THE FABER-KRAHN TYPE ISOPERIMETRIC INEQUALITIES FOR A GRAPH

Atsushi Katsuda and Hajime Urakawa

(Received March 16, 1998, revised February 2, 1999)

Abstract

In this paper, a graph theoretic analog to the celebrated Faber-Krahn inequality for the first eigenvalue of the Dirichlet problem of the Laplacian for a bounded domain in the Euclidean space is shown. Namely, the optimal estimate of the first eigenvalue of the Dirichlet boundary problem of the combinatorial Laplacian for a graph with boundary is given.

1. Introduction. The celebrated Faber-Krahn inequality is stated as follows (see [1], [2]):

Faber-Krahn Theorem. Let $\lambda_{1}(\Omega)$ be the first eigenvalue of the Dirichlet Laplacian for a bounded domain Ω in \boldsymbol{R}^{n}. If $\operatorname{Vol}(\Omega)=\operatorname{Vol}\left(\Omega^{*}\right)$, where Ω^{*} is a ball in \boldsymbol{R}^{n}, then

$$
\lambda_{1}(\Omega) \geq \lambda_{1}\left(\Omega^{*}\right),
$$

and the equality holds if and only if Ω is congruent to Ω^{*}.
In this paper, we show an analog of the Faber-Krahn theorem for a graph. A graph is a collection of vertices together with a collection of edges joining pairs of vertices. Let us take a connected graph with boundary, $G=(V \cup \partial V, E \cup \partial E)$ (see the definition in Section 2). We consider the Dirichlet boundary problem of the combinatorial Laplacian Δ on G :

$$
\left\{\begin{aligned}
\Delta f(x) & =\lambda f(x), & & x \in V, \\
f(x) & =0, & & x \in \partial V .
\end{aligned}\right.
$$

Let us denote the eigenvalues for this problem by

$$
0<\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{k}(G),
$$

where k is the number of vertices in V. We call $\lambda_{1}(G)$ the first eigenvalue of G.
We give the following two examples (1), (2) of graphs with boundary: Here we denote by white (resp. black) circles, vertices in V (resp. ∂V) and by solid (resp. dotted) lines, edges in E (resp. ∂E).

[^0](1) (the graph of type L_{m}) The graph in Figure 1.1 will be denoted by L_{m}.

Figure 1.1.
(2) (the graph of type $\left.A_{m+1}\right) A_{m+1}$ will stand for the graph in Figure 1.2.

Figure 1.2.
Our main results are stated in Theorems A and B below.
Theorem A. Let $G=(V \cup \partial V, E \cup \partial E)$ be a connected graph with boundary. Assume that the cardinality of $E \cup \partial E$ satisfies $\#(E \cup \partial E)=m \geq 4$. Then

$$
\lambda_{1}(G) \geq \lambda_{1}\left(L_{m}\right)
$$

and the equality holds if and only if G is isomorphic to L_{m}.
A graph with boundary $G=(V \cup \partial V, E \cup \partial E)$ is said (cf. [5]) to have the nonseparation property if each connected component of the complement, $V-\{v\}$, of each vertex $v \in V$ contains at least one boundary vertex. A class of graphs having the separation property is also a large family. For instance, a tree with boundary has always the non-separation property. The following theorem singles out the graph of type A_{m+1}.

Theorem B. Let $G=(V \cup \partial V, E \cup \partial E)$ be a connected graph with boundary satisfying the non-separation property. Assume that $\#(E \cup \partial E)=m$. Then

$$
\lambda_{1}(G) \geq \lambda_{1}\left(A_{m+1}\right)
$$

and the equality holds if and only if G is isomorphic to A_{m+1}.
We would like to express our gratitude to Professor Takashi Sakai for helpful discussions.
2. Preliminaries. In this section, we review basic notions about the Laplacian on a graph following [3] or [4].

Let $G=(V \cup \partial V, E \cup \partial E)$ be a graph with boundary (see for instance [4] or [5]), i.e., (i) each edge in E has both end points in V, (ii) each edge in ∂E has exactly one end point in V and one in ∂V and (iii) any vertex which has exactly one edge is in ∂V. We call vertices in V (resp. ∂V) the interior (resp. boundary) vertices, and similarly for
the edges. We always consider a finite connected graph with boundary, and fix once and for all an orientation for each edge of G in this paper.

Let $C_{0}^{0}(G)$ be the set of all real-valued functions on $V \cup \partial V$ satisfying $f(x)=0$ for all $x \in \partial V$. Let $C^{1}(G)$ be the space of all functions φ defined on the set of all directed edges of G and satisfying

$$
\varphi([x, y])=-\varphi([y, x])
$$

where $[x, y], x, y \in V \cup \partial V$, denotes a directed edge in $E \cup \partial E$ beginning at x and ending at y. We define the following inner products on these spaces by

$$
\left\{\begin{array}{l}
\left(f_{1}, f_{2}\right):=\sum_{x \in V} m(x) f_{1}(x) f_{2}(x), \tag{2.1}\\
\left(\varphi_{1}, \varphi_{2}\right):=\sum_{\sigma \in E \cup \partial E} \varphi_{1}(\sigma) \varphi_{2}(\sigma)
\end{array}\right.
$$

for $f_{1}, f_{2} \in C_{0}^{0}(G)$ and $\varphi_{1}, \varphi_{2} \in C^{1}(G)$. Here $m(x), x \in V$ is the degree of x, which is by definition the number of edges in $E \cup \partial E$ incident to x. The coboundary operator

$$
d f([x, y]):=f(y)-f(x)
$$

maps $C_{0}^{0}(G)$ into $C^{1}(G)$. The combinatorial Laplacian is defined as

$$
\Delta f=d^{*} d f, \quad f \in C_{0}^{0}(G)
$$

where d^{*} is the adjoint of the coboundary operator d with respect to the above inner products. By definition,

$$
\begin{equation*}
\left(\Delta f_{1}, f_{2}\right)=\left(d f_{1}, d f_{2}\right), \quad f_{1}, f_{2} \in C_{0}^{0}(G) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta f(x)=f(x)-\frac{1}{m(x)} \sum_{y \sim x} f(y), \quad x \in V, \quad f \in C_{0}^{0}(G) \tag{2.3}
\end{equation*}
$$

where $y \sim x$ means that x and y are connected by an edge in $E \cup \partial E$. A real number λ is an eigenvalue of Δ on $C_{0}^{0}(G)$ if there exists a non-vanishing function $f \in C_{0}^{0}(G)$ such that $\Delta f(x)=\lambda f(x), x \in V$. The function f is called the eigenfunction with eigenvalue λ. This means that f and λ satisfy the Dirichlet eigenvalue problem:

$$
\left\{\begin{aligned}
\Delta f(x)=\lambda f(x), & x \in V, \\
f(x)=0, & x \in \partial V .
\end{aligned}\right.
$$

The eigenvalues are labelled as follows:

$$
0<\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{k}(G)
$$

where $k:=\#(V)$, the cardinality of V.

Example 2.1. (1) The first eigenvalue $\lambda_{1}\left(A_{m+1}\right)$ of the graph of type A_{m+1} is given (see, for instance, [5]) by

$$
\lambda_{1}\left(A_{m+1}\right)=1-\cos \left(\frac{\pi}{m}\right) .
$$

For the graph of type A_{m+1}, we have $\#(E \cup \partial E)=m$ and $\#(V \cup \partial V)=m+1$.
(2) The first eigenvalue of the graph of type $L_{m}, m \geq 4$ is rather complicated. Let $H_{m}(t)$ be a polynomial of degree $m-1$ in t defined by

$$
H_{m}(t)=\prod_{j=1}^{m-1}\left(t-1+\cos \left(\frac{j \pi}{m}\right)\right)
$$

The eigenvalues of the Dirichlet problem for the graph of type L_{m} are $3 / 2$ and the roots of the following equation of order $m-2$ in t :

$$
\left(6 t^{2}-9 t+1\right) H_{m-4}(t)-\left(t-\frac{1}{2}\right) H_{m-5}(t)=0
$$

where we regard $H_{-1}(t)=0$ and $H_{0}(t)=1$.
For examples, $\lambda_{1}\left(L_{4}\right)=0.24170, \lambda_{1}\left(L_{5}\right)=0.12351$ and $\lambda_{1}\left(L_{6}\right)=0.07809$.
For the graph of type L_{m}, we have $\#(E \cup \partial E)=\#(V \cup \partial V)=m$.
3. Surgery of a graph. Now let us describe our main tool-surgery of a graph. We consider the following cases:
(i) There exists $v_{1} \in V$ such that the complement $G-\left\{v_{1}\right\}$ of v_{1} has at least two connected components, say G_{1}, G_{2}, \ldots. Two cases occur:
(i-1) $\quad G_{1}$ has an element $v_{2} \in \partial V$.
(i-2) G_{1} has no element of ∂V.
(ii) There exist $v_{1}, v_{2} \in V$ such that the complement $G-\left\{v_{1}, v_{2}\right\}$ of $\left\{v_{1}, v_{2}\right\}$ also has at least two connected components, say G_{1}, G_{2}, \ldots.

We define surgery to obtain a new graph $G^{\prime}=\left(V^{\prime} \cup \partial V^{\prime}, E^{\prime} \cup \partial E^{\prime}\right)$ by performing the following operations on $G=(V \cup \partial V, E \cup \partial E)$ in the above three cases:

Definition 3.1. In the case (i-1), let us take an edge $e=[x, y] \in E$ such that $x, y \notin G_{1}$. The $\left(G_{1}, e\right)$-operation of the first kind consists of
(i) cutting G_{1} at v_{1} and e at x,
(ii) pasting the edges of G_{1} to x, to have v_{1} as an end point, and
(iii) pasting v_{2} to e.

In this way, one gets a new graph $G^{\prime}=\left(V^{\prime} \cup \partial V^{\prime}, E^{\prime} \cup \partial E^{\prime}\right)$ (see Figure 3.1).

Figure 3.1.

Remark 3.2. By the (G_{1}, e)-operation, the boundary vertex $v_{2} \in \partial V$ is changed to an interior vertex of G^{\prime}, that is, $v_{2} \in V^{\prime}$.

Definition 3.3. In the case (i-2), take $x \in V$ which does not belong to G_{1} and is not equal to v_{1}. The ($\left.G_{1}, x\right)$-operation on G is performed as follows.
(i) cutting G_{1} at v_{1}, and
(ii) pasting the edges of G_{1} to x, to have v_{1} as an end point. One gets a new graph $G^{\prime}=\left(V^{\prime} \cup \partial V^{\prime}, E \cup \partial E^{\prime}\right)$ (see Figure 3.2).

Figure 3.2.

Definition 3.4. In the case (ii), we assume that both v_{1} and v_{2} are branch points. Recall that a branch point is $x \in V$ with $m(x) \geq 3$. Take an edge of $G, e=[x, y] \in E$ with $x, y \notin G_{1}$. The (G_{1}, e)-operation of the second kind on G is performed as follows.
(i) cutting G_{1} at v_{1} and v_{2}, and cutting e at x,
(ii) pasting edges of G_{1} to x, to have v_{1} as an end point,
(iii) adding a new vertex v_{3}, pasting it to e, and pasting the edges of G_{1} to v_{3}, to have v_{2} as an end point.

In this way one obtains a new graph $G^{\prime}=\left(V^{\prime} \cup \partial V^{\prime}, E^{\prime} \cup \partial E^{\prime}\right)$ (see Figure 3.3). Note that both v_{1} and v_{2} remain interior points of G^{\prime}.

Figure 3.3.
Note that for a new graph $G^{\prime}=\left(V^{\prime} \cup \partial V^{\prime}, E^{\prime} \cup \partial E^{\prime}\right)$ obtained by surgery, it holds that $\#(E \cup \partial E)=\#\left(E^{\prime} \cup \partial E^{\prime}\right)$. Our key lemma is the following.

Crucial Lemma 3.5. Assume that G_{1} is one of the connected components of the complement of $v_{1} \in V$ or $v_{2} \in V$ in $G=(V \cup \partial V, E \cup \partial E)$. Let f be the first eigenfunction of G. Take $x \in V$ satisfying $f(x)=\max _{v \in V} f(v)$, and an edge $e=[x, y] \in E$ having x as an end point. Assume that G_{1} and e have no vertices in common, and that $G^{\prime}=\left(V^{\prime} \cup \partial V^{\prime}, E^{\prime} \cup \partial E^{\prime}\right)$ is obtained by surgeries on G. Then

$$
\lambda_{1}\left(G^{\prime}\right) \leq \lambda_{1}(G)
$$

Proof. Define a function \tilde{f} on V^{\prime} by

$$
\tilde{f}(v)= \begin{cases}f(x) & \text { if } v \text { is a vertex of } G_{1}, \text { or } v_{3} \text { in the case (ii) }, \\ f(v) & \text { otherwise }\end{cases}
$$

for $v \in V^{\prime}$. Since $\tilde{f}(v)=0, v \in \partial V^{\prime}$, it suffices to show

$$
\begin{equation*}
(d \tilde{f}, d \tilde{f})_{G^{\prime}} \leq(d f, d f)_{G} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\tilde{f}, \tilde{f})_{G^{\prime}} \geq(f, f)_{G} \tag{3.2}
\end{equation*}
$$

whence we obtain

$$
\lambda_{1}\left(G^{\prime}\right) \leq \frac{(d \tilde{f}, d \tilde{f})_{G^{\prime}}}{(\tilde{f}, \tilde{f})_{G^{\prime}}} \leq \frac{(d f, d f)_{G}}{(f, f)_{G}}=\lambda_{1}(G)
$$

The inequality (3.1) follows as

$$
\begin{aligned}
(d \tilde{f}, d \tilde{f})_{G^{\prime}} & =\sum_{e^{\prime} \in E^{\prime} \cup \partial E^{\prime}} d \tilde{f}\left(e^{\prime}\right)^{2}=\sum_{\substack{e^{\prime} \in E^{\prime} \cup \partial E^{\prime} \\
e^{\prime} \notin G_{1}}} d \tilde{f}\left(e^{\prime}\right)^{2} \\
& =\sum_{\substack{e^{\prime} \in \in \cup \partial E \\
e^{\prime} \notin G_{1}}} d f\left(e^{\prime}\right)^{2} \leq(d f, d f)_{G} .
\end{aligned}
$$

For (3.2), let us consider the case where G^{\prime} is obtained by the ($\left.G_{1}, e\right)$-operation of the first kind. By definition, for some $a>0$,

$$
\begin{aligned}
(\tilde{f}, \tilde{f})_{G^{\prime}}= & m_{G^{\prime}}\left(v_{1}\right) \tilde{f}\left(v_{1}\right)^{2}+m_{G^{\prime}}(x) \tilde{f}(x)^{2}+m_{G^{\prime}}\left(v_{2}\right) \tilde{f}\left(v_{2}\right)^{2} \\
& +\sum_{\substack{v \in V_{V}^{\prime}, v \neq G_{1} \\
v \neq v_{1}, x}} m_{G^{\prime}}(v) \tilde{f}(v)^{2}+\sum_{\substack{v \in V^{\prime}, v \in G_{1} \\
v \neq v_{2}}} m_{G^{\prime}}(v) \tilde{f}(v)^{2} \\
= & \left(m_{G}\left(v_{1}\right)-a\right) f\left(v_{1}\right)^{2}+\left(m_{G}(x)+a-1\right) f(x)^{2}+2 f(x)^{2} \\
& +\sum_{\substack{v \in V, v \neq G_{1} \\
v \neq v_{1}, x}} m_{G}(v) f(v)^{2}+\sum_{\substack{v \in V, v \in G_{1} \\
v \neq v_{2}}} m_{G}(v) f(x)^{2} \\
\geq & (f, f)_{G} .
\end{aligned}
$$

In the case of the $\left(G_{1}, x\right)$-operation, for some $a>0$,

$$
\begin{aligned}
(\tilde{f}, \tilde{f})_{G^{\prime}}= & m_{G^{\prime}}\left(v_{1}\right) \tilde{f}\left(v_{1}\right)^{2}+m_{G^{\prime}}(x) \tilde{f}(x)^{2}+\sum_{\substack{v \in V^{\prime} \\
v \in G_{1}}} m_{G^{\prime}}(v) \tilde{f}(v)^{2}+\sum_{\substack{v \in V^{\prime}, v^{\prime} \in G_{1} \\
v \neq v_{1}, x}} m_{G^{\prime}}(v) \tilde{f}(v)^{2} \\
= & \left(m_{G}\left(v_{1}\right)-a\right) f\left(v_{1}\right)^{2}+\left(m_{G}(x)+a\right) f(x)^{2} \\
& +\sum_{\substack{v \in V \\
v \in G_{1}}} m_{G}(v) f(x)^{2}+\sum_{\substack{v \in V, v \neq G_{1} \\
v \neq v_{1}, x}} m_{G}(v) f(v)^{2} \\
\geq & (f, f)_{G} .
\end{aligned}
$$

In the case of the $\left(G_{1}, e\right)$-operation of the second kind, for some $a>0$ and $b>0$,

$$
\begin{aligned}
(\tilde{f}, \tilde{f})_{G^{\prime}}= & m_{G^{\prime}}\left(v_{1}\right) \tilde{f}\left(v_{1}\right)^{2}+m_{G^{\prime}}\left(v_{2}\right) \tilde{f}\left(v_{2}\right)^{2}+m_{G^{\prime}}\left(v_{3}\right) \tilde{f}\left(v_{3}\right)^{2}+m_{G^{\prime}}(x) \tilde{f}(x)^{2} \\
& +\sum_{\substack{v \in V^{\prime}, v \notin G_{1} \\
v \neq v_{1}, v_{2}, v_{3}, x}} m_{G^{\prime}}(v) \tilde{f}(v)^{2}+\sum_{\substack{v \in V^{\prime} \\
v \in G_{1}}} m_{G^{\prime}}(v) \tilde{f}(v)^{2} \\
= & \left(m_{G^{\prime}}\left(v_{1}\right)-a\right) f\left(v_{1}\right)^{2}+\left(m_{G^{\prime}}\left(v_{2}\right)-b\right) f\left(v_{2}\right)^{2}+\left(m_{G}(x)+a-1\right) f(x)^{2} \\
& +(b+1) f(x)^{2}+\sum_{\substack{\in \in V, v \neq G_{1} \\
v \neq v_{1}, v_{2}, x}} m_{G}(v) f(v)^{2}+\sum_{\substack{v \in V \\
v \in G_{1}}} m_{G^{\prime}}(v) f(x)^{2} \\
\geq & (f, f)_{G},
\end{aligned}
$$

hence we get Lemma 3.5.
4. Proof of Theorem A. The main idea of our proof is to perform surgery on a given graph G, so as to decrease the numbers of cycles and boundary points and ultimately to obtain the graph of type L_{m}.

We use the following terminology: $c=\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ is said to be a path emanating from a vertex $v \in V$ if $v_{i} \in V \cup \partial V, v_{0}=v$ and $\left[v_{i}, v_{i+1}\right]=e \in E \cup \partial E$. A cycle of G is a path $c=\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ with $v_{0}=v_{s}$ with each $v_{i} \in V$ and $s \geq 3$. A branch point is a vertex $x \in V$
with $m(x) \geq 3$. A graph with one boundary point and one cycle as in Figure 4.1, where $\#(V \cup \partial V)=m$, is said to be of type $L_{m, i}$ with $m \geq 4$ and $i \geq 2$:

Figure 4.1.
Note that a graph of type $L_{m, 2}$ is also of type L_{m}. We shall show

$$
\lambda_{1}(G) \geq \lambda_{1}\left(L_{m, i}\right) \geq \lambda_{1}\left(L_{m}\right),
$$

if $\#(V \cup \partial V)=m$.
Lemma 4.1. Let $G=(V \cup \partial V, E \cup \partial E)$ be a graph with boundary. Let us add boundary points to G so as to obtain a new graph G^{\prime} of which each boundary point $v \in \partial V^{\prime}$ has only one boundary edge (see Figure 4.2). Then

$$
\lambda_{1}(G)=\lambda_{1}\left(G^{\prime}\right) .
$$

Proof. The set of interior points of G^{\prime} is the same as that of G, so the eigenfunction of G can be regarded as a function on $V^{\prime} \cup \partial V^{\prime}$ by regarding it to vanish on the boundary, and the eigenfunction on G^{\prime} vice versa. By definition, for all $v \in V$,

$$
m_{G^{\prime}}(v)=m_{G}(v)
$$

which implies

$$
\Delta_{G^{\prime}} f(x)=\Delta_{G} f(x), \quad x \in V
$$

Figure 4.2.
In the rest of this paper, we choose an interior vertex $x_{0} \in V$ satisfying

$$
f\left(x_{0}\right)=\max _{v \in \boldsymbol{V}} f(v) .
$$

The first step. For any boundary vertex $v \in \partial V$, let $e_{v}=\left(v, v_{1}, \ldots, v_{s-1}, v_{s}\right)$ be a path emanating from v and reaching the first branch point v_{s} of G. Let G_{1} be the complement of v_{s} in e_{v} (see Figure 4.3). Then one of the following occurs:

Case (i) $x_{0} \in e_{v}$;
Case (ii) $\quad x_{0} \notin e_{v}$.

Figure 4.3.
In the case (ii), take an edge $e=\left[x_{0}, x_{1}\right] \in E$ which does not have v_{s} as a common end point. Perform a $\left(G_{1}, e\right)$-operation on G to obtain G^{\prime}. Note that the number of the boundary vertices of G^{\prime} is smaller than that of G and by Lemma 3.5,

$$
\lambda_{1}(G) \geq \lambda_{1}\left(G^{\prime}\right) .
$$

Carry out this process for each boundary vertex, until the case (i) occurs. The resulting graph, denoted by G^{\prime}, satisfies $\lambda_{1}(G) \geq \lambda_{1}\left(G^{\prime}\right)$, and it holds that either
(a) G^{\prime} has only one boundary vertex v_{1} and x_{0} is a vertex in a path connecting v_{1} to a branch vertex, or
(b) x_{0} is a branch vertex to which all boundary vertices are connected.

The second step. Let G^{\prime} be a graph which satisfies (a) or (b) in the first step. Here we use the following terminology: A cycle $c=\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ with $v_{s}=v_{0}$ is reducible if there exist $1 \leq i<j \leq s-1$ and a path which connects v_{i} and v_{j} and is shorter than $\left(v_{i}, v_{i+1}, \ldots, v_{j}\right)$. Otherwise, a cycle is called irreducible.

In the second step, we perform surgery on the graph G^{\prime} to obtain a graph $G^{\prime \prime}$ such that any cycle of $G^{\prime \prime}$ contains a unique branch point. Indeed, assume that G^{\prime} admits a cycle c which has at least two branch points. We may assume that c is irreducible by taking first an irreducible cycle and considering cycles step by step. Recall that $x_{0} \in V$ is a vertex satisfying $f\left(x_{0}\right)=\max _{v \in V} f(v)$. Let us take a path \tilde{e} in c connecting two neighboring branch points, say v_{1} and v_{2}, but not containing x_{0}. Let G_{1} be the complement of v_{1} and v_{2} in \tilde{e} which is the case (ii) in Section 3. Take an edge $e=$ $\left[x_{0}, y\right]$ which does not have y as a common vertex to G_{1}. Now perform the ($\left.G_{1}, e\right)$ operation of the second kind on G^{\prime} to obtain a new graph $G^{\prime \prime}$ (see Figure 4.4).

Figure 4.4.

The number of cycles of the graph $G^{\prime \prime}$ is smaller than that of G^{\prime} and $\lambda_{1}\left(G^{\prime}\right) \geq \lambda_{1}\left(G^{\prime \prime}\right)$. Continue this process succesively. Then, finally we obtain the graph $G^{\prime \prime}$ all of whose cycles have only one branch point and $\lambda_{1}(G) \geq \lambda_{1}\left(G^{\prime \prime}\right)$.

The third step. If the graph $G^{\prime \prime}$ obtained in the second step admits at least two cycles, we shall perform surgery on such $G^{\prime \prime}$ to make a graph $G^{\prime \prime \prime}$ whose number of cycles is smaller than that of $G^{\prime \prime}$. Finally we obtain a graph $G^{\prime \prime \prime}$ which is of type $L_{m, i}$ or in general, a star-shaped graph, that is, a graph which has no cycle and one branch vertex (see Figure 4.5).

Figure 4.5.

Let $G^{\prime \prime}$ admit at least two cycles each of which has one branch point. Let c be any fixed cycle of $G^{\prime \prime}$. Let $e_{c}=\left(v, v_{1}, v_{2}, \ldots, v_{j}, \tilde{v}\right)$ be a path emanating from a unique branch point v to a neighboring branch point \tilde{v}. Let \tilde{e}_{c} be the union of e_{c} and c (see Figure 4.6).

Figure 4.6.

Then we get:
Lemma 4.2. Let f be the first eigenfunction of $G^{\prime \prime}$. Then

$$
\max _{x \in \tilde{c}_{c}} f(x)=\max _{x \in \mathrm{c}} f(x) .
$$

Proof. Assume that this is not the case. Then there exists $v_{i} \in e_{c}$ with $1 \leq i \leq j$ such that

$$
f\left(v_{i}\right)=\max _{x \in \tilde{\mathrm{e}}_{\mathrm{c}}} f(x) .
$$

Define \tilde{f} on the set of vertices of $G^{\prime \prime}$ by

$$
\tilde{f}(x)= \begin{cases}f\left(v_{i}\right), & x \in c \cup\left\{v_{1}, \ldots, v_{i}\right\} \\ f(x), & \text { otherwise }\end{cases}
$$

By the definition of \tilde{f},

$$
(\tilde{f}, \tilde{f})_{G^{\prime \prime}}>(f, f)_{G^{\prime \prime}}, \quad \text { and } \quad(d \tilde{f}, d \tilde{f})_{G^{\prime \prime}} \leq(d f, d f)_{G^{\prime \prime}}
$$

which contradicts our assumption that f is the first eigenfunction of $G^{\prime \prime}$.
Let us denote $f(c)=\max _{x \in c} f(x)$ for each cycle c of $G^{\prime \prime}$. Let us choose a cycle c_{0} such that

$$
f\left(c_{0}\right)=\max _{c} f(c),
$$

where c runs over all cycles of $G^{\prime \prime}$. By Lemma 4.2, we may assume that c_{0} contains x_{0}, that is,

$$
f\left(c_{0}\right)=\max _{v \in V_{G^{\prime \prime}}} f(v)=f\left(x_{0}\right) .
$$

For each cycle c not equal to c_{0}, let v_{c} be its branch point, let G_{1} be the complement of v_{c} in c. Now perform the $\left(G_{1}, x_{0}\right)$-operation on $G^{\prime \prime}$ to get a new graph $G^{\prime \prime \prime}$. Then
$\lambda_{1}\left(G^{\prime \prime}\right) \geq \lambda_{1}\left(G^{\prime \prime \prime}\right)$ and the cycle of $G^{\prime \prime \prime}$ containing x_{0} has two branch points. Performing the process of the second step on $G^{\prime \prime \prime}$ again, we get a new graph $G^{(4)}$ all of whose cycles have only one branch point and the number of cycles is smaller than that of $G^{\prime \prime \prime}$. Continue this process until the number of cycles is at most one. We obgain a graph of type $L_{m, i}$ or in general, a star-shaped graph.

The last step. We shall show:
Lemma 4.3. Let G_{*} be a star-shaped graph which is not of type A_{m+1}. For some $i>2$, we have

$$
\lambda_{1}\left(G_{*}\right)>\lambda_{1}\left(A_{m+1}\right) \geq \lambda_{1}\left(L_{m, i}\right)
$$

Moreover, for all $i>2$,

$$
\lambda_{1}\left(L_{m, i}\right)>\lambda_{1}\left(L_{m}\right)
$$

Proof. For the first inequality, let G_{*} be a star-shaped graph and f its first eigenfunction (see Figure 4.5). Let $\partial V_{*}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{t}\right\}$ be the set of all boundary vertices of G_{*}. Let c_{i} be the paths connecting x_{0} and $v_{i}(1 \leq i \leq t)$. Cut each $c_{i}(3 \leq i \leq t)$ at x_{0}, paste c_{i} to v_{i-1} for all $3 \leq i \leq t$ as to get a string, and change $v_{i}(2 \leq i \leq t-1)$ to interior vertices and change boundary edge of $c_{i}(2 \leq i \leq t-1)$ to interior edge. Then the resulting graph \widetilde{G} is of type A_{m+1}. Define a function \tilde{f} on \widetilde{G} by

$$
\tilde{f}(x)= \begin{cases}f\left(x_{0}\right), & x \text { is a vertex of } c_{i}(2 \leq i \leq t-1) \\ f(x), & \text { otherwise }\end{cases}
$$

Then

$$
(d \tilde{f}, d \tilde{f})<(d f, d f), \quad \text { and } \quad(\tilde{f}, \tilde{f})>(f, f),
$$

which implies that

$$
\lambda_{1}\left(A_{m+1}\right) \leq \frac{(d \tilde{f}, d \tilde{f})}{(\tilde{f}, \tilde{f})}<\frac{(d f, d f)}{(f, f)}=\lambda_{1}\left(G_{*}\right)
$$

For the second inequality, let f be the first eigenfunction of a graph of type A_{m+1}. Let v_{1} and v_{2} be the two end points of the graph A_{m+1}, and let x_{0} be the interior vertex attaining the maximum of f. Paste the end vertex v_{2} to the vertex x_{0} to get a cycle c and the graph $K_{m, i}$ for some i. Define a function \tilde{f} on the graph $L_{m, i}$ by

$$
\tilde{f}(x)= \begin{cases}f\left(x_{0}\right), & x \in c \\ f(x), & \text { otherwise }\end{cases}
$$

Then $(\tilde{f}, \tilde{f})_{L_{m, i}} \geq(f, f)_{A_{m+1}}$ and $(d \widetilde{f}, d \widetilde{f})_{L_{m, i}} \leq(d f, d f)_{A_{m+1}}$, which implies that $\lambda_{1}\left(A_{m+1}\right) \geq$ $\lambda_{1}\left(L_{m, i}\right)$ for some i.

It remains to show $\lambda_{1}\left(L_{m}\right)<\lambda_{1}\left(L_{m, i}\right)$ for all $i>2$.
Let G be a graph of type $L_{m, i}, x_{0}$ its vertex attaining the maximum of the first
eigenfunction f, and c its cycle. By Lemma 4.2, it follows that
(1) $x_{0} \in c$.

To see the inequality, we want to show that:
(2) the function f is monotone increasing on the path $\tilde{e}=\left(v_{1}, v_{2}, \ldots, v_{s}, \tilde{v}\right)$, where v_{1} is the boundary vertex and \tilde{v} is the branch point, that is, $f\left(v_{i}\right)<f\left(v_{j}\right)<f(\tilde{v})$ if $i<j$.

Indeed, otherwise, we replace f by \tilde{f} on V in such a way that \tilde{f} is linear on the part where f is lower convex. Then

$$
\frac{(d \tilde{f}, d \tilde{f})}{(\tilde{f}, \tilde{f})}<\frac{(d f, d f)}{(f, f)}=\lambda_{1}\left(L_{m, i}\right),
$$

which is a contradiction.
We also have:
(3) x_{0} is a branch point of c.

Indeed, otherwise, for $G=L_{m, i}$, we cut G at \tilde{v} one of the edges of c having \tilde{v} as an end point, and paste the edge to x_{0} to obtain G^{\prime} (see Figure 4.7).

Figure 4.7.
Define \tilde{f} on G^{\prime} by

$$
\tilde{f}(x)= \begin{cases}f\left(x_{0}\right), & x \text { is in the cycle of } G^{\prime} \\ f(x), & \text { otherwise } .\end{cases}
$$

Then we get

$$
\frac{(d \widetilde{f}, d \widetilde{f})}{(\widetilde{f}, \tilde{f})}<\frac{(d f, d f)}{(f, f)}=\lambda_{1}(G)=\lambda_{1}\left(L_{m, i}\right),
$$

which is a contradiction.
Let $c=\left(\tilde{v}, \tilde{v}_{1}, \tilde{v}_{2}, \ldots, \tilde{v}_{j-2}, \tilde{v}_{j-1}, \tilde{v}_{j}\right)$ be a cycle of $G=L_{m, i}$. We have

$$
\begin{equation*}
f(x)=f(\tilde{v}), \quad \text { for all } \quad x \in c, \tag{4}
\end{equation*}
$$

since, if there exists $\tilde{v}_{s} \in c$ such that $f\left(\tilde{v}_{s}\right)<f(\tilde{v})$, and we define \tilde{f} on $L_{m, i}$ by

$$
\tilde{f}(x)= \begin{cases}f(\tilde{v}), & x \in c \\ f(x), & \text { otherwise }\end{cases}
$$

then we get

$$
(d \tilde{f}, d \tilde{f}) \leq(d f, d f), \quad \text { and } \quad(\tilde{f}, \tilde{f})>(f, f)
$$

which is a contradiction to our choice that f is the first eigenfunction.
Now cut the edge $\left[\tilde{v}, \tilde{v}_{j}\right]$ of c at \tilde{v} and paste it to the vertex \tilde{v}_{j-2}. Then we get a graph \tilde{G} of type L_{m} (see Figure 4.8).

Figure 4.8.
Define \tilde{f} on \tilde{G} by the function corresponding to f. Then $(d \tilde{f}, d \tilde{f})=(d f, d f)$ and $(\tilde{f}, \tilde{f})=(f, f)$. However, \tilde{f} cannot be the first eigenfunction on \tilde{G}, for otherwise, \tilde{f} must be a strictly monotone function on the path emanating from the boundary vertex to the branch point by the fact (2). By definition, however, it is not the case, a contradiction.

Thus we obtain

$$
\lambda_{1}\left(L_{m}\right)<\frac{(d \tilde{f}, d \tilde{f})}{(\tilde{f}, \tilde{f})}=\frac{(d f, d f)}{(f, f)}=\lambda_{1}\left(L_{m, i}\right)
$$

Therefore, we obtain Lemma 4.3, and hence Theorem A.
5. Proof of Theorem B. To prove Theorem B, we first note that any cycle c of a graph $G=(V \cup \partial V, E \cup \partial E)$ with the non-separation property admits at least two branch points. Indeed, if c has only one branch point v, then $c-\{v\}$ is one of the connected components of the complement $G-\{v\}$. However, $c-\{v\}$ has no boundary vertex, a contradiction to the non-separation property of G.

Let G be a graph with the non-separation property. We first perform the $\left(G_{1}, e\right)$-operation on G as in the second step of the proof of Theorem A, and get a graph G^{\prime}, the number of whose cycles is smaller than that of G and which still has the non-separation property. We continue this process successively and finally obtain a graph, denoted by the same letter G^{\prime}, which has no cycle and the non-separation property.

Next, as in the third step of the proof of Theorem A, we perform the (G, x)-operation on G^{\prime}, and get a graph $G^{\prime \prime}$ whose number of boundary points is smaller than that of G^{\prime}. Continuing this process successively until x_{0} is the only one branch vertex, we obtain
a star-shaped graph $G^{\prime \prime}$. By Lemma 4.3, we obtain Theorem B.

References

[1] P. Berard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Math. 1207, Springer-Verlag, 1986.
[2] I. Chavel, Eigenvclues in Riemannian Geometry, Academic Press, New York 1984.
[3] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), 787-794.
[4] J. Friedman, Some geometric aspects of graphs and their eigenfunctions, Duke Math. J. 69 (1993), 487-525.
[5] Y. Ohno and H. Urakawa, On the first eigenvalue of the combinatorial Laplacian for a graph, Interdisciplinary Inform. Sci. 1 (1994), 33-46.

Department of Mathematics	Mathematics Laboratories
Faculty of Sciences	Graduate School of Information Sciences
Okayama University	Tohoku University
Okayama, 700-8530	Sendai, $980-8577$
Japan	Japan

[^0]: 1991 Mathematics Subject Classification. Primary 05C50; Secondary 58G25, 68R10.
 Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

