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Abstract. We prove a weighted norm inequality for homogeneous singular integrals

when only an Hι-s'ιze condition is assumed on the restriction of the kernel to the unit sphere.

We also give several applications of this inequality.

1. Introduction. Let Rn, n > 2, be the n-dimensional Euclidean space and Sn 1 the

unit sphere in Rn equipped with normalized Lebesgue measure dσ = dσ(x'). Let Ω(x)\x\~n

be a homogeneous function of degree — n with Ω e Lx(Sn~x) and

(1.1) ί Ω(x)dσ(x) = 0,
Js»-1

where x' = xl\x\ for any x φ 0.

Let b(t) be a measurable function on (0, oo) and γ a real number larger than one. We

say that b e Δγ Ίf\\b\\Δy = supR>0R~ι / 0* \b(t)\γdt < oo. We also define A^ = L°°(Λ + ).

Clearly, zAooίΞ^yίΞ^λfor any 1 < λ < y. Suppose that Γ(t) is a strictly monotonic C 1

function on the interval (0, oo). We define the singular integral operator Tp,b(f) by

(1.2) = P v ί K(y)f(x - Γ(\y\)y')dy ,

where / = y/\y\ € S"1""1, K(y) = b(\y\)Ω(y')\y\-n and / e &>(Rn), the space of Schwartz

functions.

For the sake of simplicity, we denote Tp,b = Tt, if Γ(t) = t and denote Tp,b = T if

Γ(ί) = t andfc(ί) = 1.

The investigation of the operators Γ̂  began with Calderόn-Zygmund's pioneering study

of the operator T (see [CZ1], [CZ2]). The operator Γ ,̂ whose kernel has the additional rough-

ness in the radial direction due to the presence of b, was first studied by R. Fefferman ([Fe])

and subsequently by many other authors ([C], [Ch], [CR], [DR], [Fa], [FP1], [FP2], [HI],

[JL], [KS], [Na], [Wai]). The best result concerning the size of Ω, so far, is the following

theorem.
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THEOREM A (see [FP1]). IfΩe Hx(Sn~x), Γ(t) satisfies the conditions either in the

following Theorem 1 or Theorem 2 (in particular Γ(t) = t) and b e Δ2, then Tp,b is bounded

onLp(Rn)for\ < p < 00.

The proof of Theorem A is exactly the same as that of [FP1], in which the function Γ is

slightly different. In [FP1], we proved the theorem for b e L°°(R+) and pointed out that the

theorem still remains true if b e Δ2 by an easy treatment (see [FP2, Theorem 7.5]).

The space Hx(Sn~x) in Theorem A represents the Hardy space on the unit sphere, whose

definition will be reviewed in section 2. In order to make comparisons among the conditions

imposed on Ω in other known results, we point out that on Sn~ι, for any q > 1, Lq(Sn~x) c

L log+ L(Sn~ι) c Hx (Sn~x) and all inclusions are proper.

On the other hand, the weighted Lp boundedness of Tb has also been studied by a number

of authors ([ABKP], [Du], [H2], [KW], [MW], [Wa2]). However, all papers mentioned above

require a stronger condition than Ω e Hx(Sn~x) even in the simplest case b = 1.

In this paper, we are interested in studying the weighted Lp boundedness of Tp,b for

certain radial weights, which were introduced in [Du]. Our result, in which the Llog + L

size on Ω in [Du] is weakened by the Hx size, is an outgrowth of a recent result in [Du] by

Duoandikoetxea. We will also give several applications of our result, including the power

weights \x\a; Lp boundedness of certain commutators; and the boundedness of Tp,b on the

Herz spaces and on the Morrey spaces. It is well-known that both commutators and Morrey

spaces play an important role in studying the solvability and the regularity of solutions to

partial differential equations with discontinuous coefficients (see [FR] and [Hu]).

In order to state our main theorems, we first give the definitions of certain weights.

DEFINITION 1.1. Suppose that ω(t) > 0 and ω e Lx

λoc(/?+). For 1 < p < 00, we say

that ω e Ap(R+) if there is a constant C > 0 such that for any interval / C /?+,

( ί \ ( ί \P-]

\I\~X / ω(r)dr J I \I\~ι / ω(r)-χ/(p~X)dr J < C < 00 .

If there is a constant C > 0 such that

(1.4) ω*(r) < Cω(r) for a.e. r e tf+,

where ω* denotes the standard Hardy-Littlewood maximal function of ω on /?+, then we say

α>eAi(Jl+).

DEFINITION 1.2. If ω(x) = v\(\x\)v2(\x\)x~p, where either v/ e A\(R+) is decreas-

ing or vf e A\ (/?+), / = 1, 2, then we say ω e Ap(R+).

DEFINITION 1.3. For 1 < p < σo, we denote

AP(R+) = {ω(x) = ω(\x\) : ω(t) > 0, ω(t) e Lx

loc(R+) and ω2(t) e Ap(R+)}.

Let A!

p(Rn) be the weight class defined by using all n-dimensional intervals with sides

parallel to coordinate axes. In what follows, for p e (1, 00), any measurable function / and
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any weight ω, we define

\\f\\LP(ω) = ( j ^ \f(x)\Pω(x)dχ)j .

Thus the weighted Lp spaces associate to the weight ω is defined by

Lp(Rn,ω(x)dx) = {/ : \\f\\Lp(ω) < °o}.

By [DL], we know that AP(R+) c Ap(R+). Also, if ω(t) e AP(R+), then we know

from [Du] that the Hardy-Littlewood maximal function Mf is bounded on Lp(Rn, ω(\x\)dx).

Thus, if ω(t) e AP(R+), then ω(|* |) e Ap(Rn), where Ap(Rn) is the Muckenhoupt weight

(see [GR] for the definition). Let λι

p = ApΠ Aι

p and Ap = Ap Π Aι

p.

In [Du], Duoandikoetxea proved the following theorem.

THEOREM B (see [Du, Theorem 7]). If ω e Ap(R+) for 1 < p < 00, then T is

bounded on Lp(ω) provided Ω e L log+ L{Sn~x).

Now we are in a position to state our results.

THEOREM 1. Let b e Δy for γ > 2, 1 < p < oo. Let Γ be a nonnegatίve C 1 function

on (0, oo) satisfying:

(a) Γ is strictly increasing and Γ(2t) > λΓ{t)for all t and some λ > 1,

(b) Γ satisfies a doubling condition, Γ(2t) < cΓ{t)for all t and some c > 0,

(c) Γ'(f) > C\Γ(t)/tfor all t and some C\ > 0.

Suppose that ω € A1 , ,(/£+) with p > γ'', where γ' is the dual exponent to γ. Then

(1.5) \\TrMf)\\LP(ω)<C\\f\\LP{ω)

provided Ω e Hι(Sn~x), where C is independent off

If Γ is a strictly decreasing function, we also have a similar result.

THEOREM 2. Let b e Δyfor γ > 2, 1 < p < oo. Let Γ be a nonnegative C 1 function

on (0, oo) satisfying:

(a') Γ is strictly decreasing and Γ(t) > λΓ(2t)for all t and some λ > 1,

(b') Γ(ί) < cΓ(2t)for allt > 0 and some c > 0,
(cθ |Γ ;(OI > CχΓ(t)/t for allt and some C{ > 0.

Suppose that ω e AI

p/γl(R+) with p > y/, where γr is the dual exponent to γ. Then TΓ,b is

bounded on Lp(ω) provided Ω e Hι(Sn~ι).

REMARKS. (1) In both T and 7i, the singularity appears along the diagonal {x =

v}. Recently many problems in analysis have led one to consider singular integrals with

singularity along more general sets, some of which are in the form of {JC = Ψ(y)} (see [St]).

Here we focus our attention on singular integrals Tp,b which have singularity along sets of the

(2) The precise conditions on the constants in Theorems 1-2 should be c > λ > 1 and

C\ e (0, log2c]. Model functions for the Γ in Theorem 1 are Γ(t) = td with d > 0, and
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their linear combinations with positive coefficients. Model functions for the Γ in Theorem 2

are Γ{t) = tσ with σ < 0, and their linear combinations with positive coefficients.

(3) By the relationship Llog + L(Sn~ι) c Hι(Sn~ι) remarked above, one sees that,

even in the special case Γ(t) = t and b = 1 (Tp,b = T), Theorem 1 represents an improve-

ment of Theorem B in the case of ω e A ι

p (/?+).

(4) The method used in proving Theorem B depends heavily on the rotation method

of Calderόn and Zygmund. More precisely, one first considers the case that Ω is odd and

reduces the operator T to the one-dimensional Hubert transform whose Lp(ω) boundedness

is well-known. For an even function Ω e L log+ L, one can compose Ω with suitable Riesz

transforms to reduce it to an odd function. Clearly this method is no longer applicable if an

extra rough function b appears in the kernel. To prove our theorem, we will use the atomic

decomposition of the Hardy space, as well as some estimates about the atoms obtained in a

previous paper ([FP1]).

We will review the definition of Hardy space and give some simple lemmas in section 2.

The proofs of the theorems can be found in the third section. The truncated maximal operator

will be studied in the fourth section. In Sections 5-8, we will give several applications of our

theorems.

Throughout this paper, the letter C will denote a positive constant that may vary at each

occurrence but is independent of the essential variables.

2. Lemmas related to the H1 space. We start this section by reviewing the definition

of the Hι space in the unit sphere. Recall that the Poisson kernel on Sn~ι is defined by

Pry(x') = (l-r2)/\ry'-x'\n,

where 0 <r < 1 and*' ,/ e Sn~ι.
For any / e Lι(Sn~ι), we define the radial maximal function P+f(xf) by

P+f(x')= sup \f f{yf)Prx'{yf)dσ{y')
0<r<l \Jsn-1

The Hardy space Hι(Sn~ι) is the linear space of all / e Lι(Sn-{) with the finite norm

||/H#1(51,-1) = ||/>+/||JLi(s«-i) < oo. The space Hι(Sn~ι) was well-studied in [Co] (see also

[CTW]). In particular, it was shown that Hι(Sn~ι) has the atomic decomposition property,

which will be reviewed below.

A q-atom is an Lq (1 < q < oo) function a( ) that satisfies the following conditions

(2.1M2.3).

(2.1) supp(fl) C S""1 Π B(xo, p), where B(xo, p) is the ball with center xo e Sn~ι and

radius p e (0, 2],

(2.2) f a(ξ/)dσ(ξί)=O,

(2.3) \\a\\q < pin
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From [Co] or [CTW], we find that any Ω e Hι(Sn~ι) with the mean zero property

(1.1) has an atomic decomposition Ω = Σcjaj> where the α/s are oo-atoms and Σ \cj\ -

C\\Ω\\Hl{Sn-ly

If Γ is the function in Theorem 1, we let γk = Γ(2k). If Γ is the function in Theorem 2,

we let γk = \/Γ(2k). Then, by the conditions of Γ, it is easy to see mϊkez Yk+\/Yk > λ > 1

so that {γk} is a lacunary sequence of positive numbers. For any Ω e Lι(Sn~ι), we define

the operator σa,r,k by

(2.4) σΩtΓik * fix) = ί b(\y\)Ω(yf)\y\-nf(x - Γ(\y\)y')dy
J2k<\y\<2k+]

and σΩ,k = &Ω,r,k if Γ(t) = t.
The maximal operator σ^ Γ is defined by, for locally integrable functions / ,

(2.5) σ* Γf(χ) = sup ί \b(\y\)Ω(y')\ \yΓn\f(x - Γ(\y\)y')\dy
keZJ2k<\y\<2k+]

andσ^ = σ^ Γ if Γ(t) = t.

For any p > 0, we define the linear transforms Bp and Lp on Rn by

(2.5) β p ξ = (p2ξU Pξ2, . . . , P§π) , ^p$ = (P§1, - - - , pξn-UP2ξn) ,

where* = ($i, . . . , * π ) e Λ Λ .

We have the following estimates for σap,k if Ω — a is an oo-atom.

LEMMA 2.1. Lέtf /? G Z\K, y > 2. Suppose that a( ) is an oo-atom on Sn~] with

s u p p ( α ) c Sn~ι Π β ( l , p ) , w/iβr^ 1 = ( 1 , 0 , 0 , . . . , 0 ) e 5 " " 1 . Γ/z^n ί/z^r^ exist positive

constants a and β such that if Γ is as in Theorem 1, then

(2.6) \σa,rMξ)\ < Cπύn{\Bpξ\aγ?,γ-β\Bpξ\-β};

if Γ is as in Theorem 2, then

where C is a constant independent ofk,ξ and p.

PROOF. The lemma is a modification of Theorem B in [DR]. The proofs for (2.6) and

(2.60 are essentially the same as that in Section 3 of [FP1]. For completeness, we state the

proof of (2.6r).

First, we consider the case n > 2. For any fix ξ φ 0, we choose a rotation O such that

O(ξ) = \ξ\l. Let / = (s, y'v y'v . . . , y'n). Then it is easy to see that

= /
J2k
/

2k

where O~{ is the inverse of O. Now a(O~ι(y')) is again an oo-atom with support in

B(ξf, p) Π Sn~ι, where ξf = */ |* | . For simplicity, we still denote it by a{y'). Now we

have

r 2 k + ]

Kt)Γι

r
/ Fa(s,t)e-i

JR
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w h e r e

F a ( s , £ ) = ( 1 - J 2 ) ( l I - 3 ) / 2 X ( - i f i ) ( ί ) ί a ( s , ( 1 - s 2 ) ι y
Js"-2

X(-i, l) is the characteristic function of the interval (— 1, 1) and dσ (y) is the Lebesgue measure

on the unit sphere Sn~2. By Lemma 2.1 of [FP1], we know that the function Fa satisfies

(i) supp(Fα) c (§' - 2r(£), ξ' + 2r(§'));

(ϋ) \\Fa\\oo<C/r(ξ'y,

(iii) fRFa(s,ξ')ds = 0,

where C is a constant independent of the atom a and r (§') = \ξ\~ι \Bpξ\. By (iii), we have

σa,r.k(ξ) = ί2t+' Γ ' W f Fa(s,ξ')(e-iΓ{>ms-e-iΓ^'
h* JR

By (ii), (iii), the definition of b e Δγ and the conditions on Γ, we obtain

(2.7) |σ o.r.*(£)l < CΓ(2k+ι)\ξ\r(ξ') < Cy^ 1 | B P § | .

On the other hand, using Holder's inequality, we have

\σk(ξ)\<C\\b\\Δ22-k/2fk,

where

RL
and A(s) = r(§')fre(r(£/)'S,£/) is an L°° function supported in the interval (ξ\\Bpξ\ -

2, ξ\ IBpξ I + 2). By shifting variables, we may assume that A(s) is an L°° function supported

in the interval (—1, 1). To estimate </*, we choose a function ψ e C°°(R) satisfying

= \ f o r | ί | < l , ψ(t) = O f o r | ί | > 2 .

Let Ik = (2k, 2k+x) and define Tk by

(Tkf)(t) = Xlk(t) ί e-isΓ{t)r{m\ψ

JR

Then

TkTk*f(t)= [ L(t,s)f(s)ds,
JR

where

L(t,s)= I eιv^Γ^~Γ^r^^^ύ2(v)dvχr
JR

We easily see that

\L(t,s)\<Cχik(s)χIk(t).

On the other hand, using integration by parts, we have

\L(t,s)\ < C{\Γ(s) - Γ(t)\r(ξ')\ξ\ΓιχIk(t)χIk(s).

So

\Ut,s)\<C{\Γ{s)-Γ(t)\r{ξf)\ξ\}-V2χIk{t)χIk(s).
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Now by the mean value theorem and conditions (a7)-((/) on Γ, we have

\L(t, s)\ < C2k/2{r{ξι)\ξ\ \s - t\Γ(2k)Γ^2χIk(s)χIk(t).

Therefore,

sup ί \L(t, s)\dt = sup ί \L(t, s)\ds < C2k(Γ(2k)r(ξr)\ξ\rx'2.
5>0 JR t>0JR

This shows

which leads to

(2.70 p ^

By (2.7) and (2.70, we obtain (2.60 for n > 2. Using the same argument and Lemma 2.2 in

[FP1], we can prove the lemma for the case n = 2.

Similar to Lemma 2.1, we can obtain the following lemma.

LEMMA 2.2. Let b e Δγ, γ > 2. Suppose that a is an oo-atom on Sn~ι with

supp(α) c Sn~ι Π £ ( ϊ , p ) , where ϊ = (0, 0, . . . , 1) e Sn~ι. Then there exist positive

constants a and β such that if Γ is as in Theorem 1 then

(2.8) \σa,Γ,k(ξ)\ < Cmin{\Lpξ\aγ?, \Lpξ\-Pγ-p};

if Γ1 is as in Theorem 2 then

(2.80 |σ*,r,*(?)l < Cπύn{\Lpξ\aγj-a, \Lpξ\^γk

β)};

where C is a constant independent of k, ξ and p > 0.

Next we treat the atom supported in Sn~x Π B(xo, p) with an arbitrary XQ on Sn~ι. Let

SO(n) be the rotation group on Rn. There exist O\, O2 e SO(n) such that Oi co = 1 and

O2X0 = ϊ . For a function / ( * ) we define fc(x) = f(Oix), i = 1,2.

LEMMA 2.3. L /̂ β Z?̂  ̂ w oo-atom supported in Sn~ι Π 5(JCO, p) 7%̂ w

(2.9) (σfltΓ,ik * /)(*) - K.,Γ,Λ * fi)(θrιχ), / = 1, 2,

where a\ is an oo-atom supported in Sn~] Π B(l, p), a^ is an oo-atom supported in Sn~x Π

J5(ϊ, p) and OΓ1 w ̂  inverse ofOi, i = 1, 2.

PROOF. By changing variables, we have

(*a,r,k * /)(*) = ί b(\y\)ai(y')f(x - OiΓ{\y\)yf)dy
J2k<\y\<2k+X

-f
J2k<\y\

k<\y\<2k+X

x - Γ(\y\)y')dy,

which proves the lemma.

For the maximal function σ* Γ ,we have the following Lp(ω) boundedness result.
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L E M M A 2.4. Let b e Δγ, γ > 1, p > γ\ and a an oo-atom. Let Γ be the function

either in Theorem 1 or in Theorem 2 and ω e Ap/γr(R+). Then

(2.10) ll<r/ll^(ω)<C||/||Lp(fl,),

where C is a constant independent of a andf

PROOF. Using the spherical coordinate and Holder's inequality, we have

ί \K\y\)a{y')\ \y\-"\f(x - Γ{\y\)y')\dy
./2*<|> |<2*+ l

f2k+l f
= C Γι\b(t)\ \a(y')\\f(x-Γ(t)y')\dσ(y')dt

hk Js"-]

r 1 (jn ( |fl(/)| \f(x - Γ(t)y')\dσ(y')Y dt
lγ>H

< C
2k+l

\a(y')\\f{x-Γ{t)y'Wdσ{y')dt

Let g = \f\γ' and s = Γ(t). From (c) in Theorem 1 or (c') in Theorem 2, we have t~ιdt <

cs~1ds. So, by a change of variable, it is easy to see that the last integral above is bounded by

LΓ{2k)
\a{y')\g{x-syf)dσ{y')ds

Thus we have

(2.11)

where

<c\[ \a(y' )\Mylg{x)dσ(y')

ίR

Myg(x) = sup R~{ / \g(x-syf)\ds
R>0 JO

is the Hardy-Littlewood maximal function of g in the direction y1. Since p > γf, we have

ί r
/ \a(y')\Myg(.)dσ(y')

1 / y /

LP{ω)

\a(yf)\Myg( )dσ(yf)
LP/y'(ω)

< f \a{y')\\\Myg\\LPlγ,{ dσ{yf).

By ω e Ap/γr(R+) and (8) in [Du], we know

\\My'9\\LP/y\ω) < C\\g\\LP/γ>{ω)

with C independent of yr. So the lemma is proved by noting

\\9\\LP/yf(ω) = L
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3. Proof of theorems. Since the proofs of Theorem 1 and Theorem 2 are essentially

the same, we shall prove Theorem 2 only. In our proof we will apply the machinery developed

by Duoandikoetxea and Rubio de Francia in [DR].

First we consider the case p > γ'. Note that Tp,b(f) is equal to

(3.1) ί \yΓnH\y\)Ω(y')f(x-Γ(\y\)y')dy,
JRn

where Ω = Σ CjCij, Σ \cj\ - C\\Ω\\H\(sn-\) a n d each aj is an oo-atom. We have

\\TΓ,bf\\LP(ω) <

where

TJ

Γb(f)(x)= ί b(\y\)\y\-naj{yf)f{x - Γ{\y\)yf)dy .
JRn

Therefore, it suffices to show

(3.3) l l ^ ( / ) | | L p ( ω ) < C | | / | | L P ( ω ) ,

where C is independent of the atoms <z/( ) and / .

For simplicity of the notation, we shall denote aj( ) by a( ) and TJ

Γb(f) by Tp,b(f)- In

the following we assume that supp(α) is contained in the ball B(xo, p) Π Sn~ι. Let 4 be the

interval (2*, 2*+ 1). Then TΓ,b(f)(x) is equal to

/
JR

oo oo

b(\y\)\yΓna(y') ]Γ χh(\y\)f{x - Γ(\y\)y')dy = £ σa<Γ,k*f(x).
k=—oo k=—oo

Let {Φj }<^>

OQ be a smooth partition of the unity in (0, σo) adapted to the intervals (γj-\, Yj+\),

that is,

Φj e C°°(0, oo), 0 < Φj < 1, Σ Φj(t)2 = 1 for all t,

j=-oo

SUpp(Φ ) C (γj_uγj+ι).

Define the multiplier operators Sj inRn by (Sjf)\ξ) = f(ξ)Φj(\Bpξ\). Following the proof

of Lemma in [DR], we decompose the operator Tp,b(f) by

= Σ ( Σ sJ+k(σa^k * Sj+kf)\ = Σ fjf
j \ k I j

(3.5)

We first estimate the L? norm of 7). By Lemma 2.3, we have for i = 1,2,
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\σa,Γ,k * (Sj+kf)(y)\2dy

Ό,,r,k * {Sj+kf)i(θrιy)\2dy

By Lemma 2.1, it is easy to see that

(3.6) \\fjfW2 <CJ2Jn \BPξ\2aγk-
2a\(Sj+kf)Kξ)\2dξ .

So we have

(3.7) wfjfwi < c T f {iBpξvn^KSj+kfrimfdξ.

kJR"

Similarly, we have

(3.8) WfjfWl <CJ2 f n{\BPξ\/γkΓ2β\(Sj+kf)m)\2dξ .

Now an easy computation shows that

(SJ+kf)i(ξ) = Φj+k(\Bpξ\)f(Oϊιξ).

Thus if j > 0, we use (3.8) and the choice of Φj+k to obtain that

WTjfWl < CΣ f \f(θ;lξ)\2(\Bpξ\/γkΓ
2^dξ,

k Dj+k

where

Dj = {ξ:γj-ι <\Bpξ\ <

This shows that if j > 0,

(3.9) || f

Similarly, using (3.7) we have for j < 0

(3.10) | f

Next, we estimate the Lp(ω) norm of 7) for ω e A1, ,(/?+). We shall prove the follow-

ing proposition.

PROPOSITION 3.1. Ifω e A1, ,(JR+), p > γ\ then

(3.H) I I ^

where C is independent of the atom a.
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If (3.11) holds, then we can easily prove the theorems for p > γ'. In fact, interpolating

between (3.9)-(3.10) and (3.11) with ω = 1, we have for some θ > 0,

(3.12)

where C is independent of the atoms a.

For any ω e Λ^/ y /(Λ+), there is an ε > 0 such that ωx+ε e

we have

. Thus by (3.11),

(3.13) \\Tjf\\LP(ωι+e) -

where C is independent of the atom a. Therefore, using Stein and Weiss' interpolation theo-

rem with change of measures [SW], we may interpolate between (3.11) and (3.13) to obtain a

positive number v such that

\\fjf\\LP{ω)<C2'V^\\f\\LP{ω),(3.14)

which implies

(3.15) \\TrMf)\\LP(ω) < <C\\f\\LP(ω).

Thus to prove the theorem for p > γf, we only need to prove (3.11) in Proposition 3.1.

For k e Z, we define the operators Ek by

(3.16) Ekf(x) = f \H\y\)a(y')\ \y\~nf{x - Γ(\y\)yf)dy ,
J2k<\y\<2k+ι

and invoke the following lemma in [Du].

LEMMA 3.1. Let ω e Ap(Rn). If the vector-valued inequality

(3.17)

1/2

\Ekfk\
2 < C

LP{ω)

Σi
\k=-oo

1/2

LP{ω)

is true, then (3.11) holds.

PROOF. The proof can be found in the proof of Lemma 1 in [Du].

Now it remains to prove (3.17) for any ω e Ap/y>(R+) c Ap(Rn). By Holder's inequal-

ity, it is easy to see that

n2k+ι p

\Ekfk(x)\γ' <C / gk(x- Γ(t)y')\a(y')\dσ(y')Γιdt,
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where <ft = \fk\γ' and C is independent of a. Letr = p/γ'. Sincer > l,forω e Ap/γr(R+),

there exists a nonnegative function u with unit norm in U (ωι~r) such that

(3.18)

LP(ω)

where

I / ^gk(x-Γ(t)y')\a(y')\dσ(y')Γιdtu(x)dx

^ C ί Σgk(x)(Ma,Γu){x)dx,
k

(M α , r M )U) = sup f u(x + Γ(\y\)y')\a(y')\ \yΓndy .
kuZJ 2k<\y\<2MJ2k<\y\

Thus by Holder's inequality, we have

(3.19) Σ I £ * Λ I K '
w

< c

LP(ω)

IΛP IX,
LP{ω)

\(Ma,Γu)(x)\r ω(\x\)ι-rdxl-r'
\/r'

Recalling r = p/γ\ it is easy to check that ω e Ap/γ'(R+) if and only if ωι r e Ar>(R+).

Thus, by the same proof as that of Lemma 2.4, we have

(3.20)
Rn

\MaSu{x)\> ω(\x\Ϋ~r dx
1/r'

..-,')< C,

where C is independent of a. By (3.19) and (3.20), we obtain

(3.21)
MY'

< C

LP(ω)

1//

On the other hand, it is trivial to see

sup \EkMx)\ < σ*Γ fsup \fk\) (x).
keZ ' \keZ /

Thus by Lemma 2.4, we have

(3.22)
keZ \\LP(ω)keZ \\LP(ω)

Since γ' e (1, 2], (3.17) easily follows by (3.21), (3.22) and the Riesz-Thorin interpolation

theorem ([GR, page 481]). This proves the theorem if p > γ'. In the endpoint case p = γ',

since Ύp,b ι s bounded on Lr(ω) for any ω e A\(R+) and r > γ', and on Ls for any 1 <
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s < y' (by Theorem A), we obtain that Tp,b is bounded on Lγ (ω) for any ω e Ai(if+) by

interpolating with change of measures (see [BL, page 119]). The theorem is proved.

By Theorems 1 and 2, we can easily obtain the following two corollaries.

COROLLARY 1. Let 1 < p < γ, γ > 2, p φ oo, andωι/(l~p) e Ap>/Y'(R+). Let Γ,

b, Ω be the same as either in Theorem 1 or in Theorem 2, where p' is the dual exponent to p.

Then Tp,b is bounded in Lp(ω).

PROOF. Corollary 1 follows easily by duality and Theorems 1-2.

COROLLARY 2. Let Γ, b, Ω be the same as in either Theorem 1 or in Theorem 2.

For po > / , p\ G (1, / ) and t e [0, 1], let r(t) = tpo/(p\(l - t) + tpo) and pt =

PθP\/(P\(l — t) + tpo). Suppose ω e Ap/γ>(R+). Then Tp,b is bounded on LPt(ωr^).

PROOF. Interpolating with change of measures between Theorems 1 and 2 and Theo-

rem A, we obtain this corollary.

We remark that Theorem 1 and Theorem 2 remain ture for weights in Ap/γ>(R+) if

b(x) = L

4. The maximal singular integrals. In this section, we will study the truncated max-

imal functions T£ b of Tp,b F° r a n v ^ > 0, we define

b(\y\)\yΓnΩ(/)f(x - Γ(\y\)y')dy ,
\y\>ε

and

ε>0

It is well-known that the boundedness of T£ b on Lp(ω) implies the almost everywhere exis-

tence of limε_>o Tp bf{x), the principal value defining Tr,b f° r / £ Lp(ω).

THEOREM 3. Suppose Ω e Hι(Sn~ι) satisfy (1.1), 1 < p < oo and b e Δy with

y > 2. Let Γ be the function satisfying the conditions either in Theorem 1 or in Theorem 2.

Ifω e A11 ,(R+) with p > yf, then Tpb is bounded on Lp(ω).

PROOF. We only prove the case that Γ satisfies the conditions in Theorem 1, since

the proof of the other case is similar, with minor modifications. Similar to the proof of Tr,b>

we may assume that Ω{y') = a{yf) is an oo-atom supported in B(xo, p) Π Sn~x. Since

Tp,bf = Σk σa,r,k * / , for any ε > 0 there is an integer k such that 2k~ι < ε < 2k. So we

have

keZ keZ

By Lemma 2.4, we only need to prove the Lp(ω)-boundedness for /*(/) = sup^eZ \h(f)\

Let 8 be the Dirac delta function. For the λ in the conditions of Theorem 1, we take a

radial function ψ e ^{Rn) such that φ(ξ) = 1 when \ξ\ < 1/λ and φ(ξ) = 0 when \ξ\ > λ.
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Let φk(ξ) = φ(Γk\Bpξ\), where Γk = Γ(2k), and let Φk(ξ) = <pk(ξ). Now

oo

/*(/) = (δ-Φk)*Σσ"^J * / + Φk *
j=k

k-l

~ Φk * Σ °a

j=-oo

Clearly, by T h e o r e m 1,

SUp|4,2(/)| < C\\M(TΓ,bf)\\LP(ω) < C\\f\\LP{ω) .
\

(4.1)

Next,

sup | 4 , 3 ( / ) | = sup V<7 f l f r ,*- ./ *Φk*f

keZ keZ

OO / \ OO

< Σ[suV\σ^r,k-j *Φk*f\) = ^ G 7 ( / ) .

By Lemma 2.4 we have

(4.2) \\Gj(f)\\p < C \ \ f \ \ p , l < p < o o ,

and for any ω e Ap/yf(R+), there is an ε > 0 such that

(4.27) IIG;(/) | | L p ( ω i + ε ) < C | | / | | L P ( ω i + ε ) , γf < p < oo .

On the other hand,
/ \ 1/2

Thus by PlanchereΓs theorem and by inspecting the proof of Theorem 2, it is easy to see that

\\Gj(f)\\2

2<C sup

where we used the support condition of Φ * . Thus we have

(4.3) II G y ( / ) l l 2 < C λ - ' a H/II2.

Interpolating between (4.2) and (4.3), we obtain a θ > 0 such that for any p e (I, oo)

(4-4) l | G ; ( / ) | | p < C λ - ^ | | / | | p .

Interpolating between (4.2') and (4.4), we find a v > 0 such that

(4-5) l|G, (/) | | L P ( α ) ) < Cλ- Ί

for any ω e Ap/γ>(R+) and p > γ'. Therefore,

(4.6) SUp|/*,3(/)l < T\\Gj(f)\\LPiω) < C\\f\\LP(ω).
lUeZ
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Using a similar argument, we can prove

(4.7) sup I
keZ

The theorem is proved.

LP{ω)

5. The weights \x \a. A special case of radial weights is the power weights \x \a, a e

R. The following theorem was proved by Muckenhoupt and Wheeden (see [MW]) and by

Duoandikoetxea with a different proof (see Theorem 6 of [Du]).

THEOREM C. Let 1 < q < oo, 1 < p < oo. Suppose that T is the operator defined in

Section 1 with Ω e L^(Sn~ι) satisfying (1.1) (T = TΓ,b when Γ(t) = t andb(t) = 1). Then

T is bounded on LP(\x\a) if

(5.1) max(-n, - 1 - (n - \)p/q') < a < min(n(p - 1), p - 1 + (n - \)p/q),

where q' is the dual exponent of q. Also the range in (5.1) is optimal.

In the limit case q = 1, the range (5.1) becomes a e (— 1, p — 1). It is well-known that

the theorem fails for some Ω e Lι(Sn~ι) even in the non-weighted case a = 0. But Theorem

C is still true if a e ( - 1 , p - 1) and Ω e L log+ L (see page 880 in [Du]). As Hι is a natural

substitution of L1, we obtain the following theorem.

THEOREM 4. Let Tp,b be the operator satisfying either the conditions in Theorem 1 or

the conditions in Theorem 2. Let b e Δy with γ > 2, and p e (1, oo) satisfying p > γf.

Then TΓtb is bounded in LP(\x\a) if a e ( - 1 , p/γ' - 1).

PROOF. For any a e (— 1, p/γ' — 1), we choose a. β e (—1,0) such that α > β and

α — β < p/γf — 1. Then we write

(5.2) Mα = v\(\x\)v2(\x\γ-p/γ\

where ι>i(/) = /^ and viit) = ^-^VO-W/)# Clearly, both vi and V2 are decreasing. On the

other hand, it is well known that tβ e A\(R+) if — 1 < μ < 0. Thus we easily check that

v\ £ Ai(/?+) and V2 e A\(R+), which implies |jc|α € A/7/)//(/?+). Now Theorem 4 follows
from Theorem 1 and Theorem 2, because |;c|α e A!

p(Rn) if α e ( - 1 , p - 1).

Using interpolation with change of measures between Theorem 4 and Theorem A, we

can further obtain the following

COROLLARY 3. Let Γ, Ω, b are the same as either in Theorem 1 or in Theorem 2. For

po > / , p\ e (l,γ']andt e [0, 1], letpt = pop\/(p\(l -t) + tp0). Then

f \TΓ,bf(x)\Pt\x\adx<C [ \f(x)\P<\x\adx

provided that apo/(pι(l — t) + tpo) is in the interval (—1, po/yf — 1)

6. Boundedness in Morrey spaces. We are now going to study the boundedness of
o n the Morrey spaces. The classical Morrey spaces were introduced in [Mo] by Morrey
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in order to study the local behavior of solutions to second order elliptic partial differential

equations. In [Mi], Mizuhara introduced the following generalized Morrey spaces.

Let φ be a positive increasing function on (0, oo) and satisfy that for any r > 0, φ(2r) <

Dφ(r), where D > 1 is a constant independent of r.

DEFINITION 6.1. Let 1 < p < oo. We denote by LP*Φ = LP>φ(Rn) the space of

locally integrable functions / for which

(6.1) ί \f(x)\Pdx<CPφ(r)
JBr(x0)

for all XQ e Rn and r > 0, where Br(xo) is the ball with center JCO and radius r. We denote

the smallest constant C satisfying (6.1) by \\f\\LP,Φ.

THEOREM 5. Let 1 < D < 2", 1 < p < oo, b e Δy with p > γ' and γ > 2.

Suppose that Tr,b are the singular integrals satisfying the conditions either in Theorem 1 or

in Theorem 2. Then the operators Tp,b are bounded on Lp^.

PROOF. Let χ# be the characteristic function of the ball #r(jco) Clearly we have

XB(X) < (MXB)(X) for almost all x e Rn, where Mχ# is the Hardy-Littlewood maximal

function of χ#. By a simple computation one easily sees

(6.2)

Let ω(x) = (r/(r + l*!))6^ for any fixed number θ e (0, 1). Since XB is a positive Borel

measure such that Mχβ(x) < oo for all x e Rn. By the property for weights [GR, page

436], it is easy to check that ω(t) e Ai (/?+). Since ω(t) is decreasing, we have ω(|jc|) e

λι(R+) c A p / y/(Λ+),foraDp e (l,σo). Define fXo(x) by fXo(x) = / ( J C + J C 0 ) . We choose

a θ such that 1 < 1/θ < log 2n / log D. Then using Theorem 1 or Theorem 2, we have

ί
JB

\TΓ,bf(x)\pdx

= f \Tnbf(x)\PχB(x)θdx
JR»

<C f \TΓ,bfX0(x)\pω(x)dx <C f \f{x)\pω{x-xϋ)dx
JR" JR"

C\L \f(x)\pω(x - xo)dx + V / \f(x)\pω(x - xo)dx
j=ιJB2J+ίr(xo)\B2jr(xo) \

\f(x)\Pdx + Σ2~Jnθ J \f(x)\pdx\

7=0

JΘ" < C\\f\\P

LP,φφ(r).
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The theorem is proved.

Under a stronger condition, a special case of Theorem 5 was recently obtained by Yong

Ding [Di], in which Γ(t) = t, b e L°°(0, oo), and Ω e L^(Sn~l) with 1 < p < q or

q' < p < oo.

We remark that the Morrey space and the generalized Morrey space are recently used,

respectively, by Fazio and Ragusa in [FR] and Huang in [Hu] to measure the regularity of the

solution to an elliptic second order equation with discontinuous coefficients; see Theorems

3.3 and 3.4 in [FR] and Theorems 2.1, 2.2 and 2.5 in [Hu]. Moreover, by means of an inte-

gral representation formula of the second derivatives of the solution to the above mentioned

equation in [CFL], Fazio and Ragusa in [FR] obtained the regularity in Morrey spaces of the

solution to these equations just by first establishing the boundedness on Morrey spaces of

some singular integral operators; see Theorem 2.3 in [FR].

7. Boundedness in Herz spaces. To study the convolution algebra, A. Beurling [Br]

first introduced some primordial form of non-homogeneous Herz spaces which are also called

Beurling algebras. Later, C. Herz [He] introduced versions of the spaces defined below in a

slightly different setting. Since then, the theory of Herz spaces has been significantly devel-

oped and these spaces have turned out to be quite useful in harmonic analysis. For example,

they were used by Baernstein and Sawyer [BS] to characterize the multipliers on the standard

Hardy spaces.

For simplicity, we only discuss the boundedness of Tp,b m homogeneous Herz spaces

here. Let Bk = {x eRn : \x\ <2k] and Ck = Bk\ Bk-χ for k eZ.We also denote by χk the

characteristic function of the set Ck.

DEFINITION 7.1. Let a e R and 0 < p,q < oo. The homogeneous Herz spaces

Kapq(Rn) is defined by

Ka

p

q(Rn) = {fe Lp

oc(Rn \ {0}) : | | / | | ^ ( Λ Λ ) < oo},

where

V=-oo /

It is worth pointing out that the norms of these spaces in [He] are different, but equivalent.

T. M. Flett [Ft] gave a characterization of these spaces which is easily seen to be equivalent to

Definition 7.1.

Obviously, K°pP(Rn) = Lp(Rn) and Ka

p

/p'p{Rn) = Lp(\x\a) for my a e R and 0 <

p < oo. Moreover, in [HLY], Hu, Lu and Yang established the following general theorem on

the relation of boundedness of sublinear operators between Lp(\x\a) and K^q(Rn).

THEOREM D. Let T be a sublinear operator and T be bounded on Lp(\x\P) for all

β e (β\,β2) md certain p e (1, oo), where β\, β2 e R. Then T is bounded on Kp'q(Rn)

provided a e (β\/p, βi/p) andq € (0, oo).

As a simple corollary of Theorem 4 and Theorem D, we have



158 D. FAN, Y PAN AND D. YANG

THEOREM 6. Let Tr,b be the operator satisfying either the conditions in Theorem 1 or

those in Theorem 2. Let b e Δy with γ > 2, and p e (γf, oo). Then Tr,b is bounded on

Kp'
q(Rn)if0<q < ooanda e (-1/p, 1// - \/p).

8. Commutators. Let h(r) e Lι

]oc(R+). We say h(r) e BMO(R+) if

(8.1) ||A|U= sup I/Γ1 ί | / ι (r)-A 7 | J r < oo,

where A/ - \I\~ι / 7 h(r)dr.

Let A7 (r) G BMO(/?+), j = 1, 2, . . . , m. We define the higher order commutator about

Tb by

= p.v. /
JRΆ

Ω(x - y)b(\x - y\)\x - y\'n Π ^ d ^ D " hjQy\)}f(y)dy .

j=ι

The main result in this section is the following theorem.

THEOREM 7. If Ω e Hι(Sn~ι) satisfies (1.1) and b = 1. Suppose that hj(x) is a

radial function such that hj(r) e BMO(/?+), j = 1, 2, . . . , m, am/ ω G Ap(/?+). ΓA^ we

have

(8.2) l | 7 Γ ( ) P
7=1

provided oo > p > 1, where Cp = pm is a constant depending only on p.

PROOF. For any fixed p > 1, we write

/w m

Y\(hj(x) - Ay(j)) = pm γ\ \\hjU(hj{x) - hjiyMhjW-'p-1}.

7 = 1 7 = 1

Thus without loss of generality we may assume all ||/ι7 ||* = p " 1 . We now use the induction

argument on m to prove the theorem. By Theorem 1, we know that the theorem holds if

m = 0. Now we assume that the conclusion of the theorem holds for m — 1 and prove the

conclusion form.

For simplicity of the notation, we write h = hm. For any ω e Ap(R+), there is an ε > 0

such that ωx+ε e AP(R+). Thus by the proof of Theorem 3 in [DL, page 440], without loss

of generality we may assume etph(χ)(\+ε)/ε e Ap(R+) for all \t\ < 1. Recalling the definition

of Ap(R+), we have a constant C > 0 such that for any interval / c /?+,

p-\

< C,( ί ? \ ί ί \

Jiω j V Λ ω /

| 7 | -1 f eltphirKl+εyεjAfiji-l ί e-2tph(r)(\+ε)/ε(p-\)dΛ

Ji J \ J i J
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Thus by Holder's inequality we can find another constant C\ > 0 such that for any interval

ί ωHr)^ph{r)dλ (\IΓι j'

This shows that, by the definition of AP(R+), ω(x)etPh(x) e AP(R+) for all |r| < 1. Now by

the assumption of the induction we have

(8-3) \\T™ / | | ^ ( ω ^ Λ ( )cos0) < C\\f\\Lp(ωeph( )casθ)

for all real θ. Recall the well-known formula

h(x) - h(y) = (27Γ)"1 / ee [h{x)-h{y)]e-iθdθ .
Jo

Let gβ(y) = f(y)e~e' h("y\ then it is easy to see that the commutator T™ fix) is equal to

0,,-. T I β " ^ , D j '
Thus by Minkowski's inequality, we have

ί

/
«/0

The theorem is proved.

In [DL], Ding and Lu studied certain commutators with an oscillatory factor eιP^x^ in

their kernels, where P(x, y) is a real polynomial on Rn x Rn. More precisely, they studied

the operators

Tb

m'Pf{x) - p.v. f eiP^Ω{Xjy\(\x - y\){h(\x\) - h{\y\))mdy
j Rn \χ y\

and proved the following theorem.

THEOREM E ([DL, Theorem 1]). Under the conditions b(t) eBV(R+), h(t) e BMO(R+),

ω e Ap(R+) and Ω e Llog + L(Sn~ι) with (1.1). lfTb is bounded in LP(ω) then T™'P is

also bounded in Lp(ω)for any m e Z+ and any real polynomial P(x,y).

By our Theorem 1 and the above Theorem E, we now have

THEOREM 8. Let h, Ω and ω be the same as in Theorem E and b = 1. Then the higher

order commutator T™JP is bounded in Lp(ω), 1 < p < oo.

The special case m = 0 and ω = 1 of Theorem 8 was obtained in [JL2] under a stronger

condition b = 1.
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Define the maximal operator 7^m'* by

C*/Q0 = sup
£>0

/» m

/ b(\x - y\)\χ - yΓ"Ω(x - y) Y\(hj(\x\) - h(\y\))f(y)dy .
J\x-y\>ε j = ]

Then, using the same proof as that of Theorem 8 and the result for m = 0 proved in Section

4, we have

THEOREM 9. Let b, Ω, ω, be the same as in Theorem 8. Then we have

\\T?'*f\\LP(ω)<C\\f\\LP{ΰ»

provided oo > p > γ'.

A FINAL REMARK. It is possible to prove that the commutators in this section are also

bounded on the Morrey spaces and on the Herz spaces. We omit the details.
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