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Abstract. The minimal model conjecture says that if a proper variety has non-negative
Kodaira dimension, then it has a minimal model with abundance and if the Kodaira dimension
is — oo, then it is birationally equivalent to a variety which has a fibration with the relatively
ample anti-canonical divisor. In this paper, first we prove this conjecture for a ^-regular divisor
on a proper toric variety by means of successive contractions of extremal rays and flips of the
ambient toric variety. Then we prove the main result: for such a divisor with the non-negative
Kodaira dimension there is an algorithm to construct concretely a projective minimal model
with abundance by means of "puffing up" the polytope.

Introduction. Let k be an algebraically closed field of arbitrary characteristic. Va-

rieties in this paper are all defined over k. Let X be a proper algebraic variety. A proper

algebraic variety Y is called a minimal model of X, if (1) Y is birationally equivalent to X,

(2) Y has at worst terminal singularities and (3) the canonical divisor Ky is nef. A minimal

model Y is said to have abundance if the linear system \mKγ\ is base point free for suffi-

ciently large m. The minimal model conjecture states: an arbitrary proper variety with K > 0

has a minimal model with abundance while an arbitrary proper variety with K = — oo has a

birationally equivalent model Y with at worst terminal singularities and a fibration Y -> Z to

a lower dimensional variety with — Ky relatively ample.

The conjecture is classically known to hold in the 2-dimensional case. In the 3-dimen-

sional case the conjecture for k = C is proved by Mori [4] and Kawamata [3], while it is not

yet proved in higher dimension. As a special case of higher dimension, Batyrev [1] proved,

among other results, the existence of a minimal model for a A -regular anti-canonical divisor

of a Gorenstein Fano toric variety Tχ(A)<

In this paper, first in Section 1 we prove the minimal model conjecture for every A-

regular divisor X on a toric variety of arbitrary dimension by means of successive contractions

of extremal rays and flips which are introduced by Reid [7]. By Bertini's theorem, for a field

k of characteristic 0, the minimal model conjecture thus holds for a general member of a base

point free linear system on a proper toric variety over k. An important point of this part is

providing with a technical statement Corollary 1.17 which is used in the following sections.

Then in Sections 2 and 3 we prove the main result: for a Z\-regular divisor with K > 0, there

exists an algorithm to construct concretely a projective minimal model with abundance by

means of "puffing up" the polytope corresponding to the adjoint divisor. The advantage of
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working on toric varieties is that one can see every possible exceptional divisor as a vector in

N. We can make use of it for concrete construction of minimal model. In Section 4 we show

some examples of projective minimal models constructed by this algorithm.

Half of this work was done during the author's stay at the Johns Hopkins University in

April 1996. She expresses her gratitude to Professors Shokurov and Kawamata who made her

stay possible. She is also grateful to the Johns Hopkins University for hospitality. She would

like to thank Professor Reid who gave useful suggestions and Professor Batyrev who called

her attention to this problem and pointed out an error in the first draft of this paper.

1. The minimal model theorem for divisors on toric varieties.

DEFINITION 1.1 ([1]). A divisor X of a toric variety TN(A) defined by a fan A is

called z\-regular, if for every τ e A the intersection X Π orb(τ) is either a smooth divisor of

orb(τ) or empty. In particular, X Π T φ 0 for the maximal orbit T in TM(A).

DEFINITION 1.2. Let V and Vf be toric varieties defined by fans A and A\ respectively

and / : V' > V a toric birational map: i.e. A! is obtained by successive subdivisions and

converse of subdivisions from A. If / is a morphism, the proper transform of a divisor X of

V is defined as usual. For general / , we can define the proper transform for a certain divisor.

Namely, let T be the maximal orbit in V. If an irreducible divisor X on V satisfies X Π T φ 0,

the divisor X' = f~ι (X Π T) on V is called the proper transform of X on V.

DEFINITION 1.3. If a proper variety X has a resolution / : X' -> X of singularities,

define κ(X) as the Kodaira dimension κ(X') of X''.

1.4. For a Z\-regular divisor X on a proper toric variety V = TN(A), K{X) is defined.

Indeed, let A! be a non-singular subdivision and / : V' = TM(A') -+ V the corresponding

morphism; then the proper transform X' of X on Vf is Z\'-regular by 3.2.1 of [1], therefore it

is non-singular.

DEFINITION 1.5. Let X be a divisor on a normal variety V such that Ky + X is a

β-Cartier divisor and / : V -> V a birational morphism. Let X' be the proper transform of

X. If

Ky> + X1 = f*(Ky + X) + ΣaiEi '
i

where £, 's are the exceptional divisors of / , then aι is called the discrepancy of Ky + X at

DEFINITION 1.6. Let V be a toric variety defined by a simplicial fan A and X an

irreducible divisor on V. The divisor Ky + X is called toric terminal, if the following hold:

(1) There exists a morphism / : V' = TN(A') -> V corresponding to a non-singular

subdivision A! of A such that the proper transform X' of X on Vf is z^-regular, in particular

X Π T φ 0 for the maximal orbit T in V, and

(2) for every such morphism as in (1) the discrepancy of Ky -h X at every exceptional

divisor on Vf is positive.
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LEMMA 1.7. IfV = Tj^(Δ) is non-singular and an irreducible divisor X on V is Δ-

regular, then Ky + X is tone terminal.

PROOF. For every non-singular subdivision Δ! of Δ, where Δ! φ Δ, the proper trans-

form X' of X by the corresponding morphism / : Vf = T^{Δ') —> V is Z^-regular. Since

X' = f*χ and Ky = f*Ky + ]Γ\ a;£;, where aι > 0 for every exceptional divisor E[ on

Vr, it follows that the discrepancy of Ky + X at each E{ is positive. D

PROPOSITION 1.8. Let V be a toric variety defined by a simplicial fan Δ and X an

irreducible divisor on V Then the divisor Ky + X is toric terminal if and only if the following

hold:

(i) There exists a morphism f : Vf = TN(Δ') —> V corresponding to a non-singular

subdivision Δ! of Δ such that the proper transform X' ofXon Vf is Δ!-regular.

(ii) For one such morphism as in (i) the discrepancy of Ky + X at every exceptional

divisor on Vf is positive.

PROOF. Let / : V = TN(Δf) -> V be the morphism satisfying the conditions (i)

and (ii) and let g : V" -> V be another morphism satisfying (i). Take a non-singular toric

variety V which dominates both Vf and V". Then by Lemma 1.7, Ky -+- X' is toric terminal.

Therefore the discrepancy of Ky + X at every exceptional divisor on V is positive, which

yields the positivity of it at every exceptional divisor on V". D

LEMMA 1.9. Let Vbea toric variety defined by a simplicial fan Δ and X an irreducible

divisor on V. If the divisor Ky + X is toric terminal, then Vhas at worst terminal singularities.

PROOF. This follows from the fact that the discrepancy of Ky at each exceptional

divisor is greater than or equal to that of Ky + X. D

Here we summarize the results of Reid ([7]) which are used in this section.

PROPOSITION 1.10 ([7]). Let V be the toric variety defined by a proper simplicial fan

Δ.

(i) The cone of numerical effective I-cycles NE(V) is represented as Y^=\R>oUi]i

where W s are I-dimensional strata on V. Here each R>oUi] is called an extremal ray.

(ii) For every extremal ray R there exists a toric morphism ψR : V -> Vf which is an

elementary contraction in the sense of Mori theory: (ψR)*Oy = Oy, and ΨRC — pt if and

only if[C] € R. Let A C V and B C V' be the loci on which ψn is not an isomorphism.

Then ΨR\A : A —> B is aflat morphism all of whose fibers are weighted projective spaces of

the same dimension.

(iii) IfφR:V-^Vf = TN(Δ') is birational and not isomorphic in codimension one,

then the exceptional set ofψR is an irreducible divisor and Δ! is proper simplicial. This ψR is

called a dίvisorial contraction.

(iv) If ΨR : V -• Vf = TN(Δ') is isomorphic in codimension one, then there exists a

commutative diagram
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V
V \/»

V Vχ= TN(Δ{)

V

such that Λ\ is proper simplicίal with the set of l-dimensional cones Δ\(l) = Δ{\), that

all morphisms are elementary contractions of extremal rays, that ψ and ψ\ are birational

morphisms with a common exceptional divisor D, that ψR and φ\ are birational morphisms

with the exceptional sets ψ{D) and ψ\(D) respectively, and that by identifying N\(V) with

N\(V\), —R is an extremal ray in NE(Vi) and φ\ = ψ-R. The birational map φ^1 o ψR :

V > V\ is called a flip.

LEMMA 1.11. Let V be a toric variety defined by a proper simplicial fan A and X an

irreducible divisor such that Ky + X is toric terminal. Let R be an extremal ray such that

{Ky + X)R < 0. Then the following hold:

(i) If ΨR : V -> Vf = TN(Δ') is a divisorial contraction, then Ky + X' is toric

terminal, where Xf is the proper transform ofX on Vr\

(ii) Let ψR : V —• Vr be isomorphic in codimension one; in the diagram

V

V VX=TN{A\)

V

of Proposition 1.10 (iv), let X\ be the proper transform ofXon V\,D the common exceptional

divisor ofψ and ψ\, a the discrepancy of Ky + X at D and a' the discrepancy ofKyχ + X\

at D; then a < a.1 and Kyχ + Xi is toric terminal.

PROOF. For the proof of (i), first one should remark that V' is β-factorial, because Δ!

is simplicial. Let E be the exceptional divisor for ψR.

CLAIM 1.12. ER < 0.

For the proof of the claim, take an irreducible divisor H on V such that H D ΨR(E).

Then φ*H = [H] + aE with a > 0, where [H] is the proper transform of H on V. Since

(φ*RH)R = 0 and [H]R > 0, it follows that aER < 0, which completes the proof of the

claim.

Denote Ky + X by φ*R(Kv> + X') + bE. Then b > 0. Indeed, by {Ky + X)R < 0,

φ*R{Kv> + Xf)R = 0 and ER < 0, it follows that b > 0. Let Δ be a non-singular subdivision

of Δ such that the proper transform X of X on V = TN{Δ) is ^-regular. Since Ky + X

is toric terminal, the discrepancy of Ky + X at every exceptional divisor for V -• V is

positive. By this, and b > 0, it follows that the discrepancy of Ky + X' at every exceptional

divisor for V —> V' is positive. For the proof of (ii), take a curve / on V such that \j/\ (/) =pt

and ψ{l) τ^pt. This is possible because if a curve contracted by both ψ and ψ\ exists, then

the extremal rays corresponding to ψ and ψ\ coincide, which implies V ~ V\ and ψR =

φ\, a contradiction to φ\ = ψ-R in (iv) of Proposition 1.10. For this /, one can prove that
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Dl < 0 in the same way as in the claim above. Now as ψ*(l) is contracted to a point by

<PR, IΨ*(1)] e R, therefore ψ*(Kv + X)l = (Ky + X)ψ*(l) < 0. By intersecting / with

Ky + X = ψ*(Ky + X) + α£>, we obtain

(Ky + X)l <aDl.

Here the left hand side is ψf(KVι + Xχ)l + α'D/, and ^*(AV, + Xi)/ = 0 because of the

definition of/. This proves that a < af. To prove the last statement, take a non-singular subdi-

vision A of Z such that the proper transform X of X is ^-regular. Let λ : V = TN(A) —• V

be the corresponding morphism. Then ΛΓ̂  + X = λ*^*(^v + X) + Σ/ A"̂ /» w h e r e ft > °

for every exceptional divisor £,-, because ΛV + X is toric terminal. Now by substitution of

ψ*(Ky -f X) = ψ*(Kyλ + Xi) + (of/ — of)D into the equality above, the discrepancy of

Kγx + Xi at every exceptional divisor on V turns out to be positive. D

THEOREM 1.13. Let V be a toric variety defined by a proper simplicial fan A and X

an irreducible divisor on V such that Ky + X is toric terminal. Then there exists a sequence

ofbirational toric maps

ψ\ Ψ2 Ψr-\

V = V\ > V2 > >Vr,

where

(i) each φt is either a divisorial contraction or a flip, in particular V/ is defined by a

proper simplicial fan;

(ii) for the proper transform X; ofXon V/ (/ = 1, . . . , r), Kyi + X/ is toric terminal;

(iii) either Kyr + Xr is nefor there exists an extremal ray R on Vr such that (Kyr +

Xr)R < 0 and the elementary contraction ψR : Vr —> Z is afibration to a lower dimensional

variety Z.

PROOF. If Ky + X is nef, then the statement is obvious. If Ky + X is not nef, then

there is an extremal ray R such that (Ky + X)R < 0. Take the elementary contraction

(PR : V -+ V'. If dim Vf < dim V, then the statement holds. So assume that ψR is birational.

If ψR is divisorial, then define φ\ := ψR : V -> Vr =: V̂  If ΨR is not divisorial, then let

φ\ : V > V2 be the flip. Then in both cases, Ky2 + X2 is toric terminal by Lemma 1.11.

Now if Ky2 + X2 is nef, then the proof is completed. If it is not nef, follow the same procedure

as above. By succession, one obtains a sequence of divisorial contractions and flips:

<P\ Ψ2 <Pr-\

V = Vι - -> V2 - - * >Vr > .

It is sufficient to prove that the sequence terminates at a finite stage. Let us assume that there

exists such a sequence of infinite length. Since the divisorial contraction makes the Picard

number strictly less, the number of divisorial contractions in the sequence is finite. So we

may assume that there is mo G iV such that φm's are all flips for m > mo By (iv) of 1.10 the

set of one-dimensional cones of the fan defining Vm (m > mo) are common. As the number

of such fans is finite, there are numbers m < m' such that φm>-\ o o φm : Vm > Vm> is
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the identity. For each flip φ}(j = m, , m! — 1), take the dominating variety Vj as in (iv)

of Proposition 1.10:

VJ

v
Vj

Let Dj be the common exceptional divisor of ψj and ψj+\. Then take a proper toric variety

V = TN(Δ) which dominates all V' , j = m,... , m! — 1 and on which the proper transform X

of Xj's is ^-regular. This is possible because Kyj + ̂ j 's are toric terminal. Here one should

note that the set of exceptional divisors on V for all moφhisms V -» Vj (j = m, . . . , m! — 1)

are common. For every j = m,... , mr — 1, the discrepancy α of ̂ yy + Z 7 at Dj is less than

the discrepancy a! of ̂ v7+1 + Xj+i at D 7 by Lemma 1.11. By this fact, for every exceptional

divisor E on V, the discrepancy cίβ of Kyj +Xj at £ and the discrepancy a'E of ̂ 'v/+I +X/+i

at £" satisfy of̂  < α^ with α^ < a'E for at least one exceptional divisor E. Therefore

comparing Kym 4- Xm and ^vw, + Xm/, we conclude the existence of an exceptional divisor

on V at which the discrepancy of Kym + Z m is less than that of Ky , + Xmr, a contradiction

to the assumption that Vm -> Vm/ is the identity. D

To apply the theorem above to the minimal model problem for a divisor on a toric variety,

one needs the following lemma.

LEMMA 1.14 ([2, Lemma 2.7]). Let Y C Z be an irreducible Weil divisor on a variety

Z. Assume that Z admits at worst Q-factorial log-terminal singularities. Let φ : Y —> Y be a

resolution of singularities on Y. Assume Ky = φ*((Kz + Y)\γ) + Σ ; miEi with mi > —1

for all /, where E['s are the exceptional divisors of φ. Then Y is normal.

COROLLARY 1.15. Let V be a toric variety defined by a proper fan A and X a Δ-

regular divisor on V. If κ(X) > 0, then X has a minimal model with abundance. If κ(X) =

—oo, then X is birationally equivalent to a proper variety Ywith at worst terminal singularities

and afibration φ : Y —> Z to a lower dimensional variety Z with —Ky relatively ample.

PROOF. Let Vi be the toric variety defined by a non-singular subdivision Δ\ of Δ and

X\ the proper transform of X on V\. Then X\ is Δ\-regular and therefore Kyx + X\ is toric

terminal by Lemma 1.7. Then one obtains a sequence

ψ\ ψl Ψr-\

Vi - -* V2 - -* >Vr

as in Theorem 1.13. One can prove that for each j = 1 , . . . ,r,Xj has at worst terminal sin-

gularities. Indeed, take a morphism φ : V —> Vj corresponding to a non-singular subdivision

Δ of the fan Δj of Vj such that the proper transform X of X is zA-regular. Then, as Ky. + Xj

is toric terminal, it follows that

(Ky + X)\χ = φ\{KVj + Xj)\Xj) + ΣaiEi\x te > ° f o r a 1 1 / } '
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Here the left hand side is the canonical divisor Kχ of a non-singular variety X. Therefore by

Lemma 1.14, one sees that Xj is normal. As V) has at worst terminal singularities by Lemma

1.9, it is non-singular in codimension 2. Therefore Kyi + Xj\x. = Kχj7 which yields that

Xj has at worst terminal singularities by at > 0. By (iii) of Theorem 1.13 there are two cases

for Vr.

Case 1. Kyr + Xr is nef.

Then the linear system \m{Kyr + Xr)\ is base point free for some m e N. This is proved

by a slight modification of the proof of the toric Nakai criterion (2.18, [6]). Therefore \mKχr |

is base point free, which implies that Xr is a minimal model with abundance. In this case,

κ(X) = κ(Xr) >0.
Case 2. There exists an extremal ray R on Vr such that (Kyr + Xr)R < 0 and the

elementary contraction ψR : Vr ->- Z is a fibration to a lower dimensional variety Z.

In this situation, consider the subcases:

Subcase. dimX r > dimΨR{XΓ).

Let F be a fiber of ψR. Then by (ii) of Proposition 1.10, F is a weighted projective

space and (Kyr + X r)C < 0 for every curve C in F, which implies that — (Kyr + X r)

is relatively ample over Z. Hence — Kχr is relatively ample over ψR{Xr). This yields the

equality κ(X) = κ(Xr) = — oo, and <p# | x : Xr -^ ψR(Xr) is the desired fibration.

Subcase, dim X r = dim φ/? (X r).

In this case dim Z = dim Vr — 1 and every fiber / of ψR : Vr —• Z is F 1 by (ii) of

Proposition 1.10. Therefore ΛVr/ = —2. On the other hand, because φ\χ is generically

finite, Xrl > 0. Here, since Vr has at worst terminal singularities by Lemma 1.9, the singular

locus has codimension greater than 2. Therefore the divisor Xr is a Cartier divisor along a

general fiber /, which yields that Xrl is an integer. By (Kyr + Xr)l < 0, we have Xrl = 1

which implies that ΨR x '. Xr —> Z is a birational morphism. Therefore Xr is rational.

So X and Xr are birationally equivalent to Pn which has ample anti-canonical divisor and

κ(X) = -oo. D

COROLLARY 1.16. Let the ground field k be of characteristic zero. Let V be a proper

toric variety, A a linear system without base point and X a general member of A. Then the

consequences of Corollary 1.15 hold for X.

PROOF. By Bertini's theorem, X is /^-regular. D

COROLLARY 1.17. Let V be a toric variety defined by a proper fan Δ and X a Δ-

regular divisor on V Assume κ(X) > 0. Then there exists a non-singular subdivision A of

A such that the toric variety V = TN(Δ) and the proper transform X ofX on V satisfy the

following:

PROOF. Use the notation of the proof of Corollary 1.15. Take a non-singular subdi-

vision A of both A and Δr which is the fan of Vr. Then the proper transform X of X on
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V = TN(Δ) is ^-regular. Since Kyr + Xr is toric terminal and \m(Kyr + XΓ)I is base point

free for some m e N,

0 φ Γ(Vr, m(KVr + Xr)) C Γ(V, m(Ky + X)).

D

2. Divisors and Polytopes.

2.1. Here we summarize the basic notion of an invariant divisor of a toric variety and

the corresponding polytope which will be used in the next section. In this paper, a polytope

in an R-vector space means the intersection of finite number of half-spaces {m\fi(m) > at}

for linear functions //.

2.2. Let M be the free abelian group Zn (n > 3) and N be the dual Homz(M, Z). We

denote M ®z R and N ®z R by MR and NR, respectively. Define MQ and NQ in the same

way. Then one has the canonical pairing ( , ) : N x M -> Z, which can be canonically

extended to (, ) : NR x MR ->• R. For a fan z\ in A//?, we construct the toric variety T^{A).

The fan A is always assumed to be proper, i.e., A is finite and the support \Δ\ = NR. Denote

by A(k) the set of ^-dimensional cones in A. Denote by A[l] the set of primitive vectors

q = (q\,... ,qr) £ N whose rays R>oq belong to A(l). For q e A[l], denote by Dq the

corresponding divisor which is the closure of orbR>oq in [5]. Denote by Uσ the invariant

affine open subset which contains orb(σ) as a unique closed orbit.

DEFINITION 2.3. Forp e NR and a subset K c MR, define

p(K):= inf(/Mw).
meK

DEFINITION 2.4. Let A be a proper fan in A//?. A continuous function h : NR -> /? is

called a Z\-support function, if

(1) /z is /^-linear for every cone σ e A and

(2) h is β-valued on NQ.

A zl-support function h is called integral if

(2') A is Z-valued on N.

PROPOSITION 2.5. For a A-supportfunction h, define Dh = - ΣpeΔ[\] h(p)Dp. Then

the correspondence h h->- Dh gives a bijective map:

{A-support functions} ~ {invariant Q-Cartier divisors on Tj^(A)}.

Here Dh is a Carder divisor if and only ifh is integral.

DEFINITION 2.6. For a Z\-support function A, define

•Λ := [m e MR\(J>, m) > h(p) for all p e NR} ,

and call it the polytope associated with A or with Dh. Actually it is a polytope by Lemma 2.10

below and compact since the fan A is finite and proper.

PROPOSITION 2.7 (see [6]). For an integral A-support function A, the following are

equivalent:

(i) the linear system | Dh \ is base point free;
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(ii) h is upper convex; i.e., h(n) + h(nf) <h(n+ nf)for arbitrary n, nr e NR;

(iii) D/i coincides with the convex hull of {hσ σ e Δ{n)}, where hσ is a point of M

which gives the linear function h σ for σ e Δ(n).

PROPOSITION 2.8 (see [6]). For a Δ-support function h, the following are equivalent:

(i) the Q-Cartier divisor Dh is ample;

(ii) h is strictly upper convex; i.e., h is upper convex and h(n) + h(nr) < h(n + nr),ίf

there is no cone σ such that n,nr e σ;

(iii) D/j is of dimension n and the correspondence σ ι-> hσ gives a bijective map

Λ(n) ~ {the vertices ofDh], where hσ is the point of MQ which gives the linear function h\σ

forσ e Δ(n).

In the next section we will use the following simple lemmas.

LEMMA 2.9. Let h be a Δ-support function. If hσ e Πh for every σ e Δ(n), then

h(p) = p(Oh)for every p e NR, and the polytope Dh is the convex hull of the set {hσ \σ e

)}.

LEMMA 2.10. Let Dh = ΣpeΔ[\] mpDp ^e a n invariant divisor. Then

Dh = p | {meMR\(p,m)>-mp}.

DEFINITION 2.11. Let D be a polytope in MR defined by Π[=i Hi, where Hi = {m e

MR I (pi ,m) >ai). We say that Hi contributes to D, if D Π {m e MR \ (pi ,m)=ai}φ 0. We

say that Hi contributes properly to D if Πy// Hj φ D.

DEFINITION 2.12. Let D be an «-dimensional compact polytope in MR. Define the

dual fan ΓQ of D as follows: ΓΓJ = {y*}, where γ is a face of D and y* := [n e NR\ the

function Λ||-J attains its minimal value at all points of γ}. Then ΓΓJ turns out to be a proper

fan.

2.13. If Δ is the dual fan of the polytope Dh corresponding to a z\-support function h,

then by Proposition 2.8 Dh is ample, hence the variety T^(Δ) is a projective variety.

3. The construction of a minimal model.

3.1. In this section we concretely construct a projective minimal model with abundance

for a Δ-regular divisor X with κ(X) > 0 on a toric variety Tj^(Δ) by means of the polytope

of the adjoint divisor. Let V be a toric variety defined by a proper fan Δ and X a Δ-regular

divisor with κ(X) > 0. To construct a minimal model of X we may assume that V is non-

singular and κ(V, Kv + X) > 0, by Corollary 1.17.

3.2. Pursuing elementary contractions and flips is like groping for a minimal model

in the dark. The reason why the discussion of this section goes well without contractions

or flips is because in toric geometry every exceptional divisor is visible as a vector in the

space N. Then one can prepare so that every discrepancy of the adjoint divisor is positive (cf.

3.7), which makes the singularities terminal. In the discussion one puffed up the polytope of

the adjoint divisor and took its dual fan Σ. This implies that in Tj^(Σ) the adjoint divisor
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is the limit of a sequence of ample divisors (cf. 3.5), which makes the adjoint divisor nef;

or equivalently semi-ample. Forgetting non-contributing half space in 3.2 corresponds to

divisorial contractions. The other procedures correspond to putting together of flips.

3.3. The construction. Let h be a Z\-support function such that KτN(Δ) + X ~ £>/*.

Then, by κ(TN(Δ), KTN(Δ) + X) > 0, it follows that DΛ φ 0. Let Δ[\] = {pu . . ,ps]

and/// = {m e MR\(pi,m) > h(pi)}. Then by Lemma 2.10 Ώh = f)s

i=iHi. Assume

that H\,... , Hr (r < s) are all that contribute to Ώh. For εt > 0, i = 1,... , r, define

Hi,εi := {m e MR\(pi,m) > λ(P;) - £;}, dH^Bi := {m e MR\(pi,m) = h{pt) - ε,-} and

Π(ε) := Π/=i Hi*sii where ε = (ε i , . . . , εΓ). Here one should note that the polytope D^

may not be of the maximal dimension. By "puffing this up", one gets a polytope D(ε) of the

maximal dimension. The subset Z = {ε e Rr

>0\ (j9///)£/ is not with normal crossings} is

Zariski closed and the complement Rr

>Q \ Z is divided into finite number of chambers. Take

a chamber W such that:

(3.2.1) OeW;

(3.2.2) every Hi£i (i = 1,... , r) contributes properly to D(ε) for ε e W.

Then the dual fan Σ of D(ε) is common for every ε e W and it is simplicial, because

(J 9///,£, is with normal crossings. Let X(Σ) be the proper transform of X in TN(Σ). We

claim that X(Σ) is a minimal model of X with abundance. One can see that Tj^(Σ) is pro-

jective, because the invariant β-Cartier divisor ΣPiEΣ[\](h(Pi) ~ £i)Dpi w i t n a ^ £i rational

and ε e W is ample since Σ is the dual fan of the polytope corresponding to this divisor (cf.

2.13). Hence the projectivity of X(Σ) follows automatically.

3.4. Now we are going to prove that X(Σ) satisfies the desired conditions for a minimal

model. First note that Σ[l] = {p\,... ,pr}> by 3.2.2. Next note that every β-Weil divisor

on TN(Σ) is a β-Cartier divisor, because Σ is simplicial and therefore T^(Σ) has at worst

quotient singularities.

CLAIM 3.5. The divisor KτN(Σ) + X(Σ) is linearly equivalent to an invariant divi-

sor — Σ/=i h(Pi)Dpi Let k be the Σ-support function corresponding to this divisor. Then

h(Pi) =k(pi)fori = 1,... , r and Uh = Ώk.

PROOF. The first assertion follows from the fact that the divisor KγN(Σ) + X(Σ) is the

proper transform of KτN(Δ) + X ~ — Σ/=i h(pi)DPr The second assertion is obvious and

the last assertion follows from Lemma 2.10 and the fact that H\,... , Hr are all that contribute

toD A . D

CLAIM 3.6. kσ e Uk,forallσ e Σ(n).

PROOF. Let {ε{m)}m be a series of rational points in W which converges to 0. Let A:(m)

be the ^-support function corresponding to a g-Cartier divisor Σ/= 1(-A(/>ί) + ^m)i)DPr

Then by Lemma 2.10 it follows that D^*,) = D(ε ( m ) ), and therefore by 2.13 the divisor

is ample. Replacing {ε(w)}m by a suitable subsequence, one can assume that there exists

limm^oo £ ( m )

σ for every σ e Σ(n). Indeed, replacing it by a suitable subsequence, one may

assume that ε ( m \ > ε ( m + 1 \ for every i, hence Ώε(m) D Ώε(m+\) D therefore for every σ G

Σ(n) and m it follows that fc(m)

σ e Ώε{\) which is compact; so {k^σ} has an accumulating
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point. The point k'σ := limm^oo k^m\ belongs to Djt, because the ampleness of Dk(m) yields

k^m\ e D(£ ( m ) ). The collection {kr

σ}σeΣ{n) defines a function k' on NR. Indeed, for every

m, £ ( m )

σ = k^m\ as a function on σ Π τ, which yields that k!σ = k'τ as a function on σ Π τ.

Now one obtains that k! = A:. This is proved as follows: for every pi G ^ [ 1 ] take σ e Σ'(w)

such that/;,- e σ; £'(/>;) = ( p / , ^ ) = Kmm-+oo(PiΛim)σ) = Umm^oo(h(Pi) - ε ( m );) =

h(pi) = k(pi), since k{m)

σ is on the hyperplane (pi,m) = h(pi) - ε{m\. Hence it follows

that k = k' and therefore kσ = k'σ for every σ e Σ(n), which shows that kσ e D^. D

Now by Lemma 2.9 and Proposition 2.7 the linear system \mDk\ — \m(KτN(Σ)+X(Σ))\

has no base point for such m that mDk is a Cartier divisor.

3.7. Let Σ1 be a non-singular subdivision of both Σ and A Let

TN(Λ)

TN(Σ)

TN(Σ)

be the corresponding morphisms and X(Σ) the proper transform of X in T^(Σ). Since

is Σ-regular, it is non-singular and φ χ,£, is birational.

CLAIM 3.8. It follows that

X(Σ) = φ\KTN{Σ) + X(Σ))

peΣ[l]\Σ[\]

where mp > Qforp e Σ[l] \ Σ[l].

PROOF. Denote

peΣ[l]\Δ[l]

Then oίp > 0 forp € έ [ l ] \ Z\[l], since X is non-singular. Putting ap = 0 forp G ̂ [1], one

obtains that ^ Γ y v ( ^ } + X(Σ) - Σ | , e έ [ i ] ( " Λ ^ ) + <*P)DP> a s ^yv(^) + X ~ £>Λ On the
other hand,

KτN(έ)

Letting mp = 0 for/; G 27[1], one obtains that ^ Γ i v ( ^ ) + X(Γ) ~ Σ p e f [ i ] ( " ^ ^ ) +mp)Dp,
asKTN{Σ) + X(Σ)^ Dk.

Therefore Σ p e r [ i ] ( " Λ ( ^ ) + ^ ^ " Σ p e Γ t n ί " * ^ ) + rnp)Dp. As Λ(/ι) = *(p) and
ap = mp = 0 for/; € 27[1], one obtains that

Here Dp (p e Σ[l] \ Σ[l]) are all exceptional for φ. Then the divisor above is not only

linearly equivalent to 0 but also equal to 0. Therefore (-h(p) + ap) — (-k(p) + mp) = 0
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for every/? G Σ[l] \ Σ[l], where k(p) = p(Oh) by kσ e D& = Ώh and Lemma 2.9. For

p e Σ[l] \ Δ[l], mp = p(Πh) - h(p) + ap > ap > 0. For/; e Δ[l] \ Σ[l], it follows
that mp = p(Ώh) — h(p) > 0, because {m\(p, m) > h(p)} does not contribute to D/, by the

definition of Σ (cf. 3.2). D

3.9. Since TM(Σ) has at worst quotient singularities, one can apply Lemma 1.14 to

our situation and obtain that X(Σ) is normal. By Claim 3.8 and Lemma 1.9, TM(Σ) has at

worst terminal singularities. Therefore KγN(Σ) + %(Σ)\χ,Σ, = Kχ(Σ)- Then by restricting

the equality 3.8 onto X(Σ), one obtains that X(Σ) has at worst terminal singularities. The

linear system = m(KτN(Σ) + X(Σ))\
X,Σ\

On has no base point, because

\m(KτN(Σ) + X(Σ))\ is base point free as is noted after the proof of 3.5. This completes the

proof that X(Σ) is a projective minimal model with abundance.

4. Examples. In this section the base field k is always assumed to be of characteristic

zero. Let M be Z 3 and N be its dual.

EXAMPLE 4.1. Let/?/ (i = 1,... , 6) and q} (j = 1,... ,8) be points in N as follows:

px = (l,0,0),i>2 = ( - l , 0 , 0 ) , p 3 = (0,l,0),/>4 = (0,-l,0),/> 5 = (0,0,l),/>6 =

(0, 0, -1) , q{ = (1, 1, 1), q2 = ( - 1 , - 1 , -1), q3 = (1, 1, -1), q4 = ( - 1 , - 1 , 1), q5 =

(1, - 1 , 1), qβ = ( - 1 , 1, -1), #7 = ( - 1 , 1, 1), q% = (1, - 1 , -1) . Let them generate one-

dimensional cones R>opi,R>oqj and construct a fan Z\ with these cones as in Figure 1. Here

note that Figure 1 is the picture of the fan which is cut by a hypersphere with the center at the

origin and unfolded onto the plane. This fan is the dual fan of the polytope in Figure 2 and it

is easy to check that it is non-singular. Let X be a general member of a base point free linear

system | Σi=ι ®Vi + 2 Σy=i Dqj \ Let h be the Z\-support function such that KτN(Δ) + X ~

Dh. Then the polytope D/, is one point Πf=i {m I (Pi >m) — 0) a n ( ^ t n e n a ^ spaces contributing

92 '
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94 95

c

X
N

96

93 96 92
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FIGURE 1.
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FIGURE 2. FIGURE 3. FIGURE 4.

to this polytope are {m | (px , m) > 0}, i = 1,... , 6, because KTN {Δ)+X - £ D^.. Therefore,

for a sufficiently small general ε, the polytope D(ε) = Π/ί111 G Λfj? | (/̂ f»*w) > — £/} is

a hexahedron whose picture is as in Figure 3. The dual fan Σ of D(ε) (Figure 4) gives a

minimal model X(27) of X. Since / ^ ( D + ^ ( ^ ) ~ 0, it follows that ιc(X) = 0.

EXAMPLE 4.2. Let/?/ and # y be as in Example 4.1 and A the fan with the cones

generated by these vectors as in Figure 5. This fan is the dual fan of the polytope in Figure

6 and is easily checked to be non-singular. Let X be a general member of a base point free

linear system \2Dpι + 2DP2 + J^=3 DPi + 3 Σ ; = i Dqj l L e t h b e t h e ^-support function

such that KTN(Δ) + X ~ D^. Then the polytope D^ is a segment Pft=ι{m\(pi,m) > -1} Π

FIGURE 5. FIGURE 6. FIGURE 7.
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Πf=3 {m I (Pi'w) - 0} a n c * the half spaces contributing to this polytope are [m \{pi,m) > — 1}

(i = 1,2) and {m|(/>,-, m) > 0} (i = 3 , . . . ,6), because #7vuυ + X ~ Dp, + D ^ +

2^Dqj. Therefore, for a sufficiently small general ε, the polytope D(ε) = (f]j=ι{m e

MR\(pi,m) > — 1 — ει}) Π (Πf=3(w e MR\(pj, m) > — εt}) is a hexahedron whose picture is

as in Figure 7. The dual fan Σ of D(ε) (Figure 4) gives a minimal model X(i7) of X. Since

D/i is of dimension one, dim Γ(TN(Σ), m(KτN(Σ) + X(Σ))) grows in order 1, and therefore

dimΦ\m{KτN{Σ)+x{Σ))\(TN(Σ)) = 1. This shows that dimΦ l m K χ ( Σ ) l(X(Σ)) < 1. As the

dual fan of the polytope of X(Σ) ~ 2DPλ + 2Dp2 + Σ*=3 DPi is Σ1, X( i ) is ample by 2.13.

Hence X(Σ) intersects all fibers of Φ\m(κτ iΣ)+x(Σ))\, which shows that κ(X) = 1.
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