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Abstract. We classify globally defined linear connections on the real line as well

as on the circle up to diffeomorphisms. We also prove that such connections can be

realized by affine immersions into the affine plane.

1. Linear connections on R1 and S1. On the real line R1 with its usual coordinate

system {x}, we denote by d/dx the vector field (or its value at a point). A linear connection

V can be determined by a function Γ such that

(1) V * m ± ,
ax ax

where Vx denotes covariant differentiation relative to d/dx.

Since R1 is 1-dimensional, every connection V on R1 must be locally flat. This

means that for each point x0, there is a neighborhood with a flat local coordinate

system, {x}, relative to which we have

(2) V ^ = 0

dx

We deal with the question: How do we find such a local coordinate system {x}Ί

This is related to the question of finding a geodesic relative to V, that is, of solving

the equation

with the initial conditions, for convenience, say,

(4) x(0) = 0,
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The standard method of solving (3) is the following. Let Q(x) be a function such
that Qf = ΓQ, that is,

(5) β(x) = expM Γ(u)du\.

By virtue of (3) we have

dt \ dt

and hence

dx
Q(x(ή) — = a (a: const),

dt

assuming dx/dtφO. Since x(0) = 0 and {dx/dt)(0) = Q{0)= 1, we get a= 1. Therefore

/o Uί

The integral may be written simply as

t=\ Q{ύ)du.
Jo

We recover the affine parameter t from this integral.
Now we prove

THEOREM 1. For a linear connection on R1 given by (1), aflat local coordinate
system {x} around the point 0 can be obtained by

(6) x(x)=\ Q(u)du,
Jo

where Q is given by (5). Furthermore, the inverse function x(x) satisfies the equation of a
geodesic:

d1xjdt2 + Γ(x(t))(dx/dt)2 = 0 ,

if we write t for x.

PROOF. We recall how the function Γ transforms under a change of coordinate
system. The function Γ for the coordinate system {x} is given by

(7) Γ = _ £ _ * Γ *L.
dx dx dx

Now from (6) we get
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dx

dx dx

and

d2x dx

dx2 dx
= -Q'Q-2Q-ιQ=-QQ

Substituting these into (7), we find Γ = 0 by virtue of Q'=ΓQ. The additional assertion

follows from (7) by setting Γ = 0.

We present three examples to illustrate the discussions.

EXAMPLE 1. In the case where Γ — 0, we have Q(x) = 1. Hence x = x. The geodesic

is written simply a s x = ί , — oo < ί < oo.

EXAMPLE 2. Let us consider the linear connection on R1 defined by Γ = l , and

determine the geodesic x(t) with initial conditions (4). We have

du\ =

and

x=
Jo

The geodesic is given by

, — l<t<oo .

This shows that the geodesic cannot be extended beyond —1 so the connection is

not complete. It also means that the flat coordinate system {x} is confined to (— 1, oo).

EXAMPLE 3. We next consider the linear connection given by Γ(x) = — 2x/(\ +x2).

We have

Jo

and a flat coordinate system is given by

x = — du = arctan x .

Jo l + « 2

The geodesic with the initial condition (4) is given by

( π π\

V 2 * 2 /
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The connection is not complete and the flat coordinate system is confined to (— π/2, π/2).

Now going back to Theorem 1, we write

(8) t=\Q(u)du
Jo

using t instead of x on the left-hand side of (6). Since dt/dx=Q(x)>0, the range of

the function μ: xι—>Ms an interval / in R1. It falls into three kinds: the total space R1,

a half-line (c, oo) or (oo, c) (with 0 in it), or a bounded interval (with 0 in it). The inverse

function τ = μ~ι takes the interval / onto R1. We now show that τ maps the ordinary

flat connection V° upon V. Since V° is flat, the condition on the connections is equivalent

to

This equation is satisfied as in Theorem 1. By an affine parametrίzation of (J?1, V) we

mean a triple (/, V°, τ), where / is an open interval with the ordinary flat connection

V° (for which t is a flat coordinate) and τ is a connection-preserving diffeomorphism

Let us now assume that the given (R1, V) has an affine parametrization (/, V°, τ),

where /=(c, oo) and τ is a connection-preserving diffeomorphism from (/, V°) onto

(I?1, V). It is easy to obtain a connection-preserving diffeomorphism from (/, V°) onto

((— 1, oo), V°), an affine parametrization for the connection in Example 2. There is also

a connection-preserving diffeomorphism between ((— 1, oo), V°) and (J?1, V) in Example

2. Combining these diffeomorphisms we obtain a connection-preserving diffeomorphism

between (R1, V) and the connection of Example 2.

This argument also holds in the case where (R1, V) has a bounded interval as the

interval of affine parametrization. The case where the interval of affine parametrization

is (— oo, oo) is self-evident. We have thus proved

THEOREM 2. Every linear connection globally defined on R1 can be obtained by a

diffeomorphism from one of the models in Examples 1, 2, and 3.

We may rephrase this result as follows.

COROLLARY 1. Given a linear connection V on R1, there exists a global coordinate

y such that the given connection is equal to the one defined by

=γ or vγγ=- 2y

 Ί Y,

where Y=d/dy.

We have also
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COROLLARY 2. Each linear connection globally defined on R1 is the Levί-Civita

connection of a certain Riemannian metric on R1.

In order to prove this result, suppose g is the Riemannian metric defined by

where X=d/dx and λ is a smooth function. We may assume Λ,(0) = 0. The Levi-Civita

connection V for g satisfies

which implies that Γ for V is equal to Xλ, that is, dλ/dx. In the earlier computation we

now have

Γ(u)du = λ(x)
o

and

If we take the Riemannian metric g with λ(x) = 0, then we get Γ = 0, leading to the

connection in Example 1. If we take the metric g with λ(x) = x, then we get Γ = 1, namely,

the connection in Example 2. The connection in Example 3 is obtained if we take

λ(x)= - l n ( x 2 + 1) so that Γ(x)= -2x/(x2 +1). This shows that the models in Examples

1, 2, and 3 are metric connections. We already know that an arbitrary (R1, V) admits a

connection-preserving diffeomorphism φ to one of the models in Examples 1, 2, and

3. If g denotes the pull-back of the metric in each model by φ, we see that V is the

Levi-Civita connection for g.

We shall now consider linear connections on the circle S1. The universal covering

X of S1 is diffeomorphic to R1 and the given connection V on S1 induces a linear

connection V on X. We know that (X, V) admits an afrme parametrization (/, V°, τ).

Thus the fundamental group π^S1) acting on X as a group of affine transformations

of {X, V) also acts on / as a group, say, G of affine transformations of (/, V°). Hence

the possibility of / being a bounded interval is excluded and we are left with the two

cases: I=Rι a n d / = ( — 1 , oo).

In the first case, G is generated by a transformation of the form g(x) = ax + b. If

aφ\, then it has a fixed point; hence, g(x) = x-\-b is a translation. This means that

(S1, V) is diffeomorphic to (I/G = R1/Z, V°), where V° is the ordinary flat connection

on j?1; that is, there exists a diffeomorphism φ: S1 -+RxjZ such that V = </>*V°.

In the second case where / = ( — 1 , oo), we may instead consider the half-line

R + = (0, oo) with the ordinary flat connection. The group G is generated by multiplication

φa: x\-^ax (aφ 1), and we get I/G = R+/(φa}. The quotient can be identified with R1/Za,

where Za is the additive subgroup generated by translation xι->x + logα; the induced
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connection R1 is that in Example 2. We have proved the following theorem.

THEOREM 3. For any linear connection V on the circle S1, there exists a diffeo-

morphism φ ofS1 to Rι/Z or to R+/(φa) such that V = (/>*V°, where V° is the respective

flat connection. The connecion V is complete in the former case and incomplete in the

latter case.

REMARK. The first connection is metric, because we can transfer the usual metric

on R1 to X. The second connection is not metric; if it were, it would be complete because

S1 is compact. We note that a non-complete connection was constructed also in [AM].

See also [KN, p. 292].

2. Affine immersion of linear connections on R1 and S1. Let / be an open interval

of R and V a linear connection on /. An immersion f of I into the affine plane R2 with

the ordinary flat connection D and the determinant function is called an affine immersion

if there exists a certain vector field ξ along the immersion and transversal to the immersed

curve, we have the equation

(9) Dxf*X=UVxX) + h(X, X)ξ ,

where X is a vector field on / and h is a quadratic function on X. If h is nowhere 0,

the immersion is called nondegenerate; geometrically, it is equivalent to the condition

that the immersed curve has no inflection points.

We now recall the classical treatment of nondegenerate curves in R2. Refer to [NS,

p. 2]. An immersion / : th^x(t) is nondegenerate if and only if det[dx/dt, d2x/dt2~]

never vanishes. In this case, we may define a new parameter s = s(t), called an affine

arclength parameter by

s(t)= \det[dx/dt,d2x/dt2γl3dt.
Jo

We set

ei(s) = Ud/ds), e2(s) = dejds.

Then we have

det[e 1 ? e2~\ = 1 , de2/ds = —ke1 ,

where k = k(s) is a function called affine curvature.

In this notation, the terms in (9) are given by

(10) X=d/ds, f*X=eί(s), VxX=0, h(X,X)=l, ξ = e2.

Thus (J, s), where J=s(I), is an affine parametrization. The vector field ξ = e2 is called

an affine normal, uniquely determined up to orientation.

Let us consider the following problem. Given a connection V on an open interval
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/, does / admit a nondegenerate immersion into R2 in such a way that V is induced as
in (9) by using the affine normal ξ? If it does, we say that (/, V) is realizable in R2. Let
us begin with examples.

EXAMPLE 4. Let I=R and let V be the ordinary connection. The immersion
f(t) = (t, (l/2)ί2) is a paraboloid and, for £ = (0, 1), we have

for X=d/dt. Hence the model in Example 1 is realizable.

EXAMPLE 5. Let f(t) = (—1/5,(1/20)54) be an immersion of the half-line (0, oo).
Then it is easy to see that s is an affine arclength parameter and

et =(l/52, (l/5>3), e2=(-2/s\ (3/5)s2).

We have k=—6/s2. This example shows that the half-line with the ordinary flat
connection, that is, the model in Example 2 is realizable.

The last example is the following.

EXAMPLE 6. Consider the immersion x(t) = (t~p,(l—t)~p)of the bounded interval
(0, 1). Since

( " ' - 1 K i 0 - ' - 1 )
dt

and

d2x

dt2

we see that

det[dx/dt9 d
2x/dt2] = -p2{p+\)(t(\-t))~p~2 .

Hence if/? 7̂ 0, — 1, the immersion is nondegenerate and the affine arclength parameter
is defined by

dt

This means that the range / of s is bounded if 0</?<l. Assuming, say, p=\β, we
have a bounded open interval / with the ordinary flat connection that can be immersed
into R2. Hence the model in Example 3 is realizable. (We remark that the affine curvature
is negative and tends to — oo at the both ends.)

Because of Theorem 2, we have the following.
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THEOREM 4. The real line with any linear connection is realizable as a closed

nondegenerate curve in the affineplane R2.

We finally treat affine immersions of the circle with a linear connection. If the

linear connection is ordinary, then any ellipse lying in the affine plane realizes the

connection. The affine curvature is constant and positive.

On the other hand, for any nondegenerate immersion of Sι, the affine arclength

parameter should extend infinitely on both sides. Hence the induced connection must

be complete. In view of Theorem 3, we have the following.

THEOREM 5. The circle with any linear connection is realizable in R2 if and only if

the connection is complete.

REMARK. We thank the referee for pointing out a gap in the statement of the

original Theorem 5.
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