned before Lemma 2.3 yield

for sufficiently large n. This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.3. We continue with the same notation as in the previous

sections. In this section, we prove Theorem 1.3. First, we recall the following theorem

on the vanishing of the Iwasawa invariants of k with p splitting completely.
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THEOREM 3.1 (cf. Theorem 2 in [8]). Let k be a totally real number field and p a

prime number. Assume that p splits completely in k and also that Leopoldfs conjecture is

valid for k and p. Then the following two conditions are equivalent:

(1) λp(k) = μp(k) = 0,

(2) $AΓ

n=$Dnfor every n sufficiently large.

Now we prove Theorem 1.3. By the theorem above and Theorem 1.1, it is clearly
seen that (1), (2) and (4) in Theorem 1.3 are equivalent one another. Also, since kjk
is totally ramified at /?, the norm map from Dm to Dn for m>n>0 is surjective. Thus
Wn<Wm for m>n>0. Hence, from Theorem 1.1 and the fact that %Dn<%AΓ

n for all
integers «>0, it follows that in Theorem 1.3, (2) (resp. (4)) is equivalent to (3) (resp.
(5)). Therefore, it suffices to show only that (1) and (5) in Theorem 1.3 are quivalent.

Let L* be the maximal extension of kn contained in Lm in which every prime of
kn lying abovep splits completely. Then we have Lao = \Jn>oLn, L* = | J n > 0 L * and

Gal(LJL%) = proj lim Gal(LJL*),

where the projective limit is taken with respect to the restriction maps. By class field
theory, it is easy to see that

Ga\(LJL%) ~ proj lim Dn9

where the projective limit is taken with respect to the norm maps. As already mentioned
before, since AΓ

n remains bounded as n-^co, so does Dn. Hence, it follows that there
exists an integer n such that Dm~Dn with respect to the norm maps for all integers
m>n. Therefore G3.\(LaD/L%)^Dn for sufficiently large n. Consequently, Theorems 1.1
and 3.1 imply that (1) is equivalent to (5) in Theorem 1.3. This completes the proof of
Theorem 1.3.

4. Some examples. In the simplest case where k is a real quadratic field with
small discriminant and p is a small odd prime number which splits in k, the order of
Aτ

n, i.e., the value vp(ζ*(l, k)\ was already computed in [4], [5] and [7] by calculating
the integer n2 mentioned in Section 1. Also, we gave in [21] some computational data
for/? = 5, 7 and cyclic cubic fields with small discriminant in whichp splits completely.

In this section, for p = 3 and totally real cubic fields k in which p splits completely,
we calculate the order of AΓ

n for sufficiently large n by using Theorem 1.1. We also give
some examples of k with λ3(k) = μ3(k) = 0 by applying Theorem 1.3 or Theorem 3.1.
Our computation has been carried out by means of the excellent number theoretic cal-
culation packages "KASH 1.7" which is available by ftp at ftp://ftp.math.tu-berlin.de/
pub/algebra/Kant/ and "UBASIC86 Ver.8.8" which is available at ftp://rkmath.
rikkyo.ac.jp/. Note that most of the previous effective methods to verify Greenberg's
conjecture have been developed in the case where p is an odd prime number and k is a
real abelian number field such that the exponent of Gsά(k/Q) divides p—\ (cf. [7],
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[10], [16], [17] and their references), though Greenberg's conjecture for an odd

prime number/? and a real cyclic number field of degree p was studied barely in [6],

[8] and [15].

EXAMPLE 4.1. Let k be the cyclic cubic field defined by f(x) = x3 — x2 — 30x — 27.

Then the discriminant of k is 8281 (the conductor of k is 91 —Ί 13) and p — 3 splits

completely in k. Note that μ3(k) = 0 by Ferrero and Washington [3] (or by Iwasawa

[14]). Let θ be a root of f(x) = 0 and θ' one of its conjugates. By using KASH 1.7,

we see that a system of fundamental units of k is {1 + 0, (3 + 50 + 02)/3}. Put εi = l+θ

and ε2 = (3 + 5θ + θ2)/3. Further, put εi = l + 0 ' and ε'2 = (3 + 5θ'+ θ'2)β, which are

conjugates of εί and ε2 respectively. Since we may take the following values as 0 and

θ' (other pairs are possible and we obtain the same conclusion for any other pair):

0 = 5735755845 (mod3 2 1 ) ,

0^10181147757 (mod3 2 1 ) ,

we obtain

8^2248971445 (mod3 2 0 ) ,

ε2 = 2980924492 (mod3 2 0 ) ,

ε[= 3207578956 (mod3 2 0 ) ,

ε'2 = 679402073 (mod3 2 0 ) .

Taking the 3-adic logarithms of these, we get

Xog^ε^ 10385055 (mod3 1 6 ) ,

log 3 ε 2 Ξ 34739103 (mod3 1 6 ) ,

log3εί = 8307618 (mod3 1 6 ) ,

log3β^Ξ 18692673 (mod3 1 6 ) .

Hence it follows that R3{k) = 7534224 (mod3 1 6), so that

R3(k) = 32 (mod3 3 ).

Thus, v3(R3(k)) = 2. Again, by using KASH 1.7, we see that h(k) = 3, A0~Z/3Zand the

primes of k lying over p = 3 are non-principal in k. Hence #A0 = #D0 = 3. Therefore, by

Theorem 1.1, %AΓ

n=3 for sufficiently large n. Since §Dn<%Dm<$AΓ

m for m>n>0, we

have #/)n = 3 for sufficiently large n. Hence it follows from Theorem 1.3 or 3.1 that

EXAMPLE 4.2. Let k be a totally real cubic field defined by f(x) = x3 — Ίx — 3

which is unique up to isomorphism. Then the discriminant of k is 1129 and/? = 3 splits

completely in k. (This k is the totally real cubic field with smallest discriminant where

p = 3 splits completely.) Let θ be a root of f(x) = 0 and θ' one of its conjugates. By
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using KASH 1.7, we see that a system of fundamental units of k is {1+30 + 0 2,

1 + 2 0 - 0 2 } and h(k)=l, so A0 = D0 = {\}. Put ε1 = l+3θ + θ2 and ε2=l+2θ-θ2.

Further, put ε[ = 1 Λ-W + θ'2 and 82 = 1 +2Θ'-Θ'2. We may take the following values

as θ and θ'\

0^6155444868 (mod3
21
),

θ' = 3577471696 (mod3
21
).

After a computation similar to that in Example 4.1, we see that

R3(k) = 2 32 ( m o d 3 3 ) ,

whence v3(R3(k)) = 2. In particular, Leopoldt's conjecture is valid in this case. Now, by

Theorem 1.1, we obtain %AΓ

n = \ for all integers n>0, which implies that %Dn = \ for all

integers n>0. Hence it follows from Theorem 1.3 or 3.1 that λ3(k) = μ3(k) = 0.

EXAMPLE 4.3. Let k be a totally real cubic field defined by f(x) = x3-40x-84

which is unique up to isomorphism. Then the discriminant of k is 16372 = 2 2 4093 and

p = 3 splits completely in k. Let 0 be a root of f(x) = 0 and 0' one of its conjugates. By

using KASH 1.7, we see that a system of fundamental units of k is {31 + 160 + 20 2,

527+ 3240 +450 2 } and h(k)=l, so A0 = D0 = {\}. Put ε, =31 +160 + 20 2 and ε2 =

527 + 3240 + 4502. Further, put ei = 31 + 160' + 20'2 and ε'2 = 527 + 3240' + 450'2. We

may take the following values as 0 and 0':

0 = 8256609024 (mod3 2 1 ) ,

0 ' Ξ 2 6 3 6 8 7 8 1 9 8 (mod3 2 1 ) .

After a computation similar to that in Example 4.1,

R3{k) = 3Ί (mod3 8 ),

and hence v3(R3(k)) = l. In particular, Leopoldt's conjecture is valid in this case. Now,

by Theorem 1.1, we obtain ^A^ = 35 = 243 for sufficiently large n. However, we cannot

determine the order of Dn only by these data concerning the base field. Hence we do

not know whether Greenberg's conjecture is valid or not in this case.

Finally, for p = 3, we give some computational data of totally real cubic fields k

with/? splitting completely and with discriminant less than 100,000. In this calculation,

we use the polynomials generating totally real cubic fields in a table made by Olivier,

which is available at ftp://megrez.math.u-bordeaux.fr/pub/numberfields/. There exist

exactly 347 such cubic fields up to isomorphism. Since we can see that R3(k)φ0 for all

of these, Leopoldt's conjecture is valid when/? = 3. We find that there exist exactly 226

cubic fields which satisfy A^ = {\) (in these cases, λ3(k) = μ3(k) = 0). Table 1 gives some

data for the 121 remaining cubic fields. In this table, f(x) is a polynomial generating k9

ΰA1^ and %D^ are the order of AΓ

n and Dn, respectively, for sufficiently large n, and the
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TABLE 1. All £'s with d{k)< 100,000 satisfying A1^,Φ{1} andp = 3 splits completely.

d{k)

5329

6601

6901

7753

8281

13189

13537

13549

14197

14653

15412

15529

15700

16372

17581

17689

17929

19348

20353

22228

22996

25465

25645

27193

27925

28936

30904

31069

35101

35416

36469

36961
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38344

38917
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42817

43444
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3
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2
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(k))

3

4

3

5

2

4

3

3

3

5

5

3

3

7

6
2

4

3

3

3

3

3

3

3

3

3

3

3

4

3

3

3

5

3

3

7

3

3

2

3

4

2

3

3

9

3

27

3

9

3

3

3

27

27

3

3

243

81

3

9

3

3

3

3

3

3

3

3

3

3

3

9

3

3

3

81

3

3

243

3

3

3

9

27

3

3

*

*

*

*

3

*

*

*

*

*

*

*

*

*

*

3

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

3

*

*

3

*
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TABLE 1. (continued)

d{k)

44617

45541

47089

47860

48481

49681

49825

50104

50737

53176

53401

53752

54292

55672

56665

57985

59212

60037

60337

61009

61528

62041

62113

62572

63028

63508

64924

65908

67081

67384

67741

69061

69196

70021

70984

72169

72817

73177

73432

73441

73768

74089

74137

fix)

γ
3 _

γ
2 _

4 8 γ
_

2 7

Λ-
3
-Λ'

2
-55.Y+118

Λ-
3
-Λ-

2
-72Λ- + 225

Λ-
3
-Λ-

2
-51.Y + 81

Λ-
3
-Λ-

2
-50.Y + 69

Λ-
3
-37Λ--12

A
- 3 _ _

Y
2 _

4 8 Y + 2 7

Λ
- 3 _

4 3 γ
_

6 6

.Y
3
-37Λ--75

Λ-
3
-Λ-

2
-62Λ--114

Λ-
3
-43Λ--99

.Y
3
-25Λ--18

Λ-
3
-Λ-

2
-5LY-27

.Y
3
-73Λ--78

λ
- 3 _

γ
2 _

5 0 γ + 1 5

Λ-
3
-.Y

2
-60.Y+135

Λ -
3
- 5 5 Λ - 1 2 6

Λ-
3
-.Y

2
-57Λ-+108

Λ-
3
-Λ-

2
-58.Y-77

Λ-
3
-Λ-

2
-82.Y + 6 4

.Y
3
-25Λ--6

. Y
3
- 6 L Y - 1 7 7

Y
3_

4 9 γ
_]23

Λ-
3
-.Y

2
-52Λ--2

Λ -
3
- 4 0 Λ - 1 2

.Y
3
-28Λ--30

.Y
3
-67Λ--78

Λ-
3
-.Y

2
-59.Y-75

Λ-
3
-Λ'

2
-86.Y-48

Y
3 _

γ
2 _

5 4 γ
_

1 8

γ
3 _

γ
2 _

5 7 γ
_

5 4

Λ-
3
-.Y

2
-55.Y + 64

.Y
3
-43Λ-96

. Y
3
- 4 9 Λ - 8 4

Λ-
3
-.Y

2
-66Λ + 162

Λ-
3
-79Λ--174

Λ -
3
- X

2
- 6 2 X - 8 7

Y
3_

γ
2_

5 6 γ
_27

Λ-
3
-43Λ-30

γ
3_

γ
2_

9 0 γ
_

2 6
i

Λ-
3
-.Y

2
-58Λ--50

Λ '
3
- 7 3 Λ - 2 1 6

Λ'
3
-Λ-

2
-72Λ--153

Gal

S3

S3

C3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

C3

S3

S3

S3

S3

S3

S3

S3

S3

C3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

C3

S3

S3

S3

h{k)

1

1

3

3

1

1

1

7

2

1

2

1

3

1

1

1

1

1

1

3

1

1

1

1

3

1

1

3

3

1

2

1

1

3

1

1

1

3

1

1

1

1

3

M .

1

1

3

3

1

1

1

1

1

1

1

1

3

1

1

1

1

1

1

3

1

1

1

1

3

1

1

3

3

1

1

1

1

3

1

1

1

3

1

1

1

1

3

Wo

1

1

3

3

1

1

1

1

1

1

1

1

3

1

1

1

1

1

1

3

1

1

1

1

3

1

1

3

3

1

1

1

1

3

1

1

1

3

1

1

1

1

3

v
3
(R

3
(k))

3

4

2

2

3

3

3

5

3

3

6

3

2

4

3

4

3

3

4

2

4

3

3

4

2

4

3

2

2

3

4

3

4

2

3

4

3

2

4

4

3

3

3

Mi

3

9

3

3

3

3

3

27

3

3

81

3

3

9

3

9

3

3

9

3

9

3

3

9

3

9

3

3

3

3

9

3

9

3

3

9

3

3

9

9

3

3

9

*

*

3

3

*

*

*

*

*

*

*

3

*

*

*

*

*

*

3

*

*

*

*

3

*

*

3

3

*

*

*

*

3

*

*

*

3

*

*

*

*

*



p-AΌΪC ZETA FUNCTIONS AND Zp-EXTENSIONS 31

TABLE 1. (continued)

d{k)

75085

75313

75724

75901

77320

78853

78973

79060

80101

80116

80692

81769

83077

84172

84616

85300

86485

86989

87013

87349

88084

90601

90988

91732

92185

92488

94168

94249

94345

94636

95992

96724

97645

98809

99208

fix)

.Y
3
-.Y

2
-55.Y+10

.Y
3
-.Y

2
-58.Y + 85

γ
3 _

γ
2 _

5 6 γ + 5 4

Λ-
3
-28.Y-21

Λ"
3
-43.Y-18

γ
3 _

4 0 γ
_

8 1

Λ
3
-79*-162

Λ-
3
-28Λ--18

Λ-
3
-Λ-

2
-57.Y + 54

..3 ,.2
 7
Q,. 1 Q1

y3 γ2 OH ,. 1 O Q
7

γ
3 _

γ
2 _

6 4 γ
_

8 9

Λ -
3
- 8 2 Λ - 6 9

Λ -
3
- 3 L Y - 3 6

Λ'
3
-.Y

2
-82Λ--206

Λ
- 3 _

γ
2 _

6 3 γ + ] 1 7

Λ -
3
- Λ -

2
- 6 5 Λ - 9 0

Λ-
3
-34Λ--51

Λ -
3
- 6 L Y - 1 4 4

.Y
3
-.Y

2
-8LY + 252

Y
3 _

7 6 Y
_ 2 2 8

Λ-
3
-.Y

2
-100.Y + 379

.Y
3
-Λ-

2
-84Λ- + 270

Λ -
3
- 4 0 X - 7 8

.Y
3
-85Λ~-75

Λ
-

3
-.Y

2
-74.Y+198

.Y
3
-70.Y-192

Λ
- 3 _

γ
2 _

] 0 2 γ + 2
16

Y
3 _

v
2 _

7 6 γ +
 2π

Λ-
3
-Λ-

2
-80.Y-186

Λ'
3
-91.Y-234

Λ-
3
-ΛΓ

2
-71.Y-123

Λ -
3
- . Y

2
- 6 L Y - 2 0

.Y
3
-.Y

2
-62.Y + 75

Λ
- 3 _

χ
2 _

9 0 v + 3 0 6

Gal

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

C3

S3

S3

S3

S3

S3

C3

S3

S3

S3

S3

S3

S3

S3

h{k) if

1

3

1

3

3 :

1

2

1 1

3 :

3 :

1 1

1 1

1 1

1 1

1 1

1 1

1 1

3 3

6 3

1 1

1 1

1 1

1 1

4
0
 #Z)

0

1 1

3 3

1 1

3 3

]

5 3

\ 3

1

1

1

1

1

1

1

3

3

1

1

1

1

v
3
(R

3
(k))

4

2

6

2

4

5

4

3

3

4

3

3

4

3

3

5

2

3

4

4

3

2

3

3

3

5

4

3

3

2

2

3

3

3

3

9

3

81

3

9

27

9

3

3

9

3

3

9

3

3

27

3

3

9

9

9

3

3

3

3

27

9

3

3

3

3

3

3

3

3

*

3

*

3

*

*

*

*

*

*

*

*

*

*

*

*

3

*

*

*

*

3

*

*

*

*

*

*

*

3

3

*

*

*

*

others are the same as before. In the column labelled "GaΓ, S3 means that it is a
non-Galois extension over Q (i.e., the Galois group of its Galois closure is the symmetric
group of degree 3), and C3 means that it is a Galois extension over Q (i.e., it is a
cyclic extension of degree 3). For 19 cubic fields in the table, we can determine the
order of Dn and show that Greenberg's conj re holds, only by these data of the base
field. On the other hand, the asterisks in the column labelled "#Z> " mean that we
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cannot determine the order of Dn for n > 1. Therefore we do not know whether
Greenberg's conjecture in these cases is valid or not merely from our calculation here.
However, concerning μ-invariants, it follows from a theorem of Iwasawa [14, Theorem
3] that μ3(k) = 0 for not only any Galois cubic field but also any non-Galois cubic field,
because a non-Galois cubic field is a subfield of a Galois extension of degree 3 over a
quadratic field.
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