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Abstract. We prove a weighted norm inequality for homogeneous singular integrals
when only an H!-size condition is assumed on the restriction of the kernel to the unit sphere.
We also give several applications of this inequality.

1. Introduction. LetR",n > 2, be the n-dimensional Euclidean space and $"~! the
unit sphere in R" equipped with normalized Lebesgue measure do = do (x’). Let 2 (x)|x| ™"
be a homogeneous function of degree —n with £2 € L'(5"~!) and

1.n 1 2xNdo(x') =0,
gn—
where x” = x/|x| for any x # 0.
Let b(¢) be a measurable function on (0, c0) and y a real number larger than one. We
say thath € A, if ||b]la, = supg~g R} fOR |b()|Ydt < co. We also define Ago = L (R).
Clearly, Aoo € A, C A, forany 1 < A < y. Suppose that I"(¢) is a strictly monotonic C'
function on the interval (0, 0o). We define the singular integral operator 7, (f) by

(1.2) Trp(f)(x) = p.v. /R” K(y)f(x—T(yhy)dy,

where y' = y/|y| € §"~1, K(y) = b(|y|)2(y")|y|™" and f € & (R"), the space of Schwartz
functions.

For the sake of simplicity, we denote Tr, = T if I'(¢) = ¢ and denote Trp = T if
') =tand b(t) = 1.

The investigation of the operators T began with Calderén-Zygmund’s pioneering study
of the operator T (see [CZ1], [CZ2]). The operator T, whose kernel has the additional rough-
ness in the radial direction due to the presence of b, was first studied by R. Fefferman ([Fe])
and subsequently by many other authors ([C], [Ch], [CR], [DR], [Fa], [FP1], [FP2], [H1],
[JL], [KS], [Na], [Wal]). The best result concerning the size of §2, so far, is the following
theorem.
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THEOREM A (see [FP1]). If 2 € H'(§"™Y), I'(¢) satisfies the conditions either in the
following Theorem 1 or Theorem 2 (in particular I'(t) = t) and b € Ay, then Try, is bounded
on LP(R™) for 1 < p < oo.

The proof of Theorem A is exactly the same as that of [FP1], in which the function I is
slightly different. In [FP1], we proved the theorem for b € L°° (R ) and pointed out that the
theorem still remains true if b € A; by an easy treatment (see [FP2, Theorem 7.5]).

The space H'(5"~!) in Theorem A represents the Hardy space on the unit sphere, whose
definition will be reviewed in section 2. In order to make comparisons among the conditions
imposed on £2 in other known results, we point out that on §"~!, forany ¢ > 1, L4(§"~") C
Llog"t L(s"~") € H'(5"!) and all inclusions are proper.

On the other hand, the weighted L? boundedness of T has also been studied by a number
of authors ({ABKP], [Du], [H2], [KW], [MW], [Wa2]). However, all papers mentioned above
require a stronger condition than 2 € H'(5”~!) even in the simplest case b = 1.

In this paper, we are interested in studying the weighted L? boundedness of T, for
certain radial weights, which were introduced in [Du]. Our result, in which the Llog™ L
size on £2 in [Du] is weakened by the H! size, is an outgrowth of a recent result in [Du] by
Duoandikoetxea. We will also give several applications of our result, including the power
weights |x|%; L? boundedness of certain commutators; and the boundedness of T, on the
Herz spaces and on the Morrey spaces. It is well-known that both commutators and Morrey
spaces play an important role in studying the solvability and the regularity of solutions to
partial differential equations with discontinuous coefficients (see [FR] and [Hu]).

In order to state our main theorems, we first give the definitions of certain weights.

DEFINITION 1.1. Suppose that w(t) > O and w € L!_(R;). For1 < p < 0o, we say

loc

that w € A, (R) if there is a constant C > 0 such that for any interval I C R,

p—1
(1.3) (111—‘ /w(r)dr) (|1|—‘/w(r)—1/“’—'>dr> <C<o0.
1 1

If there is a constant C > 0 such that
(1.4) *(r) < Cw(r) for ae. reR,

where w* denotes the standard Hardy-Littlewood maximal function of w on R, then we say
w € Aj(Ry).

DEFINITION 1.2, If w(x) = vi(Ix])v2(lx])' =P, where either v; € A|(R,) is decreas-
ing or vi2 € Ai(R4),i =1,2,thenwesay w € AP(R+).

DEFINITION 1.3. For 1 < p < oo, we denote
Ap(R+) ={wx) =ow(x|) o) >0,w() € LI'OC(R+) and w?(t) € Ap(Rp)}.

Let A;,(R") be the weight class defined by using all n-dimensional intervals with sides
parallel to coordinate axes. In what follows, for p € (1, co), any measurable function f and



WEIGHTED NORM INEQUALITY 143

any weight w, we define

1/p
11 = ( [ s@reix)
Thus the weighted L? spaces associate to the weight w is defined by
LP(R", w(x)dx) = {f : || fllLr@) < 00}.

By [DL], we know that A,(Ry) € Ap(Ry). Also, if (t) € A,(Ry), then we know
from [Du] that the Hardy-Littlewood maximal function M f is bounded on L? (R", w(|x|)dx).
Thus, if w(t) € AP(R+), then w(|x|) € Ap(R"), where A,(R") is the Muckenhoupt weight
(see [GR] for the definition). Let A; =A4,N AL and A, = A, N A{,.

In [Du], Duoandikoetxea proved the following theorem.

THEOREM B (see [Du, Theorem 7]). Ifw € Ap(Ry) for 1 < p < oo, then T is
bounded on LP () provided 2 € Llog™ L(S"™1).

Now we are in a position to state our results.

THEOREM 1. Letb e A, fory > 2,1 < p < 0. Let I" be a nonnegative C! function
on (0, 00) satisfying:

(a) I is strictly increasing and I"(2t) > AI'(t) for all t and some X > 1,

(b) I satisfies a doubling condition, I' (2t) < cI"(t) for all t and some ¢ > 0,

(¢) I''(t) = C\TC(t)/tforalltandsome C; > 0.
Suppose that w € Af) / y,(R+) with p > y', where y' is the dual exponent to y. Then

(1.5) ITrs(HlLrw) < CIfIlLr(w)
provided 2 € H'(S"™1), where C is independent of f.
If I is a strictly decreasing function, we also have a similar result.

THEOREM 2. Letb € Ay, fory > 2,1 < p < co. Let I" be a nonnegative C! function
on (0, 0o) satisfying:

(@) T is strictly decreasing and I' (t) > A" (2t) for all t and some X > 1,

) ') <clQt)forallt >0 andsomec > 0,

() |’ (@®)| = C1I(t)/t for all t and some C| > 0.
Suppose that w € A;/y,(m) with p > y', where y' is the dual exponent to y. Then Trp is
bounded on LP (w) provided 2 € H'(S"™ ).

REMARKS. (1) Inboth T and T}, the singularity appears along the diagonal {x =
y}. Recently many problems in analysis have led one to consider singular integrals with
singularity along more general sets, some of which are in the form of {x = ¥ (y)} (see [St]).
Here we focus our attention on singular integrals T, which have singularity along sets of the
form {x = I"(ly])y'}.

(2) The precise conditions on the constants in Theorems 1-2 should be ¢ > A > 1 and
C1 € (0, log, c]. Model functions for the I" in Theorem 1 are I'(t) = % with d > 0, and
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their linear combinations with positive coefficients. Model functions for the /" in Theorem 2
are I'(t) = t° with 0 < 0, and their linear combinations with positive coefficients.

(3) By the relationship L log™ L(5"~1) ¢ H'(§"!) remarked above, one sees that,
even in the special case I'(t) =t and b = 1 (T, = T), Theorem 1 represents an improve-
ment of Theorem B in the case of w € A;,(R+).

(4) The method used in proving Theorem B depends heavily on the rotation method
of Calder6n and Zygmund. More precisely, one first considers the case that £2 is odd and
reduces the operator T to the one-dimensional Hilbert transform whose L” (w) boundedness
is well-known. For an even function 2 € Llog* L, one can compose §2 with suitable Riesz
transforms to reduce it to an odd function. Clearly this method is no longer applicable if an
extra rough function b appears in the kernel. To prove our theorem, we will use the atomic
decomposition of the Hardy space, as well as some estimates about the atoms obtained in a
previous paper ([FP1]).

We will review the definition of Hardy space and give some simple lemmas in section 2.
The proofs of the theorems can be found in the third section. The truncated maximal operator
will be studied in the fourth section. In Sections 5-8, we will give several applications of our
theorems.

Throughout this paper, the letter C will denote a positive constant that may vary at each
occurrence but is independent of the essential variables.

2. Lemmas related to the H ' space. We start this section by reviewing the definition
of the H'! space in the unit sphere. Recall that the Poisson kernel on §”~! is defined by

Pry () = (1 =r®)/Iry’ = x'I",
where0 <r < landx’, y' € §"~ 1.

Forany f € L'(5"!), we define the radial maximal function Pt f (x’) by

P f(x') = sup

O<r<l

g1 f(y/)Prx’(y/)dU(y/) .

The Hardy space H'(S"~') is the linear space of all f € L!(§"~!) with the finite norm
I fllg1(sn-1y = I1PT fllL1(sn-1) < 00. The space H'(8"1) was well-studied in [Co] (see also
[CTW)). In particular, it was shown that H'(S"~!) has the atomic decomposition property,
which will be reviewed below.

A g-atom is an L1 (1 < g < oo) function a(-) that satisfies the following conditions
(2.1)—(2.3).
2.1 supp(a) C $"~' N B(xo, p), where B(xq, p) is the ball with center xo € $"~! and

radius p € (0, 2],

@2) [, ardae) =0,

(2.3) lallg < p"~D/a=D.
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From [Co] or [CTW], we find that any 2 € H I'(s"~1) with the mean zero property
(1.1) has an atomic decomposition £2 = ) c;a;, where the a;’s are co-atoms and ) |c;| <
ClI$21 g1 (gn-1y-

If I" is the function in Theorem 1, we let y, = I (2" ). If I' is the function in Theorem 2,
we let yx = 1/I"(2%). Then, by the conditions of I', it is easy to see infrez vit1/yk = A > |
so that {y;} is a lacunary sequence of positive numbers. For any 2 € L!(§"~1), we define
the operator o « by

@4 oarusso = b(¥DRG)IY ™ £ x = F(yDy)dy
2k5|y|<2k+l
and OQk =0Q Ik if C(t) =t.
The maximal operator o, - is defined by, for locally integrable functions f,
(2.5) oo rf(x)= Sup/ bAYDLOGHHYIT"f (= T yDy")ldy
keZ J2k<|y|<2k+!
andoj =05 Fif I'(t) =1.
For any p > 0, we define the linear transforms B, and L, on R” by
2.5) By = (0°E1, k2, .., pE) s LpE = (pk1, ..., Pkt p7En),
where &£ = (§1,...,&,) € R".
We have the following estimates for o, rx if 2 = a is an co-atom.
LEMMA 2.1. Letb € A,, y > 2. Suppose that a(-) is an co-atom on S"~' with

supp(a) € S"~' N B, p), where 1 = (1,0,0,...,0) € S"'. Then there exist positive
constants o and B such that if I' is as in Theorem 1, then

(2.6) 16a.r.x(E)] < Cmin{|BoE[* v, v, P 1B,£17P}:
if I' is as in Theorem 2, then
2.6) |60, r(E)] < Cmin{|B,E[*y, %, yf1B,£|7F},

where C is a constant independent of k, & and p.

PROOF. The lemma is a modification of Theorem B in [DR]. The proofs for (2.6) and
(2.6') are essentially the same as that in Section 3 of [FP1]. For completeness, we state the
proof of (2.6).

First, we consider the case n > 2. For any fix £ # 0, we choose a rotation O such that
O(&) = |&|1. Let y' = (s, ¥, ¥3. ... » ¥)- Then it is easy to see that

ok+1

Ga,rk(§) = f
2k

where O~! is the inverse of O. Now a(O‘l(y’)) is again an oo-atom with support in
BE', p) N §"=1 where & = £/|£|. For simplicity, we still denote it by a(y’). Now we
have

b(t)t~! f a(0~ 1 (y))e I TOEIMN g5 (y)dr
Sn—l

2k+1

&a,l",k(é‘-) = /
2k

b(t)t™! f Fa(s, £)e i TWES ggqr |
R
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where
Fu(s,€) = (1 = sH@ 3251 1)(s) / a(s, (1 = s)V%5)do (5),
Sn-—2

X(—1,1) is the characteristic function of the interval (—1, 1) and do () is the Lebesgue measure
on the unit sphere §n2, By Lemma 2.1 of [FP1], we know that the function F, satisfies

(i) supp(Fa) C (&' —2r(£),& +2r(E);

(i) |[Falloo < C/r(&");

(>iii) fR Fy(s,&ds =0,
where C is a constant independent of the atom a and r(&') = |&]~! |B,&|. By (iii), we have

k+1

Ga,rk(§) = f
2k

By (i), (iii), the definition of b € A,, and the conditions on I", we obtain

2.7) 160, rk€)] < CT QD EIrE) < Cyy Bk
On the other hand, using Holder’s inequality, we have

16x(E)] < ClIbll 2,272 F .,

t‘lb(t)/ Fa(s, &) (e T WIEls _ =il 0IEE") gsqy |
R

where
2k+ 1

, 12
/k={/2k dt]

and A(s) = r(§")Fu(r(&')s,&’) is an L™ function supported in the interval (§;|B,&| —
2, &1|By&| + 2). By shifting variables, we may assume that A(s) is an L> function supported
in the interval (—1, 1). To estimate _#;, we choose a function ¥ € C°°(R) satisfying

Yy@)=1 forlt| <1, ¥@)=0 for|t]>2.
Let [ = (2%, 2k+1) and define T} by

/ e~ iTOrEEls A (5)ds
R

(Te f)(t) = XIi (t)f e—”r(’)’(s/)lg'W(s)f(s)ds.
R

Then
Tka*f(t) =‘/I;L(t,s)f(s)ds,
where

L@, s) = / e VOO ENEL Y2 (0)duy, (1) x4, () -
R
We easily see that
IL(I’ S)l = CXlk (S)Xlk (t) .

On the other hand, using integration by parts, we have

[L(, )| < C{|I"(s) — r(t)|r(§,)|§l}_lXIk(t)Xlk(S)-
So

L@, ) < CUT () = TOIrENENx0, ) xa (5) -
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Now by the mean value theorem and conditions (a’)—(c’) on I", we have

IL(t, s)| < C2Y2{rENEN s — t| 722 )0, () xr, (1)

Therefore,
sup f |L(t, s)|dt = sup f IL(t, $)lds < C2X(r @yr(g)1g) 12,
s>0JR t>0JR

This shows

ITifll2 < C22GrENED ™Ay 12,
which leads to
@2.7) 16 (8)] < C(IBoED) /4y

By (2.7) and (2.7), we obtain (2.6') for n > 2. Using the same argument and Lemma 2.2 in
[FP1], we can prove the lemma for the case n = 2.

Similar to Lemma 2.1, we can obtain the following lemma.

LEMMA 2.2. Letb € A,, y > 2. Suppose that a is an oo-atom on SV with
supp(a) C st n B(i, p), where 1 = (0,0,...,1) € S"1 Then there exist positive
constants o and B such that if I' is as in Theorem 1 then

(2.8) 60,k (€)] < Cmin{|L &%, L& Py PY;
if I" is as in Theorem 2 then
2.8 160,14 (§)] < Cmin{|L,&1"y %, IL,E1Py/));

where C is a constant independent of &, £ and p > 0.

Next we treat the atom supported in S"~! N B(xq, p) with an arbitrary xo on $”~!. Let
SO(n) b? the rotation group on R”*. There exist O, 02 € SO (n) such that Oyxg = 1 and
O>2xp = 1. For a function f(x) we define f;(x) = f(O;x),i =1, 2.

LEMMA 2.3. Let a be an co-atom supported in S"~' N B(xg, p). Then
2.9) (©a,rk * [)(X) = (0q.rk % i)O7'x), i=12,

where ay is an oco-atom supported in e B(1, p), ay is an co-atom supported in stln
B, p) and 0,._I is the inverse of O;, i = 1, 2.

PROOF. By changing variables, we have

Ca,r i * f)x) = f

2k <]y| <2+

I b(lyDai(y") f(x = O; T (IyD)y")dy

= / b(lyha;i (v)) £i(O7'x — T (lyl)y)dy,
2k<|y|<2k+!

which proves the lemma.

For the maximal function a;‘ r» We have the following L? (w) boundedness result.
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LEMMA 2.4. Letb e Ay, y > 1, p > y’, and a an oo-atom. Let I" be the function
either in Theorem 1 or in Theorem 2 and w € A p/y' (R+). Then

(2.10) log rfllLr@) < CllfllLr)

where C is a constant independent of a and f.

PROOF. Using the spherical coordinate and Holder’s inequality, we have

/ b(UyDa)I Iy ™" 1f @ = T(yhy")ldy
2k <|y|<2k+!
2k+|

= C/;k t—llb(t)l,/;‘n_| |a(y/)| |f(x o F(t)y/)lda(yl)d[

ok+1

Y 17y’
= {/2" a (/sn_. laY)If (x = F(t)y’)lda(y’)) dt}

k+1

17y’
=C {‘/;k ¢! -/S'H laQIf(x — F(I)y/)ly/dcr(y’)dt} )

Let g = |f|V/ and s = I'(z). From (c) in Theorem 1 or (¢’) in Theorem 2, we have ldr <
cs~!ds. So, by a change of variable, it is easy to see that the last integral above is bounded by

rek) 17y’
clf s 1a0)lat = sy)dotds
2k sn=l
Thus we have
1/y'
(2.11) o,rf(x)<C {[S"_l Ia(y')IMy/g(X)dG(y')} ,

where
R
My g(x) = sup R™! / lg(x — sy")|ds
R>0 0

is the Hardy-Littlewood maximal function of g in the direction y’. Since p > y’, we have

y/

17y’
I“/S"_I Ia(y’)lMyfg(')dO(y’)}

/n_. la(y) My g(-)do (y')

LP(w) LoV (@)

< /S"—‘ la(y)| “My/g”LP/V’(w)dO‘(y/)‘
By w € A,,,/(R.) and (8) in [Du], we know

”My’g”Lp/y’(w) = C”g”Lp/y/(w)

with C independent of y’. So the lemma is proved by noting

"g”LP/V/(w) = ”f”{l’(w) .
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3. Proof of theorems. Since the proofs of Theorem 1 and Theorem 2 are essentially
the same, we shall prove Theorem 2 only. In our proof we will apply the machinery developed
by Duoandikoetxea and Rubio de Francia in [DR].

First we consider the case p > y’. Note that Tr ,(f) is equal to

(3.1) /R IyIT"b(yN RO f(x — T (ly)y"dy,
where 2 = ) cjaj, Y lIcjl < C||82|| g1 (sn-1 and each a; is an co-atom. We have

ITrsfliLe@ < C Y I ITA (DllLr) -
where
TN = [ DIy a0 f G = FlyDy)dy.
Therefore, it suffices to show

(3.3) ITE p(DllLr@) < Cllf o) »

where C is independent of the atoms a;(-) and f.

For simplicity of the notation, we shall denote a(-) by a(-) and T ,{ »(FIbYy Trp(f). In
the following we assume that supp(a) is contained in the ball B(xg, o) N Ss"=1 Let I be the
interval (2%, 2K+1). Then Tr,(f)(x) is equal to

[R bUyDIYI a0 D0 xn(yDf = TAyDy)dy = Y arux f@).

k=—00 k=—00

Let {®}°,, be a smooth partition of the unity in (0, c0) adapted to the intervals (y;_1, ¥j+1),
that is,

[e°]
®; e C®0,00), 0<®;<1, Y &;n)’=1 forallt,

j=-00

supp(®;) € (¥j—1, Vj+1) -

Define the multiplier operators S; in R" by (S; f)(§) = f (6)P;(IB,&|). Following the proof
of Lemma in [DR], we decompose the operator T, (f) by

(3.5) Trp(f) =Y (Z Sj+k(0a,rk * Sj+kf)) =) T;f.
k J

J

We first estimate the L2 norm of Tj. By Lemma 2.3, we have fori = 1, 2,
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713 =CY [ lowrss Spuen)Pdy
k n

=3 [ o S 0] )Py
k /R

cy fR G,k @IS 4 P12
k n

By Lemma 2.1, it is easy to see that

(3.6) ITifl5<CYy /R |Bo€ Xy 2 1(Sj+x ))1E)PdE .
k n

So we have

3.7) ITifl3<Cy /R {UBEN/ Ve 1(Sj+x NIE)PdE .
k n

Similarly, we have
(3.8) ITifl3<Cy /R {BoEL/ e} 2P 1(Sja I dE .
k n

Now an easy computation shows that

(Sj+k)IE) = D14 (IBEN F(O7'8).

Thus if j > 0, we use (3.8) and the choice of @, to obtain that
ITifl5<C) /D | (O] &) (1B,El /)~ a
k J+k

where

Dj={&:yj_1 < IByt| <vjn1}.
This shows that if j > 0,
(3.9) IT; fllz < CA7B) 1.

Similarly, using (3.7) we have for j <0

(3.10) IT; fll2 < CA*N f .

Next, we estimate the L” (w) norm of f‘j forw € A{) / y,(R+). We shall prove the follow-
ing proposition.

PROPOSITION 3.1. Ifw € A~;/y/(R+), p >V, then

(3.11) ITj fller@) < CllfIlLr )

where C is independent of the atom a.
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If (3.11) holds, then we can easily prove the theorems for p > y’. In fact, interpolating
between (3.9)—(3.10) and (3.11) with w = 1, we have for some 6 > 0,

(3.12) 1T fll, < CAYe £,

where C is independent of the atoms a.
Forany o € A}, (Ry), there is an & > 0 such that ! e A;/y,(R+). Thus by (3.11),
we have

(3.13) 1T Fll ey < CUE o oreey »

where C is independent of the atom a. Therefore, using Stein and Weiss’ interpolation theo-
rem with change of measures [SW], we may interpolate between (3.11) and (3.13) to obtain a
positive number v such that

(3.14) 1Tj fller@) < C27°UN £llLrw) »

which implies

(3.15) ITrs(Hlirw < C Z IT; fllLr@) < ClflLre) -
J

Thus to prove the theorem for p > y’, we only need to prove (3.11) in Proposition 3.1.
For k € Z, we define the operators Ey by

(3.16) E f(x) =/ b(yDaOYI™" f(x = T (yhy)Hdy,
2k§|y|<2k+l

and invoke the following lemma in [Du].

LEMMA 3.1. Let w € A,(R"). If the vector-valued inequality

/2

0 1/2 00 1
(3.17) (Z |Ekfk|2) <C (Z |fk|2)
k=0 Lr(@) k== Lr(@)
is true, then (3.11) holds.
PROOF. The proof can be found in the proof of Lemma 1 in [Du].
Now it remains to prove (3.17) for any w € A p/y' (R4) S Ap(R™). By Holder’s inequal-

ity, it is easy to see that

2k+1

Exfiol < € f2 fs & = TOy)la)ldo () dr,

k
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where gy = lka’/ and C is independent of a. Letr = p/y’. Sincer > 1,forw € Ap/y/(R+),
there exists a nonnegative function # with unit norm in L" /(wl_’/) such that

||
(3.18) <Z 4Ekfkv’)
k

LP(w)
2k+l

Z[ /;k / | 9e(x = roy)la)lde (y)e " dtu(x)dx
K JR "=

<C f > g (0) (Mg, ru)(x)dx
"k

<C

where

(Mg, ru)(x) = sxmf u(x + C(yDyDla(")l Iyl "dy .
keZ J2k<|y|<2k+1

Thus by Holder’s inequality, we have

|
(3.19) (Z |Ekfk|y’)
k

LP(w)

y' |
<cC {Z|fk|y/} { /R |<Ma,ru)<x)|”w<|x|)‘—”dx}
k n

LP(w)

1/r

Recalling r = p/y/, it is easy to check that w € Ap/y/(RJr) if and only if =" e A (RS).
Thus, by the same proof as that of Lemma 2.4, we have

1/r
(3.20) {f |Ma,ru()|” o(x)' " dx] < Cllullp -y £ C,
Rn
where C is independent of a. By (3.19) and (3.20), we obtain
17y’ 17y’
3.21) {Z |Ex fil” } <C {Z | fil” ]
k LP(w) k LP(w)

On the other hand, it is trivial to see
sup | Ex fy (x)| < o, (Sup |fk[> (x).
keZ keZ

Thus by Lemma 2.4, we have

(3.22) sup | Ex fil

keZ

<
LP(w)
Since ¥’ € (1, 2], (3.17) easily follows by (3.21), (3.22) and the Riesz-Thorin interpolation
theorem ([GR, page 481]). This proves the theorem if p > y’. In the endpoint case p = y’,
since Trj is bounded on L" (w) for any w € Al(R+) and r > y’, and on L® forany 1 <

sup | fil
keZ

LP(w)
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s <y’ (by Theorem A), we obtain that Trp is bounded on LV/(w) for any w € Al(Ry) by
interpolating with change of measures (see [BL, page 119]). The theorem is proved.
By Theorems 1 and 2, we can easily obtain the following two corollaries.

COROLLARY 1. Letl < p<y,y >2,p+#o0,andw'/17P) ¢ Apr/yr(R+). Let I,
b, 2 be the same as either in Theorem 1 or in Theorem 2, where p’ is the dual exponent to p.
Then Trp, is bounded in LP (w).

PROOF. Corollary 1 follows easily by duality and Theorems 1-2.

COROLLARY 2. Let I', b, S2 be the same as in either Theorem 1 or in Theorem 2.
For po > y', p1 € (1,y) andt € [0, 1], let r(t) = tpo/(p1(1 — 1) + tpo) and p; =
pop1/(p1(1 —t) +tpo). Suppose w € Ap/(Ry). Then Trp is bounded on L' (™).

PROOF. Interpolating with change of measures between Theorems 1 and 2 and Theo-
rem A, we obtain this corollary.

We remark that Theorem 1 and Theorem 2 remain ture for weights in A p/y (Ry) if
b(x)=1.

4. The maximal singular integrals. In this section, we will study the truncated max-
imal functions T,f‘ p Of Trp. For any ¢ > 0, we define

Tf, f(x) =/ b(yDIyIT" 2O f(x — T'(lyDyHdy,

lyl>¢
and

Trpf(x) = sup TFpf (I

It is well-known that the boundedness of T;i’ p» on L? () implies the almost everywhere exis-
tence of limg—,o T}, f (x), the principal value defining Trp for f € LP(w).

THEOREM 3. Suppose 2 € H'(S"7!) satisfy (1.1), 1 < p < oo and b € A, with
y = 2. Let I be the function satisfying the conditions either in Theorem 1 or in Theorem 2.
Ifwe A;/y,(R+) with p > y', then T} is bounded on LP ().

PROOF. We only prove the case that I" satisfies the conditions in Theorem 1, since
the proof of the other case is similar, with minor modifications. Similar to the proof of T p,
we may assume that £2(y’) = a(y’) is an oo-atom supported in B(xg, p) N S"~!. Since
Trof =) 1 0ark* f,forany e > 0 there is an integer k such that 2kl < ¢ < 2K So we
have

o0
> oarj*f

Trpf <ogplfl+ Sug
=

=0, rlfl+sup [ (f).
ke keZ

By Lemma 2.4, we only need to prove the L? (w)-boundedness for I*(f) = supyez 11k ().
Let § be the Dirac delta function. For the A in the conditions of Theorem 1, we take a
radial function ¢ € & (R") such that ¢(§) = 1 when |£| < 1/A and (&) = O when |£]| > A.
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Let g (&) = @(Ik|Bo£|), where I = I'(2%), and let & (£) = gk (£). Now

o0 k—1
() =@ =)%Y Oar*f+PxTrpf) =P Y oarj*f
Jj=k Jj=—00
= lin (f) + Le2(f) + e 3(F) -
Clearly, by Theorem 1,
4.1) sup [ I, 2(f)I <CIMTrp)liLrw < ClfllLrw) -
keZ LP(w)
Next,

o0
ZUa,l‘,k—j * D x f

j=1

o) o0
<> (sup |0, rk—j * Pr * fl) =) G-
j:l keZ j=1

sup |1 3(f)| = sup
keZ

keZ

By Lemma 2.4 we have

(4.2) 1GOOI =Clifllp, 1<p<oo,

and for any w € /ip/y:(R+), there is an ¢ > 0 such that

4.2) IG i (I llp@i+ey < CUflppiveys ¥ <p <oo.
On the other hand,

12
G;i(f) = (Z oa, rk—j * Px * f|2) :
k

Thus by Plancherel’s theorem and by inspecting the proof of Theorem 2, it is easy to see that

IG/AHB<C sup Y (TkIBEN* A2 fII3,
§eRNON <181

where we used the support condition of @, Thus we have

4.3) IGj(Hll2 < CATN £z

Interpolating between (4.2) and (4.3), we obtain a 6 > 0 such that for any p € (1, c0)
(4.4) IG; (Pl < AU fllp-

Interpolating between (4.2") and (4.4), we find a v > 0 such that

4.5) 1G (HllLr@) < CATN fllLpw)
for any w € A~p/y/(R+) and p > y’. Therefore,

<D NG NNrw) < ClfILr -

LP(w) Jj=1

(4.6)

sup [ I, 3(f)I
keZ
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Using a similar argument, we can prove

4.7 <Clfllr(w) -

LP(w)

sup [Zx,1 (/)1
keZ

The theorem is proved.

5. The weights [x|%. A special case of radial weights is the power weights |x|¥, @ €
R. The following theorem was proved by Muckenhoupt and Wheeden (see [MW]) and by
Duoandikoetxea with a different proof (see Theorem 6 of [Du]).

THEOREM C. Letl < g < 00,1 < p < o0o. Suppose that T is the operator defined in
Section 1 with 2 € L1(S" 1) satisfying (1.1) (T = Trp when I'(t) =t and b(t) = 1). Then
T is bounded on LP (|x|%) if

.1 max(—n, —1 — (n — l)p/q/) <a<min(n(p—1),p—14+®-1p/q),
where q' is the dual exponent of q. Also the range in (5.1) is optimal.

In the limit case g = 1, the range (5.1) becomes « € (—1, p — 1). It is well-known that
the theorem fails for some 2 € L! (S”_l) even in the non-weighted case « = 0. But Theorem
Cisstill trueif o € (—1, p—1) and £2 € Llog" L (see page 880 in [Du]). As H! is a natural
substitution of L', we obtain the following theorem.

THEOREM 4. Let Trp, be the operator satisfying either the conditions in Theorem 1 or
the conditions in Theorem 2. Letb € A, withy > 2, and p € (1, 00) satisfying p > y'.
Then Trp is bounded in LP(|x|*) ifa € (—1, p/y' — 1).

PROOF. Forany a € (-1, p/y’ — 1), we choose a B € (-1, 0) such that @ > B and
a — B < p/y’ — 1. Then we write
(5.2) [ = vi(xDva(lx) ! =27,

where v;(¢) = t# and 1, (¢r) = t@=B)/1=p/y") Clearly, both v; and v, are decreasing. On the
other hand, it is well known that t* € Aj(R4) if —1 < u < 0. Thus we easily check that
v; € A|(R4) and vy € A{(R4), which implies |x|* € /ip/yz(R+). Now Theorem 4 follows
from Theorem 1 and Theorem 2, because |x|* € A;(R") ifeae(—-1,p—1).

Using interpolation with change of measures between Theorem 4 and Theorem A, we
can further obtain the following

COROLLARY 3. Let I', 82, b are the same as either in Theorem 1 or in Theorem 2. For
po> v pre(l,ylandt €[0,1], let p, = pop1/(p1(1 — t) + tpo). Then

/ ITrp f ()| |x|%dx < C / £ GOIP | |dx
R R"
provided that apo/(p1(1 — t) + tpo) is in the interval (—1, po/y’ — 1).

6. Boundedness in Morrey spaces. We are now going to study the boundedness of
Tr » on the Morrey spaces. The classical Morrey spaces were introduced in [Mo] by Morrey
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in order to study the local behavior of solutions to second order elliptic partial differential
equations. In [Mi], Mizuhara introduced the following generalized Morrey spaces.

Let ¢ be a positive increasing function on (0, co) and satisfy that for any r > 0, ¢(2r) <
D¢ (r), where D > 1 is a constant independent of r.

DEFINITION 6.1. Let 1 < p < oco. We denote by LP*® = LP?(R") the space of
locally integrable functions f for which

6.1) / f ) IPdx < CP(r)
Br(XO)

for all x9 € R" and r > 0, where B, (xg) is the ball with center xo and radius ». We denote
the smallest constant C satisfying (6.1) by || fl 1r.¢-

THEOREM 5. Let1 <D < 2", 1 < p <oo,be A, withp >y andy > 2.
Suppose that T are the singular integrals satisfying the conditions either in Theorem 1 or
in Theorem 2. Then the operators Tr , are bounded on LP ®

PROOF. Let xp be the characteristic function of the ball B,(xg). Clearly we have
xB(x) < (Mxp)(x) for almost all x € R", where M xp is the Hardy-Littlewood maximal
function of x . By a simple computation one easily sees

(6.2) (Mxp)(x) = (r/(r + |x — xo]))" .

Let w(x) = (r/(r + |x|))?" for any fixed number 6 € (0, 1). Since xp is a positive Borel
measure such that M xp(x) < oo for all x € R". By the property for weights [GR, page
436], it is easy to check that w(t) € A;(R4+). Since w(¢) is decreasing, we have w(|x|) €
Al(R+) - /i,,/y/(R+), forall p € (1, 00). Define fy,(x) by fx,(x) = f(x +xp). We choose
af suchthat 1 < 1/6 <log2"/log D. Then using Theorem 1 or Theorem 2, we have

[ itrercords
By (x0)
= fR AT f (017 x5 () dx

< C/ ITr b fro )P (x)dx < Cf | f (@) [Pw(x — xo)dx
R" R

o0

=c { | e -+ Y.
Bar (x0)

J=1
w .
<cC { / |f@)1Pdx + Y 279 [ |f (x)1Pdx
By (x0) j=1 B,j+1,(x0)

= C“f”i,,q; {¢(2r) -+ 22—1"9¢(2j+lr)]

Jj=1

/ |f )P (x — x0)dx
B, j+1,(x0)\B,;, (x0)

< CIfIF,o0(r) Y DItT1270 < | fIP, L0 (r).
j=0
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The theorem is proved.

Under a stronger condition, a special case of Theorem 5 was recently obtained by Yong
Ding [Di], in which I'(t) = t, b € L*®(0,00), and 2 € L9(S"!) with 1 < p < qor
q <p < oo

We remark that the Morrey space and the generalized Morrey space are recently used,
respectively, by Fazio and Ragusa in [FR] and Huang in [Hu] to measure the regularity of the
solution to an elliptic second order equation with discontinuous coefficients; see Theorems
3.3 and 3.4 in [FR] and Theorems 2.1, 2.2 and 2.5 in [Hu]. Moreover, by means of an inte-
gral representation formula of the second derivatives of the solution to the above mentioned
equation in [CFL], Fazio and Ragusa in [FR] obtained the regularity in Morrey spaces of the
solution to these equations just by first establishing the boundedness on Morrey spaces of
some singular integral operators; see Theorem 2.3 in [FR].

7. Boundedness in Herz spaces. To study the convolution algebra, A. Beurling [Br]
first introduced some primordial form of non-homogeneous Herz spaces which are also called
Beurling algebras. Later, C. Herz [He] introduced versions of the spaces defined below in a
slightly different setting. Since then, the theory of Herz spaces has been significantly devel-
oped and these spaces have turned out to be quite useful in harmonic analysis. For example,
they were used by Baernstein and Sawyer [BS] to characterize the multipliers on the standard
Hardy spaces.

For simplicity, we only discuss the boundedness of 71 in homogeneous Herz spaces
here. Let By = {x e R" : |x| < 2k} and Cx = By \ Bk for k € Z. We also denote by xi the
characteristic function of the set Ci.

DEFINITION 7.1. Leta € Rand 0 < p,q < oo. The homogeneous Herz spaces
Kf,"q (R™) is defined by

KETRY = (F € LR\ (0D - 1 ggqeny < ).

where
o0

1/q
k
”f”qu(R") = ( Z 2 aq“ka“zjl(Rn)) .

k=—o00
It is worth pointing out that the norms of these spaces in [He] are different, but equivalent.
T. M. Flett [Ft] gave a characterization of these spaces which is easily seen to be equivalent to
Definition 7.1.
Obviously, Kg’P(R”) = LP(R") and Kg/p‘p(R”) = LP(|x|¥) forany @« € Rand 0 <
p < oo. Moreover, in [HLY], Hu, Lu and Yang established the following general theorem on
the relation of boundedness of sublinear operators between L” (|x|*) and K ,O,“q (R™).

THEOREM D. Let T be a sublinear operator and T be bounded on LP(|x|P) for all
B € (Bi, B2) and certain p € (1, 00), where Bi, B2 € R. Then T is bounded on K;‘q(R")
provided o € (B1/p, B2/p) and g € (0, 00).

As a simple corollary of Theorem 4 and Theorem D, we have
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THEOREM 6. Let Trj be the operator satisfying either the conditions in Theorem 1 or
those in Theorem 2. Letb € A, withy > 2, and p € (y’, 00). Then Trp is bounded on
Ky 'R if0 < g <ocoanda € (—1/p,1/y' —1/p).

8. Commutators. Leth(r) € L\ (R;). We say h(r) € BMO(R, ) if

loc

8.1) Il = sup |1]™" / |h(r) — hyldr < oo,
ICR. 1
where hy = |I|7! [, h(r)dr.
Leth;(r) e BMOR,), j = 1,2, ..., m. We define the higher order commutator about
T, by

m

Ty f(x) = p-V-/R 2@ —yb(x —yhlx —y[™" ]_[{hj(IXI) —hi(yD}f(»dy.
n j:l
The main result in this section is the following theorem.

THEOREM 7. If 2 € H'(S"™") satisfies (1.1) and b = 1. Suppose that hj(x)isa
radial function such that hj(r) € BMOR,), j =1,2,... ,m,and w € A,,(R+). Then we
have

m
(8.2) 175" flliLr@) < Cp n WAl fllLr(w) »
j=l1

provided oo > p > 1, where C, = p™ is a constant depending only on p.

PROOF. For any fixed p > 1, we write

m m

[Tri) =hi)) = p™ [T IRl hix) = R0k, I P71

j=1 j=l1
Thus without loss of generality we may assume all ||z« = p~!. We now use the induction
argument on m to prove the theorem. By Theorem 1, we know that the theorem holds if
m = 0. Now we assume that the conclusion of the theorem holds for m — 1 and prove the
conclusion for m.

For simplicity of the notation, we write &2 = h,,. For any w € A p(Ry), thereisane > 0
such that w'*¢ € A p(R4). Thus by the proof of Theorem 3 in [DL, page 440], without loss
of generality we may assume e'PhM)(1+6)/¢ ¢ 4 (R.) forall || < 1. Recalling the definition
of A p(R4), we have a constant C > 0 such that for any interval / € R,

p—1
<|I|—1/w2+28(r)dr) (III—I/w—2(1+8)/(p—1)(r)dr) SC’
1 1
-1
(”I—lfe2tph(r)(l+s)/6dr> (lll—l/e—2tph(r)(l+a)/£(l7—l)dr)P <c.
1 1
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Thus by Holder’s inequality we can find another constant Cy > 0 such that for any interval
I CRy

p—1
<'I|_I /wZ(r)ethh(r)dr) (Ill—] /a)—2/(p—-l)e—ZIph(r)/(p-—l)dr) < C] .
1 1

This shows that, by the definition of A, (R+), w(x)e’?*™) e A, (R, ) for all || < 1. Now by
the assumption of the induction we have

(8.3) IT 1 Fll o ernrcossy < ClLE Il b epnreosey

for all real 6. Recall the well-known formula
2% i .
hu)—h@)z(mn‘h/ o () =h(y)} ,~i6 39
0

Let go(y) = f(y)e""®, then it is easy to see that the commutator T f (x) is equal to

2 _ _ m—1 .
oot [T | 20— V= YD T4 () — by ()10 ()dye P
0 R lx — ¥l =l

Thus by Minkowski’s inequality, we have
1 o 1
1T fllLr) < QRmr)~ fo 175" ™" (90) | Lp (wephtx)cosoydO

2
< @m)! fo 1961 L uerhireosnsd8 < ClLF lr(w) -

The theorem is proved.

In [DL], Ding and Lu studied certain commutators with an oscillatory factor e!*®*¥) in
their kernels, where P(x, y) is a real polynomial on R" x R". More precisely, they studied
the operators

; 2(x—y)
;" f(x) = p.v. / e’”"*”mbux — YD{R(x]) = R(yDY"dy
and proved the following theorem.

THEOREM E ([DL, Theorem 1]). Under the conditions b(t) € BV (Ry.), h(t) e BMO(R ),
w € Ap(Ry) and 2 € Llogt L(S"™1) with (1.1). If Ty is bounded in LP (w) then TI;"’P is
also bounded in L? (w) for any m € Z, and any real polynomial P(x, y).

By our Theorem 1 and the above Theorem E, we now have

THEOREM 8. Let h, 2 and w be the same as in Theorem E and b = 1. Then the higher
order commutator Tl:" P is bounded in LP (w), 1 < p < oo.

The special case m = 0 and w = 1 of Theorem 8 was obtained in [JL2] under a stronger
condition b = 1.
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Define the maximal operator T,"* by

T,"" f(x) = sup fl I b(lx — yDlx — yI7"R2(x — y) ]—[(h.,'(IXD —h(yD) f(»dy
x—y|>¢ j=1

>0

Then, using the same proof as that of Theorem 8 and the result for m = 0 proved in Section
4, we have

THEOREM 9. Let b, §2, w, be the same as in Theorem 8. Then we have

1T, fllrw) < CllfllLr)
provided 0o > p > y’.
A FINAL REMARK. Itis possible to prove that the commutators in this section are also
bounded on the Morrey spaces and on the Herz spaces. We omit the details.
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