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Abstract. We study a singular perturbation problem for a certain type of reaction diffu-
sion equation with a space-dependent reaction term. We compare the effect that the presence of
boundary layers versus internal layers has on the existence and stability of stationary solutions.
In particular, we show that the associated eigenvalues are of different orders of magnitude for
the two kinds of layers.

1. Introduction. In [3], Hale and Sakamoto studied the parabolic equation

(1) ut=ε2uxx + f{x,u), - 1 < J C < 1 , ί > 0 , ε > 0 ,

with homogeneous Neumann boundary conditions

Under mild hypothesis on / and Robin Boundary conditions (see below), Zelenyak [8] proved

that the ω-limit set of each solution is a stationary solution. Hale and Sakamoto's goal was to

prove the existence and determine the stability of equilibrium solutions of (1) that exhibit n

internal transition layers. To do that, they assumed that / verifies the following hypotheses:

HI. / : R x [-1, 1] -> R is a C°°-function of (JC, u) with /(JC, 0) = 0, / ( * , 1) = 0.

H2. There is a positive constant ζ such that

/ H ( i , 0 ) , / M ( i , l ) < - ? 2 fo r* e [ - l , l ] .

H3. If J(x) = / 0 /(JC, u)άu, x e [—1, 1], then there exist n points Xi in the interval

(—1, 1), Xi < jc/4-1, such that

J(xi) = 0, άJ(x)/άx φ 0 and / /(*,-, σ)dσ < 0 for u e (0, 1).
'• Jo

Their main example (for the case n = 1, x\ = 0) was

(2) /(*,«) = ι ι ( l - ι ι ) ( i ι - c ( * ) ) ,

where

c(0) = 1/2, c'(0) φθ, and 0 < c(x) < 1 for x e [-1, 1].

Assuming hypothesis HI, H2 and H3, they constructed approximate solutions that ex-

hibit n internal transition layers from 0 to 1 or vice-versa, Using these approximations, they

applied the Liapunov-Schmidt method, to obtain the existence of exact solutions of (1) with
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the same type of layers. Their method also produced results about the stability of these so-

lutions and, in particular, they proved that the first n eigenvalues of a solution that exhibit n

internal transition layers are of order ε.

Our goal in this article is to obtain analogous results on existence and stability of solu-

tions of (1) that, in addition to possible internal layers, have boundary layers. We will work

with the following Robin Boundary conditions'. 0 < α/, ar < 1; βu βr G /?,

ί aιu(-ht)-(l-aι)uf(-ht) =

With these boundary conditions, we may have solutions that exhibit boundary layers

at both, one or none of the endpoints of the interval [—1,1]. If they exist, the layers may

connect some value u = u\ (resp.w = ur) at the endpoints with u — 0 or u = 1 inside the

interval [—1,1]. Solutions with boundary layers exist if we assume the following hypothesis

(in addition to HI and H2):

H4. Let p be either —1 or 1 depending on which endpoint of the interval we are con-

sidering. Let q be either 0 or 1 depending on what value we want u to reach inside the interval

(0, 1). Let G be defined as

G{p,q,u) = / f(p,σ)dσ .
Jq

• If aι φ 1 (resp. ar φ 1) we will assume that there exists γ e (0, 1) such that G{p,q,γ) =

0> f(P> y) Φ 0> and G(p, q,u) < 0 if u is between γ and q.

• Otherwise, we will assume that f(—\,β{) φ 0 and G(—l,^,w)<0i fwis between q

and βι (resp. substitute —1 by 1 and βι by βr).

For the first case, the hypothesis guarantees that if α/ φ 1 (resp. ar φ 1) there is a

homoclinic orbit around q. For the second case, it guarantees that there is a piece of the stable

manifold of q that extends at least until βι (resp. βr).

In particular, for the example (2), if on φ 1 (resp. ar φ 1), there are solutions that

exhibit a boundary layer on the left (resp. right) endpoint of the interval if c(—1) < 1/2 (resp.

c(l) > 1/2)—see Figure 1. If α/ = 1 (resp. ar = 1), there are solutions that exhibit a left

(right) boundary layer that connects βι (resp.βr) with one (resp. zero) for all βι € (0, 1) (resp.
for all βr e (0, 1)). Also there are solutions that exhibit a left (resp. right) boundary layer that

connects β\ (resp.βr) with zero (resp.one) if βι < γ(c(— 1)) (resp. βr > γ(c(l))) where

(2 + 2c - V4 - 10c + 4c 2 )β , i f c < l / 2 ;
vie) = {

(-1 + 2c + Λ/2~V-1 + c + 2c2)/3 , i f o l / 2 .
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( a ) c < l / 2 ( b ) c = l / 2 (c) c> 1/2

FIGURE 1. Phase portraits of example (2) for different values of c.

From a variational point of view, hypotheses H1-H4 represent the existence of mini-

mizers of a certain functional. This approach is followed in [5], [2], Their method produces

existence of steady states of (1) that exhibit boundary and internal layers, but it does not tell

us anything about their stability as solutions of (1). The approach followed in [3] has the

advantage of providing existence as well as stability results.

To proceed with that method, we construct approximate solutions u = u(x) to

(4)

ε>0,

aιu(-l) - (\ - -D = βι,

and study the linearization of (4) around these approximate solutions. Then, to prove the

existence of exact solutions of (4) with the same layers and stability properties as our approx-

imations, we just have to refer to [3] (see also [7]), as long as our approximate solutions verify

(4) up to orders2.

We are interested only in solutions that stay in [0, 1]. Therefore, when we deal with a

Dirichlet boundary condition (α/ = 1 or ar = 1) we will always assume that β\ e [0, 1] or

βr e [0, 1], whichever corresponds.

2. An approximate solution. We are now going to construct an approximation U =

U(x,ε) to the equilibrium solution u of equation (1) with boundary conditions (3); that is, U

will be an approximate solution to (4).

We construct U by piecing together asymptotic approximations to each of the boundary

and internal layers. Approximations to the internal layers were given in [3]. We prove next

that we can apply the same procedure for the construction of the boundary layers and obtain

an approximation of order ε2.

2.1. The boundary layers. We present in detail only the construction of the boundary

layer that verifies the left boundary condition at x = 0 and goes down to zero, since the

construction of the other boundary layers in very similar. We first study the case on φ 1 and

take care of any possible Dirichlet boundary condition afterward.
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If we let s = (x + l)/ε, s e (0, 1/ε), and define Z(s, ε) = w(-l + εs),' = ά/άs, then Z

will satisfy:

ί Z + /(
I eα/Z(0, ε) - (1 - α/)Z(0, ε) = έ?j8/, Z(l/ε) = 0.

If we formally write Z(s, ε) = zo(s) + εz\(s) + O(£2) and equate the coefficients of the

powers of ε, then zo and zi satisfy

ί zo + / ( - I , zo) = 0, 0 < s < +cx),

1 έo(O) =

ί zi+fu(l,zo)zi +fx(-l,zo)s = 0, 0 < ^

1 (O) = [aizo(O)-βι]/(l-aι)=:dι(ahβι), zi(+oo) =

Since /M(0, 0) < 0 by H2, the origin in the (zo, έo) plane for (6) is a hyperbolic critical

point. Therefore, having a solution of (6) is equivalent to saying that the stable manifold of

(0, 0) intersects the z-axis, which is guaranteed by H4 if we set zo(O) = γ. Then zo(s) is

uniquely determined and there is a constant ko > 0 such that

(8) maz{\zo(s)\,\zo(s)\] <koe ζs, s>0.

Let us now write the equation

as the first order system Ϋ = A(s)Y where

0 1
Y ~ ι ' " ' -fu(-hzois)) 0

Since zero is not an eigenvalue of Λ(+oo) (again by H2), we conclude that equation (9) has

an exponential dichotomy in (0, +oo) (see [1]). Consequently, equation (7) has at least one

bounded solution φ(s). We can construct infinitely many other bounded solutions of the form

z\ (s) = Czo(s) + φ(s)9 with C e R—observe that zo(s) is a bounded solution of (9). Since

£0(0) Φ 0 by H4, we can choose

C = [dι(ahβι)-φ(0)]/M0),

so there is a bounded solution z\(s) of equation (7) that also verifies the initial condition.

Since the forcing term in (7) is of order e~^s by hypothesis HI and estimation (8), then

we have that

(10) max{|zi(s)|, |έi(s)|} < k\e~ζs, s > 0,

for some positive constant k\. This implies that there is a bounded solution of the problem

(7).
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This solution is unique. To see that, we multiply (7) by ZQ(S) and integrate from zero to

infinity. Integrating the term z\ (S)ZQ(S) by parts twice and using the fact the zo(s) is a solution

of equation (9) gives us the relationship

/•+OO

(11) [έoέi -zozi]o°° = - / fx(-hzo(s))szo(s)άs.

Jo

Using estimations (8) and (10), the initial condition έo(O) = 0 of (6), and the fact that

/ ( - I , γ) φ 0 due to H4, we have that

/
Jo

fx(-hzo(s))szo(s)ds.
f(-hγ)

For the case α/ = 1 (that is, the Dirichlet case), the left boundary condition for Z is

Z(0, ε) = βι. This implies that zo(O) = βι and zi(0) = 0. The hypothesis H4 guarantees that

the stable manifold of (0, 0) in the plane (zo, έo) extends beyond βu giving us the existence

of a bounded solution of problem (6) which verifies estimations (8). Similarly as before, we

can prove the existence of a bounded solution φ(s) of equation (7) by using the theory of

exponential dichotomies. Now, we can also construct many other bounded solutions of (7) of

the form z\(s) = Czo(s) + φ(s).

If έo(O) Φ 0, then we can choose C = —<p(O)/έo(O), and so there is a bounded solution

to (7) that verifies the initial condition z\ (0) = 0. Estimations (10) are also certain in this case

for the same reason as before and z\ (s) is again unique since we can see from (11) that

1 r
—^ /zo(O) Jo

fx(-hzo(s))szo(s)ds.
έo(O)

The case έo(O) φ 0 corresponds to the boundary layer being a piece of a homoclinic orbit

around zero. Let us denote this particular value of β\ by y, as we did for the example problem

(2). It turns out that for βι — γ, we can show that φ(s) itself verifies the initial condition. To

see that observe that (11) now reduces to

Λ+OO

(12) / fx(-Uzo(s))szo(s)ds = O.

Jo

This is essentially the requirement that is stated in [3] to guarantee the existence of a bounded

solution of (7) for the internal layers. But for us now, it is a consequence of the existence

of a bounded solution of (7). Using the fact that φ{s) is a solution of (7), the condition (12)

becomes
r+oo

/ {-φ(s) - fu(-l, zo(s))φ(s)}zo(s)ds = 0.
Jo

This equation implies that
/•+OO Z +OO

/ φ(s)zo(s)ds = / φ(s)'zo(s)ds ,
Jo Jo

which is only possible if φ(0) = 0.

So in this particular case we have infinitely many bounded solutions of (7) that verify

the initial condition zi(0) = 0, namely z\(s) = Czo(s) + φ(s). From all of these solutions,
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we must pick up the one that is the limit of the z\ {s, βι) as βι converges to y. In particular,

έi(0, γ) should be the limit of ii(0, βι) as β\ -> γ. This limit turns out to be zero. This

implies that z\(s, γ) is identically zero.

All of the other boundary layers are constructed by an analogous procedure. The inter-

nal layers are constructed similarly, although for them s e (—00, +00), and to prove their

existence we have the freedom to choose their values at s = 0.

We will denote by Λ the layer that appears at the point JC;, with i = 0, 1,... , n, n + 1,

and where XQ = 0 and xn+\ = 1 correspond to boundary layers. So

(13) Λi(s) = ZQ(S) +εz\(s), x=Xi+εs,

and s e (—00, +00) unless / = 0 in which case s e (0, +00) or / = n + 1 in which case

s e (-σo,0).

2.2. Matching the layers and estimating the error. We are now going to construct the

approximation U(x, ε) to an equilibrium solution u. Let p be the minimum distance between

the points X[ where there is a layer. To match our approximations for those layers, we need

the following C°°-cutoff functions defined on [0, 1]: for / = 1, 2, . . . , n let

Φ o ( * ) = ' 1, * < P / 1 O ;

0 < Φo(x) < 1, otherwise.

0, \x-Xi\>2p/\0',

1, \x-Xi\ <p/10;

0 < Φi(x) < 1, otherwise.

0, l-jc>2p/10;

Φn+i(x) = < 1, 1 -x < P/10;

0 < Φi(x) < 1, otherwise.

We also need a function Ψ that is going to be zero in the intervals [xι , JCZ+I] if u is close

to zero in the middle of the interval and otherwise is

1 — Φ/(JC), x — X[ < 2p/10;

# ( * ) = < 1, Xi +2p/10 <JC < jt/+i - 2 p / 1 0 ;

1 — Φ ί +i(jc), JC,-_|_I — x < 2p/10.

With the help of these functions, we define our approximate solution

π+l

1=0

If we denote by GJJ the function

(15) GJJ{X, έ) — ε2U" + /(JC, U(x, ε)),

then we can prove the following result.

LEMMA 2.1. sup^m n \Gu(x,ε)\ = O(ε2) as ε -> 0.
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PROOF. Where our approximation U is constant and equal to 0 or 1, the function Gu

is zero. Therefore, we only need to consider carefully the layer zones. We distinguish two

cases, depending on whether Φ/ is constant or not.

1. In the case of an interval where Φ/ is constant, we know that U is given by U (x, ε) =

Λi(x). So

Gu(x) = ZQ((X -

= f(x,Λi(x)) - f(xi, zo) + ε[fu(xi, zo)zi +fx(xi,zo)(x -Xi)/ε]

(i, z)[εz\Ϋ + fux(x, z)(x - Xi)εzι + (1/2)/,* (ί, z)(x -

= ε2[(l/2)fuu(x, z)z\ + fuxix* z)sz\ + H/2)fxxix, z)s2],

where z = zo + Oεz\ and x = χt + θ(x — JC, ) for some 0 < θ(x, ε) < 1 by the Mean

Value Theorem. Since we have the estimations (8), (10) and fxx(x, 0) = 0 = fxx(x, 1) the

function between braces is bounded in (0, +oo) as a function of s = (x — xι)/ε (remember

that / € C°° and u e [0, 1]). So our result is verified for this type of interval.
2. If Φi is not constant, then our approximation U has the form

and

\Gu(x)\ <\Λ'i

+ ε2\Ai{x)Φ[\x) + *"(X)\Q + |/(*, U(x, ε))\0 ,

where | |o stands for the supremum norm in the interval. Because of the estimations (8) and

(10), we only have to prove that the last term on the right hand side is of order ε2. We have

two possibilities. If Λj is a layer that is going down to zero as s goes to ±oo (depending of

which side of JC, we are), then Ψ(x) = 0 and we have that

fix, U(x, ε)) = f(x, 0) + fu(x, 0)Λiix)Φiix)

Since fix, 0) = 0 , estimations (8) and (10) can be applied again to obtain the desired result.

Finally, we consider the case in which A[ is a layer going up to 1, and then Ψix) =

1 — Φ/(JC) so

fix, Uix, ε)) = fix, 1) + Mx, l)Φiix)iΛiix) - 1) + o(Φ/(*)[Λ (*) - 1]).

The fact that fix, 1) = 0 and the corresponding estimations (8) and (10) enable us to conclude

the proof for this case.

As a last note, observe from (7) that the general Robin boundary conditions are verified

up to order ε2. Boundary conditions of Dirichlet or Neumann types are verified exactly.

q.e.d.

3. The linear operator. We wish now to discuss the spectral properties of the linear

operator C around the approximate solution U:

(16) Cφ = ε2φ" + Mx, Uix, ε))φ ,
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with the boundary conditions

In order to do so, we define

- IK e C2(\-l 11) aιu(~l) " ( 1 " aιW(~l) =

where y is a Banach space with the supremum norm represent by |M|O, and X is a Banach

space with the norm

|K|2,* = |M|O + Φ Ί O + < ? V Ί O forueX.

The operator C : X —> y is continuous.

The operator C has been extensively studied. We summarize in the following theorem

some of the results found in [3] for the case of homogeneous Neumann conditions.

THEOREM 3.1. Let us assume that the approximate solution U = U(x, ε) exhibits n

internal layers at the points {xi : / = 1, . . . , n}. Let Cn be the linear operator around U.

Then we have that

(1) All the eigenvalues of C1 are simple.

(2) The first n eigenvalues of Cn, λ\(ε) > λ2(ε) > > λn(ε), approach zero as

ε 10.

(3) Ifφj(x, ε), j e {1,... , n}, is an eigenfunction corresponding to λj(ε), then there

exist positive constants k, β and d such that

\φj(xi + εs,ε)\ <k\φj{xi,ε)\e-^ for \s\<d/ε.

(4) IfZι(s,ε) = Z1Q(S) -\-εz\ (s) represents the asymptotic approximation to the internal

layer of U at jc, then

φj(xi + εs, ε)/φj(xi,ε) -• zι

0(s) / zι

0(0) as ί | 0 .

(5) The remaining eigenvalues of Cn are bounded away from zero; namely there is a

positive constant μo such that

< - μ o for 0 < ε < ε0.

To extend some of these results to more general boundary conditions we have to study

the phase plane associated with the eigenvalue equation Cφ = λφ, λ e C; i.e., the equation

(18) ε2φ" + fu(x,U(x,ε))φ = λφ

with the corresponding boundary conditions. In order to study the phase plane of this equation,

we let p = εφ'. Then we have

εφr = P,
εp' = B(x,ε,λ)φ,
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where B = B(x, ε, λ) = λ — fu(U(x, ε), x). Changing to the polar coordinates (r, 0) such

that φ = r cos 0 and p = — r sin 0, we obtain the equations

ί εrr = r(\ + £)s in0cos0,

{ εθf = sin2 θ + B cos2 0 .

Observe that

lim θ(x, ε, λ) — +oo ,

Γ0(jc,ε,λ)-7r/2Ί
lim θ(x, ε, λ) = —7Γ/2 + (π + 1)7Γ , where π = £

λ-+-oo |_ 7Γ J

and £ is the Integer Part function. Since the equation for 0 does not depend on r and we are

interested only in the functions 0(JC, ε, λ) such that

0(0, ε, λ) = qo (modπ), 0(1, ε, λ) = q\ (modπ)

and

tan qo =—aι/(\ — aι), and tangi = αr/(\ — αr),

(or qo = — 7r/2, q\ = π/2 if α/ = 1 or α r = 1, resp.), we can restrict ourselves to the study

of the equation for 0.

Each one of the λ/ (ε) is the first eigenvalue associated with the internal layer at JC/ in

the sense that the angle 0 corresponding to the eigenfunction 0/, experiences a π rotation

when c(x) crosses 1/2 at the point JC;. We are interested in studying what happens to the first

eigenvalue associated with each of the boundary layers. Our results are summarized in the

following lemma.

LEMMA 3.2. Let us assume that U = U(x,ε) is the approximate solution given by

(14). Let C be the linear operator around U given by (16) with the boundary conditions (17).

Then we have that

(1) There exists a positive number A > 0 such that if we denote by λ/(ε) (resp. λ r (ε))

the first eigenvalue of C associated to the left (resp. right) boundary layer, then λ/ (ε) G

{—A, A) (resp. λr(ε) G (-Λ, A)).

(2) lfφι(x, ε) (resp. φr(x, ε)) is an eigenfunction corresponding to λ/(ε) (resp. λ r(ε)),

then there exist positive constants k, β and d such that

10/(-1 + εs, ε)\ < ke~βs for 0 < s < d/ε

(resp. \φr(\ + εs, ε)| < ke~βs for -d/ε < s < 0).

(3) Moreover we have that 0/(—1 + εs, ε) —> ψ(s) as ε —> 0, where ψ(s) verifies

(19) V̂  + /M(— 1, zo(^))1A = λ.(0)ψ , 0 < s < +oo,

. — oo < s < 0) vWί/i ί̂ ^ boundary condition ψ(0) = 0ifaι = l (resp. ar = 1)

^•'(0) = 0 otherwise.

PROOF. We are going to consider only the left boundary layer because the proof for

the right one is very similar.
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First, observe that the eigenvalue λ/(ε) must belong to some interval [—A, A] for a

certain ζ > 0, because the angle θ corresponding to the eigenfunction φι(x, ε) changes by

an amount approximately π in the boundary layer zone. In other words, λ/(ε) can not be too

positive because otherwise it would make θ jump by a bigger amount, and it can not be too

negative because otherwise θ would not jump at all.

Consequently, B(x, ε, λ) is bounded, and that gives us the bound for the eigenfunction

shown in the statement of the lemma. Then, since the eigenfunction verifies

(20) φι + Λ(-l + εs, ί/(-l + εs, ε))φι = λ(ε)φι,

we can conclude that φι is also bounded. And so is φ\ because of the interpolation inequality

' / /

0 , for v > 0 .

We only need now to apply the Arzela-Ascoli theorem to show that the eigenfunction φ\(— 1 +

εs, ε) converges to the solution of (19). q.e.d.

In order to determine the stability properties of the boundary layers we need to study the

limit of λ/(ε) (resp. λr(ε)) as ε -> 0. We will first discuss the Dirichlet case in the following

theorem.

THEOREM 3.3 (Dirichlet case). Ifλι(ε) (resp. λr(ε)) is the first eigenvalue of C asso-

ciated to the left (resp. right) boundary layer with a\ = 1 (resp. ar = 1) then, for ε small

enough, λ/(ε) (resp. λr(ε)) has the same sign as έo(O) if the boundary layer goes down to

zero and opposite if it goes up to one. In particular, λ/(0) (resp. λ r(0)) is zero if and only if

έo(O) is zero.

PROOF. Let us consider here only the left boundary layer since the analysis of the

right one is very similar. First observe that our boundary condition is now ψ(0) = 0 so

ψ(0) must always be different from zero. Also notice that since έoC?) is a solution of ψ +

fu(— 1, zo(s))ψ = 0, we can write ι//(s) = ξzo(s) + η(s), where η(s) is a function orthogonal

If we multiply (20) by zo(s) and integrate from 0 to +oo, after a couple of integrations

by parts, we obtain

/»+oo

(21) R + / Γέ'o(s) + M-l + εs, Z(s, ε))zo(s)}φι(-l + εs, ε)ds
Jo

= λι(ε) / Φι(-l + εs, ε)zo(s)άs ,

where

R = ίΦizo - Φίzo]o°° = 0/(-l, ε)zo(O) - φι(-l,ε)zo(O).

Taking the limit as ε goes to zero and applying the Dirichlet boundary condition we conclude

that

r+oo
(22) -^(0)z0(0) = λ;(0)§ / zl(s)άs.

Jo
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Relation (22) implies that the eigenvalue λ/(0) (resp. λ r(0)) is different from zero if

έo(O) is different from zero. To determine the sign of λ/(0) (resp. λ r(0)) we can make βι

(resp. βr) go to zero or one, depending on whether the boundary layer goes down to zero or

up to one. Then λ/(0) (resp. λ r(0)) will converge to the value of the first eigenvalue for the

non-layer situation (zo(s) identically zero or one), which can be seen to be smaller than — ζ2,

by hypothesis H2. So the sign of λ/(0) (resp. λ r(0)) is negative if έo(O) is negative and the

layer goes down to zero or if έo(O) is positive and the layer goes up to one.

If there is a value γ of β\ (resp. βr) such that the corresponding value of έo(O) is zero,

then zo(s) is half of a homoclinic orbit, as it may be the case for c φ 1/2 in the example (2)

which is depicted in Figure 1. In this case λ/(0) (resp. λ r(0)) is zero and if we continue to

move along the homoclinic orbit so έo(O) changes sign, λ/(0) (resp. λ r(0)) will also change

sign.

To see this we need to normalize the eigenfunction ψ(s). Since ^'(O) is different from

zero, we can assign to it the value zo(O), which, in a neighborhood of the turning point of the

homoclinic orbit, is always different from zero and makes ξ = 1. From (22) it follows that

the eigenvalue would change sign in this case and the eigenvalue corresponding to the turning

point would be zero. This normalization of the eigenfunction is valid in a neighborhood

of the turning point of the homoclinic orbit because the eigenfunction corresponding to the

eigenvalue at the turning point is precisely zo(s). q.e.d.

From the previous theorem it is obvious that the value of the Dirichlet condition corre-

sponding to the turning point of a homoclinic orbit is a bifurcation point, where a stable and

an unstable branch of solutions start up or die out. In any case, as can be seen in Figure 1,

there would always be another stable layer that connects all the points in the interval (0, 1) to

the other fixed point (the one that is not part of the homoclinic orbit).

For the rest of the Robin cases, the presence of a boundary layer automatically makes the

solution unstable. This was shown to be the case for example (2) and c(x) a step function in

[6] for the case of homogeneous Neumann conditions and in [4] for all the Robin cases. The

next theorem extends this result to our more general setting.

THEOREM 3.4 (The other cases). If λι(ε) (resp. λr(ε)) is the first eigenvalue of C

associated to the left (resp. right) boundary layer with oί{ φ 1 (resp. ar φ 1), then, for ε

small enough, λι(ε) (resp. λr(ε)) is positive. Its value is

I r+OO

λ/(0) = λ r(0) = γ I / zl(s)άs.

PROOF. If oti φ 1 (resp. ar φ 1), as ε goes to zero, we obtain an equivalent relationship

to (22) of the form

r»+OO

(23)
/•+OO

/ z2

0(s)ds,
Jo
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(similarly with λ r(0)). This eigenvalue should be positive when γ gets very close to one (the

non-layer situation ZQ(S) identically one is always stable). But this implies that its sign is

always positive, since from (23) it is clear that it can not ever be zero.

In order to determine the value of the eigenvalue we have to normalize the eigenfunction

ψ(s). Since for ε > 0,

φ(-hε) sax έo(O) , 0(1, e) -εar έo(O)_ _ a n c j — —

0 ( - l , e ) l-aι zo(O) 0(1, e) 1 - αΓ zo(O)

a natural choice for ψ(0) is γ. To determine the value of ξ we observe ξ should go to zero

as γ goes to one and ξ should have the same sign as zo(O) m order to make the eigenvalue

positive. It is clear that the election ξ = zo(O) verifies all the requirements and give us the

value of the eigenvalue stated in the theorem. q.e.d.

The thesis of this last theorem is not surprising, since the other two possible situations

that verify the boundary conditions in this case are both stable: they are non-layer situations

identically equal to zero and one. Also, this last result is consistent with Theorem 3.1 proven

in [3] in the sense that only the first eigenvalues corresponding to the internal layers get

arbitrary close to zero as ε goes to zero.
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