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Abstract. We give a correspondence between a class of quantum groups (face alge-

bras) and a class of AFD Ilpsubfactors, which contains both all of those of index less than 4

and all of those of principal graph D^ or £„ . Ocneanu's flat connection and a variant of

Woronowicz's compact quantum group theory play central roles.

Introduction. It is widely expected that Jones' index theory is deeply connected with

quantum groups. One of the evidence is an apparent similarity between Ocneanu's Galois

invariants (flat biunitary connections) of IIi-subfactors and Boltzmann weights of solvable

lattice models (SLM). In fact, quantum groups originated from the so-called L-operators of

SLM of vertex type.

Investigating the algebraic structure of L-operators of SLM of face type, the author

found the notion of face algebras, which is an unexpected generalization of bialgebras. Al-

though the definition of face algebras is more complicated than that of bialgebras, many im-

portant concepts in the bialgebra theory—such as antipodes, Haar functionals and universal

/^-matrixes—have natural generalization in the theory of face algebras. In particular, the cat-

egory C of (co-)modules of a face algebra still has a binary operation <g> which makes C a

monoidal category. In a previous paper [H2], the author used face algebras in order to prove

certain technical lemmas arising from the classification problem of II i-subf actors of index

less than 4.

In this paper, we establish a new relation between Πi-subfactors and face algebras. More

precisely, we give a correspondence between a class of irreducible AFD Πi-subfactors and

a class of face algebras with specified comodules. The correspondence covers all AFD Πi-

subfactors N c M of index less than 4, and gives a "group-theoretic" interpretation of these,

which is just like the construction, due to Goodman, de la Harpe and Jones [G-H-J], of Hi -

subfactors of index 4 via subgroups of SU(2).

In consequence of our construction, we obtain new examples of quantum groups 0 which

have rich representation theory. We classify their irreducible comodules, and compute their

dimensions and fusion (branching) rules with respect to 0 . When iV c M is of type A/+i,

<3 has fusion rules which coincide with those of St/(2)/-WZNW models in conformal field

theory. In a forthcoming paper [H6], we construct face algebras whose fusion rules are the

same as those of SU(N)ι-WZNW models, using the results of this paper. We will also give

applications of these to quantum invariants of 3-manifolds.
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Our construction of IIi-subfactors (Theorem 2.8) is a generalization of that of [G-H-

J] and Wassermann [Wa]. However, the proof is more involved. In fact, it deeply depends

on abstract harmonic analysis of face algebras, which is a variant of Woronowicz's theory

of compact quantum groups (cf. [Wo]). Category-theoretic properties of comodules of face

algebras also play important roles.

The construction of face algebras (5 is inspired by Schur's reciprocity theorem between

GL(N,C) and the symmetric group &m. The algebras & are defined so as to be satisfied a

reciprocity theorem between 0 and the string algebras (cf. Proposition 4.4(1)). Ocneanu's

notion of flatness plays a crucial role.

In Section 1, we recall basic properties of face algebras and their comodules. In partic-

ular, we recall the notion of hollowless compact Hopf face algebras 5} and functionals Q on

them, which we call the Woronowicz functionals.

In Subsection 2.1, we define the g-dimension dimρ(V) and the β-trace Trρ(/) for each

i>comodule V and its endomorphism / € End^( V). In Subsections 2.2 and 2.3, we construct
a commuting square for each of three fj-comodules. In Sections 2.4 and 2.5, we construct a
III -subfactor of index dimρ( V)2 for each irreducible i>comodule V, provided that S) is finite

dimensional.

In Section 3, we begin to study flat face models (V, w) which are variants of Ocneanu's

flat biunitary connections. They also contain WenzΓs Hecke algebra representations at a root

of unity in some sense. For each (V, w), we define its string algebra Str^V) and construct

an action of Strm(V) on the "full" path space. Using these, we define a face algebra Cost(V)

which is called the costring algebra.

In Section 4, we define a quotient <5(V) of Cost(V) for each flat biunitary connection

such that its principal graph Q is finite and coincides with the dual principal graph. We prove

that <3(V) is a finite-dimensional hollowless compact Hopf face algebra and that its irreducible

comodules are labeled by vertexes of Q. Using a result of Ocneanu and S. Popa, we verify

that <δ{V) has enough information to reconstruct the original II i -subfactor.

The author would like to thank Professor M. Izumi for explaining Ocneanu's notion of

flatness.

We refer the reader to [G-H-J] for basic facts on Jones' index theory.

NOTATIONS AND TERMINOLOGIES. Throughout this paper, A : fj -> S) ® S) (resp.

ε : S) -• K) denotes the coproduct (resp. counit) of a coalgebra S) over a field K, and p —

Pv : V -» V(g).f) denotes the structure map of a right fj-comodule V. We also use Sweedler's

"sigma"notation: Δ(x) = Σ(x)
xω®x(2), (Δ<S)id)oΔ(x) = (iά(S>Λ)oΔ(x) = Σ ( J C )

*(2) ® *(3), Pv(u) = Σ ( l ί ) M(o). 0 M(i) (x e ft, u e V), etc. (cf. [S]).

1. Preliminaries. We summarize facts on face algebras and their comodules (see

[H4] and [H5]).

1.1. Face algebras. Let ή be an algebra over a field K, which also has a coalgebra

structure ($), Δ, ε). Let V be a finite non-empty set and {<?/, βj \ i, j e V} elements of ή . We
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say that S) = (5}, {e;, ej}) is a V-face algebra if the following axioms are satisfied:

(1.1) Δiab) = Δia)Δib),

keV

(1.3)

(1.4)

for each a,b G S) and i, j G V. If, in addition, {eiβj | /, j G V} are linearly independent, then

S) is called hollowless. A subspace 3 of a V-face algebra β is called a biideal if it is both

an ideal and a coideal. In this case, the quotient S)/3 naturally becomes a V-face algebra. A

V-face algebra becomes a bialgebra if and only if JJ(V) = 1.

EXAMPLE 1.1. Let Q be a finite oriented graph. We denote by V = G° the set of

vertexes of Q and by Qx the set of edges of Q. We denote the source (start) and the range (end)

of an edgep of Q by sip) and t(p), respectively. For each m > 0, let Qm = UijeV ^u b e m e

set of paths on Q of length m. That is, /? G OT if p is a sequence ip\,... ,pm) of edges of

ί? such that sip) := s(pi) = i, t(pi) = s(/>2), , τiPm-ύ = s(Pm), rip) := r(p m ) = 7.

We also set £° = JJijeV^o"' ^ = ^ ^ e ^ ' GU = 0 0' ^ '̂) a n d ^Γ- = LJy ^ ,

^ - = LJi &u- ^ e t ^ ( ^ ) ^ e m e l m e a r s P a n of the symbols

p,qeGm, m>Q\ .

Then, $)iG) becomes a V-face algebra by setting

pa
e \a) c \b) = υτ^^a">ϋχ(9)Mb)c f

(1.5)

:»-£ ® G)
•(•©)-

Here, for paths p = ip\,... ,pm) and a = ( α i , . . . , απ), we set /; α := ( p i , . . . ,/?m,

a\,... , αn) if r(p) coincides with JS(Λ). Also, we set i /? = /? 7 = /? for each i, 7 G ^°

and/? G ̂ p . It is known that each finitely generated face algebra is isomorphic to

some Q and a biideal 3 c £(£) (cf. [H7]).
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Throughout this paper, we frequently use the notations for graphs defined in the example

above.

Let S be a linear endomorphism on a V-face algebra $). We say that S is an antipode if

it satisfies:

(1.6)
(a) ieV

(1.7)
(a) ieV

(1.8)
(a)

for each a e S). A V-face algebra is called a V-Hopf face algebra if it has an antipode. When

JJ(V) = 1, this definition coincides with the usual one. The antipode is unique if it exists, and

it is both an anti-algebra and an anti-coalgebra endomorphism of S) such that

(1.9) S{eiej) = ejei (iJeV).

LEMMA 1.2. For a V-face algebra 5}, /, j , i', jf e V and a e 5}, we have the following

formulas'.

(1.10) ε(aei) = ,

(1.11)
{a)

(1.12)
(a)

(1.13) 2 ^
(a) (a)

(1.14) A{eiejaei'ej>) = / j eja^ej

See [H4] for a proof of these formulas.

1.2. Comodules. For a V-face algebra io, we define linear functionals ε, , ε/ e

(i <E V) by

(1.15) εi(a) = εiflβi), hia) = ε{eia) (a e ?>).

As elements of the dual algebra Si*, they satisfy the following relations:
/ 1 1 ^ \ c o o o o o

(1.16) ειεj = 5,7ε, , ε, ε,- = 5/y ε, , ε, ε y = εy ε/ ,

(l.Π) £> = 1 = ^ . .
ieV ieV
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Hence each right fj-comodule V has a direct sum decomposition given by

(1.18) V = 0 V(ί, j), V(i\ j) := ^

where the representation πy \ S)* —> End(V) is given by

(1.19) π v(X)(ιι) = ̂ ii(θ)(X,M(i)> (ueV, X e £ * ) .

We call (1.18) the face space decomposition of V. When V is finite dimensional, we define

a graph Q by £° = V and t K ^ ) = dim(V(ι, y)) and call it the dimension graph of V. Let

{uq\qe Gjj] be a basis of V(ί, 7). We define a matrix [jc£] € Mat^ 1 , £) by

p

and call it the matrix corepresentation of (V, {uq}). The following lemma easily follows

from (1.11) and (1.12).

LEMMA 1.3. Let [x%] be as above. Then we have

for eachp, q e Gι and i, ϊ', y, jf e V.

Let W be another ή-comodule. We define an β-comodule V <§) W by

V0W= 0 V(i,k)®W(kJ),
iJMV

Pv<g)w(u ® υ) = / / v(^(0) ® υ(0)) ® ^(1)^(1) (u ^ ^0\ )̂» v 6 W(^, y))
(M) (υ)

and call it the truncated tensor product of V and W. For ή-comodule maps f : V -^ Vf

and £ : W -> W, / Θ ^ := (/ Θ <7)|y<g)W gives an i^-comodule map from V 0 W into

Let p be an element of $). We say that # is group-like if the following three relations are

satisfied:

Δ(g) =

keV

hej9 = ̂ / ^ , ε(geiβj) = 6,7 (ι\ e V ) .

By (1.3) and (1.2), the unit of a face algebra is group-like. For a group-like element g, let /?#

denote the linear span of the symbols {βjg\ j e V} equipped with an i^-comodule structure

given by

ieV

Then R := Rl satisfies R®V ~ V ~ V(8)/?for each i5-comodule V. We call /? the unit
comodule of $). Explicitly, the isomorphisms are given by
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Note that R is irreducible if 9) is hollowless.

Next, suppose that S) has the antipode S and that V is finite dimensional. Then the dual

space V* of V has a unique structure of a right j>comodule such that

v, K(0))S(κ(i)) = /^(^(O), M)V(1) (U G V, v e V ) .
00 (υ)

We denote this comodule by V" and call it the left dual comodule of V. This terminology

is compatible with that of monoidal category theory. That is, there exist comodule maps

% : R —> V 0 V" and $ : Vv 0 V —> /? such that both of the following two composite maps

are identities (see e.g. [D2]):

Explicitly, these maps are given by

%{d) = J^π(εi)uv 0 vv (ί e V),
V

$(v 0 u) = {v, u)βi (v e V v ( / , k), u G V(k, j ) , i, j , k e V ) ,

where {uv} denotes a basis of V and {vv} denotes its dual basis.

Let W be another finite-dimensional ij-comodule. Then, there exists an ή-comodule

isomorphism ( V 0 WY — W 0 V", which is compatible with the usual linear isomorphism

(V 0 W)* ^ W* 0 V*. We identify the vector space V 0 V* with End(V) in the obvious

way. Then, the subspace V 0 Vv is identified with

(1.20) £ v := {/ € End(V) | / π v f e ) = π v f e ) / (/ e V)}.

We regard E = Ey as an ή-comodule via this identification. Then we have

(1.21) E n d ^ ( V ) = ( / e £ pE(f) = J ]π £ fe ) (/) 0

1.3. Compact face algebras. Let S) be a V-face algebra over the complex number field

C and x : S) -> 55 an antilinear map such that (ax)x =afov each a e $). We say that x is a

costar structure of S) (or ή is a costar face algebra) if the following relations are satisfied:

(1.22) e?=h (ieV)

(1.23) (ab)x = axbx , Δ(ax) = ] Γ f l (

x

2 ) 0 ax

χ) (a, be?)).
(a)

PROPOSITION 1.4. Let x be a costar structure of 9). Then the following hold.

(i) ε{ax)^

(ii) The dual algebra S)* has a unique *-algebra structure such that {X*, a) = {X,ax}

(X e Si*, a G ft). Moreover, we have ε* — ει and ε* = e/.

(iii) If 9) is a Hopfface algebra, then its antipode is bijective.
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Let V be a finite-dimensional right ή-comodule equipped with a Hubert space structure

( I ) . We say that V = (V, ( | ) ) is unitary if

( ) ( i ) O, v e V).
(u) (v)

For a unitary comodule V, (1.19) gives a *-representation πy of ft* on V. We say that S) is

compact if each finite-dimensional right ή-comodule is isomorphic to a unitary comodule.

PROPOSITION 1.5. Let S) be a compact V-Hopf face algebra and let V and W be

unitary S)-comodules. Then the following hold.

(i) The face space decomposition of V is orthogonal.

(ii) The comodule V <g>W is unitary with respect to the following Hermitian inner prod-

uct.

(u®v\u ®vf) = (u\u)(v\v')

(u e V(i, j), v e V(7, Ifc), u e W(ϊ, / ) , v' e W(j\ k')).

PROOF. Part (i) follows from Proposition 1.4(ii). Part (ii) is straightforward. D

For a compact V-Hopf face algebra S), there exists the unique linear functional Q on S)

which satisfies the following two conditions:

(i) For each unitary comodule V, πy(Q) is a positive invertible element of End(V),

which satisfies Tr(π v (β)) = Tr(πv(QΓι).

(ii) For each a,b e S) and /, j e V, the following relations are satisfied:

(1-24) S2(a) = Σ<β>a(i))«<Z)(Q-\ai3)),
(a)

(1.25) (β, ab) = J ] < β ^ , a){Q°εk, b),

(1.26) S\Q) = Q-\

(1.27) Qεi =£iQ, Qsi = ̂  β,

(1.28) (Q/eiej)=8ij.

We call Q the Woronowicz functional of ft (cf. [H5], [Wo], [Ko]).

1.4. Fusion rules. Let S) be a face algebra which has a coalgebra isomorphism S) ~

0 λ e y l End(L^)* for some ή-comodules {Lχ \ λ e Λ}. We define nonnegative integers Nχ

(λ, /x, y G Λ) via the irreducible decomposition

and call them the fusion rules (or the branching rules) of $).

Next, let S) be a compact Hopf face algebra. Since each unitary comodule is completely

reducible, S) satisfies the condition stated above. We define a bijection v : A —-> A; λ \-+ λv
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by (LλY ~ L r . Since πLλ(Q) : L λ - ^ (L λ ) v v by (1.24), we have λ~ = λ (λ e A). It

follows from ( L ^ 0 L μ - ) v ~ Lμ®Lχ that

Moreover, we have

(see e.g., [H4], (4.22)). If S) is hollowless, then there exists the unique element * e A such

that L* ~ /?.

2. Construction of IIi-subfactors. Throughout this section, S) denotes a fixed hol-

lowless compact V-Hopf face algebra, and U, V and W denote finite-dimensional unitary

right ,f)-comodules. In Subsection 2.5, we also assume that fj is finite dimensional.

2.1. β-traces. For each / e End^(V), we set t r β ( / ) = ί(y)~ιΎτ(πv(Q)f), and call

it the Q-trace of / . We also set dimg(V) = trρ(l), and call it the β-dimension of V.

LEMMA 2.1. For each f e End^(V) and i e V, we have

PROOF. Let %, {wy}, etc. be as in Subsection 1.2. Since the unit comodule R is irre-

ducible, the map

is a scalar multiple, say c id/?. Comparing the image of Σi ei e ^ ' w e s e e m a t

( ι
Comparing the coefficient of ei, we get c = Tΐ(πy(βiQ)f). Summing over all i e V, we find

c JJ(V) = Ύτ(πy ( β ) / ) . The last two formulas complete the proof of the lemma. D

As usual, we identify End(V <8> W) with #End(V 0 W)q, where the projection q — qyψ

is defined by q = Σi πv(εi) ^ πw(βi)> In particular, for / e End^(V) and g e End^(W),

we identify / 0 g with q(f ® g).

PROPOSITION 2.2. (i) For each f e End^(V) and g e End^(W)9 we have

(2.1) t r f l ( / ® ^ = t Γ β(/) t Γ β(^)

(ii) We have the following formulas:

(2.2) dimβ(V Θ W) = dimβ(V) + άimQ(W),

(2.3) dimβ(V ® W) = dimρ(V) dimβ(W),

(2.4) dimβ(Vv) = dimβ(V),

(2.5) dimQ(R) = 1.
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PROOF. By (1.25), we have πv®w(Q) = £ . πv(Qεi) <g> πw(Qεi) Hence

from which together with Lemma 2.1 the relation (2.1) follows. The relations (2.3), (2.4) and

(2.5) follow from (2.1), (1.26) and (1.28), respectively.

PROPOSITION 2.3. IfVφO, then dimρ(V) > 1. Moreover, dimρ(V) = 1 if and

& ^ VV®V ~ R.

PROOF. By (2.2)-(2.5), we have dimρ(V)2 = 1 + dimρ(X), where X denotes an j>

comodule such that y < g > y v ^ / ? 0 l . Since dimρ(Z) > 0 if X φ 0, we get the proposition.

D

2.2. *-structure of End^(V). Since the category of finite-dimensional right 5}-co-

modules is equivalent to that of finite-dimensional left ή*-modules, we have End^(V) =

Endj^V). Since πy is a *-representation, End^(V) is a *-subalgebra of End(V). Moreover,

τy := &m\Q(V)~l\iQ is a faithful tracial state on End^(V).

LEMMA 2.4. The following map is a *-algebra inclusion:

(2.6) E n d ^ V ^ E n d ^ W ) ^ End^(V(g) W) / 0 ^ ι - > f®g.

In particular, V ® W φ 0 if V, W φ 0.

PROOF. We define Hermitian inner products on End^(V)(g)End^(W) and End^( V® W)

via τy ® τψ and τV(g>w, respectively. Using (2.1), we see that (2.6) gives an isometry. D

2.3. Commuting squares. By Lemma 2.4, we obtain the following *-algebra inclu-

sions:

(2.7) End^(V) -+ End^V&W); / ι - > / ® i d w ,

(2.8) End^(W)--> End^(y(8)W); g \-> id v ®g.

LEMMA 2.5. Let S be the conditional expectation of the inclusion (2.7) with respect

to τv®w. Then, for each element h = ]Γ μ fμ ® gμ ofEndfi(V®W) C qEnά(V ® W)q, we

have

(2.9)

PROOF. We define an i>comodule map E as follows:

_ id®τr(β)®id®id

By a direct computation, we see that f(/z) formally coincides with the right-hand side of

(2.9) up to the constant factor dimρ(W), where h = Σμ fμ ® 9μ ^s a n arbitrary element of

Ev®w. On the other hand, using (1.21), we obtain ^(End^VΘ W)) C End^(V). Hence
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(2.9) gives a well-defined map 6' into End^V). Obviously, £' is an End^(V)-bimodule map.

The relation £'(1) = 1 follows from Lemma 2.1, while τv(Sf(h)) = τv®w(h) follows from

(1.25) and (2.3). Thus £' is the conditional expectation with respect to τv®w. D

Using the lemma above, we obtain the following proposition.

PROPOSITION 2.6. The diagram

EndfiiU&V) C End%(U®V®W)

u u
End^(V) c End%(V®W)

is a commuting square with respect to τu^)V^w, where the horizontal and the vertical inclu-

sions are given by f \-+ /®idw and g ι-» \άu <g> g, respectively.

2.4. Representations of End^(V). Let Lχ, A, etc. be as in Subsection 1.4. We define

a subset A(V) of A by

A(V) = {λ G A I Hom^(L λ, V) ^ 0}.

For λ G Λ(V), we define ^ € 7Γv(ή*) to be the unique minimal central idempotent such

that eχV is isomorphic to a direct sum of copies of Lχ. By Proposition 2.2.3 of [G-H-J],

{eχ I λ G Λ(V)} is the set of all minimal central idempotents of both 7Γy(£j*) and End^(V).

For λ G A(V), we set ΛΓλ(V) = Hom^(L^, V) and regard it as an End^(V)-module via

(af)(u) = af(u) (a e End^(V), / G Hom^(L λ, V), u e Lλ). Then Kλ(V) is irreducible

and eχV is isomorphic to Lχ <g> Kχ(V) as a πy(f)*) 0 End^(y)-module.

PROPOSITION 2.7. We regardKV(V®W) (v e A(V^W))asanEnd^(V)<S}End^(W)-

module via (2.6). Γ/ẑ «, we have:

KV(V®W)- 0 0 Nv

λμKλ(V)®Kμ(W).
λeΛ(V) μeΛ(W)

PROOF. For algebras A c f i , w e set CB(A) = {b e B \ab = ba (a e A)}. Applying

Proposition 2.2.5 of [G-H-J] to q = qvw, F = End(V ® W) and M = πv(fi*) (8) πw(f)*),

we get

CqFq{qMq) = qCF(M)q = ^(End^(y) 0 End^(iy))^ .

Hence the inclusion matrix for ̂ (End^(V) <g>Endfi(W))q C End̂ (V<g>W) is the transpose of

the inclusion matrix for πVQW(fi*) C qMq (cf. [G-H-J, Proposition 2.3.5] and [G, Theorem

6.2]). This proves the proposition. •

2.5. Πi-subfactors associated with comodules. Let ή be a finite-dimensional hol-

lowless compact V-Hopf face algebra. Let V = L Q (D G A) be an irreducible unitary

fj-comodule such that dimρ(V) > 1. For m > 1, we set Bm = End^(Vm) and Cm =

Endfi(Wm), where Vm and Wm denote ή-comodules defined by

Vlm+l = Vim ® V ,

® V .
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By Proposition 2.6, we have the following ladder of commuting squares:

C Cm C C m + i C Cm +2 CCm

n
Bm+l

c

c

Cm+\

n
Bm+2

c

c

Cm+2

n
Bm+3

(2.10)
. . . C £ m + i C Bm+2 C Bm+3 C

Here the horizontal and the vertical inclusions are given respectively by / H> /<8>id and

/ H>> id 0 / , and the trace on # m is τym.

Let M and Λf denote respectively the weak closures of πτ ί l imB m j and πτ ί l imC m j ,

where π τ denote the GNS constructions with respect to the traces induced by τym. We call

TV c M the pair of the von Neumann algebras associated with V.

THEOREM 2.8. Let S) be a finite-dimensional hollowless compact V-Hopfface alge-

bra. Let N C M be the pair of the von Neumann algebras associated with an irreducible

unitary S^-comodule Vsuch that dimρ(V) > 1. Then N c M is an irreducible \\\-subfactor

of Jones' index [M : N] = dimρ(V)2.

We will prove this theorem by using WenzΓs index formula and his estimate of the rel-

ative commutant (cf. [We]). Since % : R «̂-> V® V" and % : R ^^ Vv<g> V~ ~ VV0 V,

we have Λ(Vm) c Λ(Vm+2) and Λ(Wm) c Λ(Wm+2) for each m > 0. Since Jt(-Λ) < oo,

there exists a positive integer mo such that Λ(ym+2) = Λ(Vm) and Λ(Wm+2) = Λ(Wm) for

each m > mo Let « be an even integer such that n > mo- For a pair C C B of multimatrix

algebras, let Inc(C C B) denote its inclusion matrix. Using Proposition 2.7 and (1.30), we

then obtain

lnc(Bn C Bn+i) = Y= 'ΊnciBn+i C Bn+2),

(2.11) 'incίCπ C C π + i) = Y = IncίC+i C C n + 2 ) ,

Inc(Cπ C Bn+ι) = Z = Inc(Cπ +i c ^ + 2 ) ,

where Y = [N^Π]λβ and Z = [ Λ β μ ] λ μ .

LEMMA 2.9. A// o/ίAe matrixes *Y Y, Y *Y, *ZZ and Z {Z are primitive and irreducible

(cf. [G-H-J,§1]).

PROOF. Let μ be an element of Λ(Vn). Since dimρ(L μ 0V) > 0, there exists an

element λ e Λ(Vn+ι) such that Λ^λ|-| > 0. Hence each column of Y is never 0. Considering

similarly, we see that both Y and Z are irredundant. Hence by Lemma 1.3.2 of [G-H-J], it

suffices to show that neither Y nor Z is decomposable. We define a bipartite graph Ί~ί as

follows:

n° = W = WoddLJWeven ,

(2.12) Wodd = Λ(Vn+ι) , Weven = A(Vn) ,

{ ) = Yλμ (λ € Wodd, β e Weven) .

By induction on m > 0, we obtain Λ(Vm) = {λ e W | 7ί^λ 7̂  0}. Therefore H is connected

and y is not decomposable. The proof of the indecomposability of Z is similar. D
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By computing the β-dimensions of Vv® V<g)Lμ (μ e Λ(Wn)) in two ways, we see that

the Perron-Frobenius eigenvalue of *ZZ is dimρ(V)2. Thus, we get | |Z | | = dimρ(V), and

similarly, we obtain | |F || = dimρ(V). In particular, both of the sequences {Bm \ m > mo} and

{Cm I m > mo} are strictly increasing. Thus we complete to check all hypotheses of WenzΓs

index formula.

Finally, we show that the resulting IIi-subfactor A f c M i s irreducible. By Theorem 1.6

of [We], it suffices to show that there exists a projection p e Cn such that dim(C^/2+1 (Cn)p) =

1. Let {eλ I λ e Λ(Vn+\)} and {fμ | μ e Λ(Wn)) denote the sets of minimal central projec-

tions of Bn+\ and Cn, respectively. It is easy to see that Cβn+ι (Cn) is the direct product of

the simple subalgebras of the form Cβn+ι (Cn)h = ChBn+\h(hCnh), h = eχfμ φ 0 and that

dim(CBn+](Cn)h) = (Zλμ)
2 (cf. [G-H-J, p. 43]). The element * belongs to Λ(Wn), so that

we obtain dim(Cβ/ί+1 (Cn)p) = J2x(N^)2 = 1 for p = /*. We have completed the proof of

Theorem 2.8.

REMARK. Ifή is aHopf algebra (i.e., fl(V) = 1), its Woronowicz functional is given by

Q(a) = ε(a) (cf. [H5, §5]). Hence dimρίV) = dim(V) for each ή-comodule V. Therefore,

in this case, Theorem 2.8 gives only IIi-subfactors with square-integer indices.

3. Flat face models and face algebras.

3.1. Face models. Let V be a finite-dimensional vector space which is the direct sum

of the subspaces V(i, j) indexed by two elements i and j of a finite set V. We call such a

vector space a V-face premodel. For each / e V, we set

V(ί, -) = φ V(f, j), V(-, /) =
jeV

For each m > 0, we define a V-face premodel Vm as follows:

v o ( l ,) - (
( l J ) Ί o

Here ,̂ denotes a non-zero vector indexed by i e V. By definition, we may regard Vm

(m > 1) as a subspace of V®m. Let w be a linear automorphism of V2. We say that a pair

(V, tu) is a V-face model if w(V2(i, j)) c V2(/, j ) for each /, j e V. For a V-face model

(V, w), we define w; G End(Vm) (1 < i < m - 1) and w;mw € End(Vm + π) (m, n > 1) as

follows:

3 i u;/= (id®1"-1 ® u; β i d f 1 - " " 1 ) I V M ,

( Wm+n-\)(wn-\Wn

It is sometimes convenient to describe a V-face model via a fixed basis. For a V-face premodel

V, we define an oriented graph Q by (?° = V, and #(<?/•) = dim(V(/, j)), which is called the

dimension graph of V. Let {up\p e Q}Λ be a basis of V(i,j). Then, we obtain a basis
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[up \p G Gm] of Vm by setting U(pu_iPm) := uPx (g) ® uPm, which we call a path basis of

Vm. We say that a quadraple

or a diagram

k • /

d

is a boundary condition on Q of size mxnifa,de Gn, b,c e Qm and $(a) = / = s(c),

r(α) = j = s(b)9 t(c) = k = s(d), xφ) = I = ι(d). For each boundary condition Z? of size

m x « , w e define a scalar tυ(B) by

(3.2) wnm(ua ^ub) = Yjw(ca

db\uc^ud, (ae Gn_^ b e g?_, j € V)
c,d ^ '

and call it the partition function of (V, {up}), where the summation is taken over all c e
G™(a) - an(* d e Qn_ r ( ^ such that r(c) = s(d). For convenience, we set w(B) = 0 for each
quadraple β of paths, which is not a boundary condition. For example, the above summation

may be taken over all c eQm and d e Qn.

Let V = (V, w, *) be a V-face model with a fixed vertex * e V. We assume that V

satisfies the following two conditions:

(A) For each / e V, there exists m > 0 such that g™. φ 0.

(B) For each m > 0, there exists i e V such that Q™ φ 0.

We define sets Ay = \}m>0 Λy> ^ ( m ) a n d a n algebra Strm(V) (m > 0) by

Λ^ = {(f, m) e V x Z> 0 | V
m(*, /) ^ 0},

V(m) = {i e V|(/,m) e Λ v } ,

S t r m ( V ) = 0 End(Vm(*,/)).
ieV(m)

We call Strm(V) the string algebra of V. For each m, n > 0, we define an algebra map

ι = tmn: Stτm(V) -

(3.3) LmnWiUp ® Uq) = XUp ® Uq (x 6 Strm(V), p G

We say that V = (V, w, *) is a flat V-face model if the relation

(3.4) ^ ^

holds in Strm + '2(V) for each m, n > 0, x e Strm(V) and y e Strπ(V), where wnm denotes

the restriction of wnm on V m + n (*, —).

Let Epq e End(Vm) (p, q e Qm) be a matrix unit which corresponds to a path basis

[up\p egm] of V"\ that is, E M κ r = δqrup. Substituting x = Eef (ej e G™) and y = Eab
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(α, b e Qlj) into (3.4), we obtain

for each/), ̂  e £/m and p',q' e Q". Hence (V, w, *) is flat if and only if there exists a function

Y • LL>o(2"-) 2 x (£") 2 -• * s u c h t h a t

(3.5) Σ w~ι ίb u c\ w (υU

d t\ = Suvγ(a,b,c,d)

for each m, n > 0, a,b e Gl__, c,d e Qn and u,υ e G™_ such that r(w) = $(c) and

Next, we will construct an action of Str m (V) on the "full" path space Vm for a flat V-face

model V = (V, w, * ) . For each j eV,n >0 and (/, m) e Λy, we define a linear map

(3.6) Φ m : Vπ(i\ 7) -• HomStr-(V)(Vm(*, ί), Vm +"(*, j))

by Φm(ξ)(η) = η ® ξ (ξ e Vn(ί,j), η e Vm(*,/)), where the action of Strm(V) on

Vm +"(*, j) is given by ιmn. Comparing dimensions, we see that Φm is an isomorphism. By

(3.4), the right-hand side of (3.6) becomes a Str"(V)-module via x <g) / ι-* wnmi(x) w~^f

(JC G Str"(V), / € Im(Φm)). Hence, Vn(ί,j) also becomes a Str"(V)-module. Explicitly,

corresponding representation Γ is given by

(3.7) Γ(Eah)uc = Σ Y(a,b;c,d)ud

for each h,i, j e V,c e Q". and α, b e G" h, where y is as in (3.5). In particular, the action

does not depend on the choice of m. We have thus obtained an action Γ of Str"(V) on Vn.

3.2. Costring algebras. For x e Strm(V) and y e StrΛ(V), we denote the left-hand

side of (3.4) by Vmn{x ® y). Then, Vmn gives an algebra map from Strm(V) 0 Strrt(V) into

Strm +"(V). By definition, we have

(3.8) Vm π(l 0 y)(η 0 ξ) = η 0 Γ(y)£ ,

(3.9) V f f l n ( ^ l ) = ί M ( i )

for each i eV,η e Vm(*, i), f e V Π (Ϊ , - ) , JC G Strm(V) and y e StrΛ(V). We also define

an algebra map v£ π from End(Vm)0End(V") into End(Vm +") by V ^ ( / 0 ^ ) = μ m π o ( / 0

^)oδm π, where 5mΛ : Vm+λZ -^ Vm®Vn is the natural inclusion and μmn : V m 0V" -> Vm +"

is given by μm«(Mp 0 uq) = δΐ(p)5(g)Up 0 uq.

LEMMA 3.1. Let V be a flat face model. Then the following hold.

(i) The family of maps {Vmn \ m, n > 0} is associative, that is, V/+mrt(V/m(x 0 y) 0

z) = Vt,m+n(x 0 Vmn{y 0 z))for each l,m,n > Oandx e Strz(V), y G Strm(V), z G

Strπ(V).
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(ii) We have the following commutative diagram.

Strm (V) 0 Strπ (V) Vmn > Str m + n (V)

r®r\ \r

End(V m )0End(V") — ^ End(V m + ").

PROOF. Using the fact that WiWj = WjWi for \i - j \ > 2, we obtain

wm/2 = (u;nw;n_i)(u;w+i wm+n-\)(wn wm+n-2)

• (wn-2 ' ' * Wm+n-3) ' ' ' (Wl ' ' ' ^>m)

(3.10) = •••

= (wn - - u>i)(idy 0 wm-\in)\vm+n

= (Wn W\)(wn+\ W2) (ϊ^m+n-1 ' ' ' Wm)

Combining (3.1) with this formula, we obtain

(3.11)

(3.12) ^/,m+n = (idvw ® iy/π) ° (ŵ /m ® idyn) | y / + m + A I .

Using these two formulas and the fact that ι(y) commutes with (idy™ 0 Wni)\yi+m+n(# _y w e

obtain

On the other hand, we have

n(V/m(* ® y) ® z) =

where the second equality follows from (3.4). Applying the above two formulas to the right-

hand side of this equality, we obtain (i).

Using (3.8), we obtain

Γ(y))(η 0 ξ))(ζ) = ι(V / w(l 0 *))V/ + l f I f l I(l ® y)(ζ

(8) Vmn(x (8)

for each/, , ik G V, ζ e Vι(*,i),η e Vm(iJ),ξ e Vn(jΛ),x e Strm(V)andy e Strπ(V).

Hence, (ii) follows easily from (i) and (3.9). D

We define a linear map Δmn : End(Vm + n) -> End(Vm) 0 End(V") by Δmn(f) =

&mn ° / ° βmn> It is easy to verify that the coalgebra ί)(V) '= 0 m > o ^ n c ^ ( ^ m ) * becomes a
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V-face algebra via the product 0 m ? A 2 > o Δ*mn

 a n d t n a t i t : i s isomoφhic to S)(Q) (cf. Example

1.1). We define a coalgebra Cost(V) by

Cost(V) = φ C o s t ^ V ) , Cost"(V) = EnάStτn{v)(Vnf ,

and call it the costring algebra of V.

PROPOSITION 3.2. For aflat V-face model V, Cost(V) becomes a quotient V-face

algebra of S)(V).

PROOF. Let x and y be elements of Strm (V) and Strn(V), respectively. Since Γ(x) ®

Γ(y) preserves y m + " , it commutes with Δmn{\). Using this fact, we calculate

(Γ(x) ® Γ(y)) o Δmn(f) = Δmn(l) o (Γ(x) 0 Γ(y)) o Λmn(f)

(x 0 y))) o f o μmn (/ G End(Vm +")) ,

where the second equality follows from the lemma above and the definition of Δmn and V°.

Computing Δmn(f) o (Γ(x) <g> Γ(y)) similarly, we see that Γ(x) 0 Γ(y) commutes with

Δmn(f) for each / e EndStΓ'"+"(v)(Vm+π), or equivalently,

Δmn(EndStΐm+n{V)(Vm+n)) c EndStr-(V)(Vm) ® EndS tr«(V)(^).

This proves the proposition. D

As Cost(V)-comodules, Vm (m > 0) and V° are isomoφhic to V®m and the unit co-

module R, respectively. Moreover, the definition of Vm(i, j) is consistent with (1.18).

LEMMA 3.3. Let Vbe α flat face model with dimension graph Q. Let ft (G) and e I J

be as in Example 1.1, and 3 the linear span of the following elements ofS)(Q):

teQm ^ ^ teQm

( m > 0 , ieV,p,qeg%, r,seGm).

Then 3 is a biideal off)(G) and Cost(V) ~ $)(G)p.

PROOF. The assertion easily follows from Costm(V) ~ End(Vm)*/C-L, where C1 =

{X e End(Vm)* | (X, C) = 0} and C = EndStr-(V)(Vm). D

3.3. Representations of Cost(V). For each λ = (/, m) e Λ%, we define an Strm(V)-

module Vχ and a space Lχ as follows:

Vλ = Vw(*, ΐ ) , L λ = HomStr-(V)(Vλ, Vm).

Since Lχ naturally becomes an irreducible Endstrw(V)(^m)-module, it also becomes an irre-

ducible Costm(V)-comodule (cf. Subsection 2.4). Moreover, {Lχ \ λ e Λ™} gives a set of

complete representatives of irreducible comodules of Costm(V).
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For each i, j e V and (k,m) e Ay, we define a non-negative integer N k(m) by the

following irreducible decomposition of a Strm(V)-module:

(3.13) Vm(i,j)~ 0 NJk(m)V(Km).
keV{m)

We call the integers NJ

ik(m) the fusion rules of V. By definition, we have

(3.14) Nik(m)=Sjk

for each j G V and (k, m) e Ay.

PROPOSITION 3.4. For aflat V-face model V, the following hold.

(i) For each i, j eV and (k,m) e Ay, we have

dim(LM(i, j)) = NJ

ik(m).

(ii) For each finite-dimensional Cost™ (V)-comodule M, we have

M ~ φ dim(M(*, ϊ))L(, > m ) .
ιeV(m)

In particular, we have M ~ ^(i,m) ί/dim(M(*, /)) = 1.

(iii) For eαc/z (/, m), (7, n) G yi

PROOF. Part (i) follows from

), ^ ( l , 7)) .

For / G V(m), let μ; denote the multiplicity of L(/>m) in M. Then, using (i) and (3.14), we

obtain

dim(M(*, 0) =
jeV(m)

leV

Part (ii) follows from the first formula, while (iii) follows from (ii) and the second formula.

D

We say that D G V is the generating vertex of a flat V-face model V if #(£?*/) = <̂ D

for each i eV.

LEMMA 3.5. If aflat face model V has the generating vertex D, then V is isomorphic

to £(Π,1) a s Cost(V)-comodules. Moreover, we have:

(3.15) Nj

iU{\) }j

PROOF. The first assertion is obvious and the second assertion follows from (3.13). D

3.4. Unitary flat face models. Let V = (V, w, *) be a flat face model over the com-

plex number field C, and ( | ) a Hubert space structure on V such that (V(/, j) | V(i\ / ) ) = 0
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>pqunless (/, j) = (/', / ) . We define a Hermitian inner product on Vm by (up \ uq) = δι

(p, q e θm), where [up \p e Gm] (m > 0) denotes a path basis of Vm such that {up \p e G}j}

is a orthonormal basis of V(i, j). We call such {up} an orthonormal path basis of Vm. We

say that V = (V, ( | ) ) is unitary if w is unitary with respect to ( | ) . The partition function

and the function γ with respect to {up} satisfy the following relations:

(3.16)

(3.17)

Let

w±ι \c
c

b

γ(a,b; c,d) = γφ,a\d,c).

\e(\p,qeQm\be the matrix corepresentation of the Cost(V)-comodule (Vm,

[up \p e Qm}). By (3.17), Lemma 3.3 and Lemma 2.1(5) of [H5], Cost(V) becomes a com-

pact face algebra via

(3.18) = e (p,qe Gm, m > 0).

It is easy to verify that the costar structure x does not depend on the choice of {up}.

4. Galois face algebras.

4.1. The face algebra 0(V). Let Q be a finite connected non-oriented graph. We

identify Q with an oriented graph equipped with a bijection ^ \ Q Q \p such

that (/TΓ = P and/T e Q){ for each/; e Q\. and /, j e V = G°. Let V = (V, w, *) be

a unitary flat face model whose dimension graph is Q, and {up\ e Qm} an orthonormal path

basis of Vm. We say that (V, {up}) is of connection type if its partition function with respect

to {up} satisfies the following renormalization rule:

w

/ .
I

Λ

\k

. \

(4.1)

(μ(j)β(k)\l/2

V -i i
\ ι

J /
? 1Here, we denote by [μ(/)] i ey the Perron-Frobenius eigenvector of [#((?/,)]/,jeV s u c n

μ(*) = 1, and by β its eigenvalue. We call [μ(i)] the normalized Perron-Frobenius
eigenvector of V. For a flat face model V of connection type, we define operators ej and

i y = bj{ε) on V2 by

(4.2) Σ
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(4.3) bj=ε'id + βε-ιej,

and call ej the Jones projection of V, where ε denotes a fixed solution of the equation

ε2 + ε~2 + β = 0. It is known that ej actually is a projection and that (V, bj) is a face

model which satisfies the braid relation: (bj)\(bj)2(bj)\ = (bj)2(bj)\(bj)2 in the algebra

End(V3) (cf. [G-H-J]). Moreover, using the unitarity and the renormalization rule, we find

that bj satisfies

(4.4) wιw2(bj)\ = (bj)2W\W2

in End(V3) (see e.g., [Ka, p. 70]).

Let N c M be an irreducible AFD Hi -subfactor of finite index with finite principal graph

Q. Then, by Popa's classification theory of Πi-subfactors, N C M is completely determined

by its standard invariant (see [P] and also [01]). Moreover, by Ocnecanu's theory, the standard

invariant is described by the flat biunitary connection W (cf. [Ol], [02], [Ka]). When Q

coincides with the dual principal graph, W is a function which assigns a complex number

W(B) to each boundary condition B on Q of size 1 x 1. Set V = span{up \p e Qx} and define

w = w\\ by (3.2). Then, V — (V, w) becomes a flat face model of connection type with

generating vertex D. We call V the flat face model associated with N c M. Let N c Λf

be either an AFD IIi-subfactor of index < 4, or an irreducible AFD IIi-subfactor of index

= 4 with finite principal graph. Then, N d M satisfies the conditions stated above and its

principal graph is either An (n > 2), D2n (n > 2), £ 6 , E%, D{

n

l) (n > 4) or E^ (n = 6, 7, 8).

Except for the case of D^\ the corresponding face model is given by w = bj(ε) for some

ε. When Q is of type /)„ , there are n — 2 subfactors and corresponding face models. The

explicit formulas of these are given in [I-K].

LEMMA 4.1. Let V = (V,w,*)be aflat V-face model. If b is a linear operator on

V2 such that (V, b) is a V-face model and that w\W2b\ = b2W\W2 on V3, then the element

bi = ^ lv(*,-) (1 < '" < " " 1) of Su»(V) satisfies Γ(bi) = ft/.

PROOF. The assertion easily follows from wnmb[ = bi+mwnm (1 < / < n — 1) and the

definition of Γ. •

Applying the lemma above to b = bj, we see that bj commutes with the coaction of

Cost(V) on V2. Computing p(bjup) = (bj 0id)(/θ(wp)) (p e Q2), we find that the following
ί4L-operator" relation is satisfied in Cost(V):

bj(aC

hd\-e(c

(a b,p qeg2),
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where \e (Pj\ is as in Subsection 3.4 (cf. [R-T-F], [H6]). Hence, by Lemma 7.4 of [H5],

Cost(V) has a central group-like element det which satisfies the following relations:

iJeV
1/2

(4.6)

t-Γ
/< \μ(i)μ(τ(q))) * \q ?

where/? and ̂ r denote arbitrary elements of Q\_ and Q\ _, respectively. Note that we have

R det ~ ImO/) — ̂ (*,2) as Cost(V)-comodules. By Lemma 7.2 and Lemma 7.4 of [H5], the

quotient 0(V) := Cost(V)/(det — 1) becomes a compact V-Hopf face algebra via (3.18), and

( )

If V is a flat face model associated with a Πi-subfactor TV c M, we call (3(V) the Galois

face algebra of TV c M.

4.2. The main results.

THEOREM 4.2. Let (V, w, *) be a flat V-face model of connection type such that its

dimension graph Q is bipartite. Then the following hold.

(i) The compact Hopfface algebra (&(V) is hollowless and finite dimensional, and the

fusion rules NJ

ik := NJ

ik(m) do not depend on the choice ofm.

(ii) For each i e V, there exists a <5(V)-comodule Li such that dim(L/(*, j)) = δ^

(j G V). The comodule Li is irreducible and unique up to isomorphism. Moreover, we have:

(4.7) β(V)-0End(L/)*,
ieV

(4.8)

(4.9) L» ~ R ,

(4.10) L, ® Lj ~ φ ΛT̂  L t (i, j e V ) ,

<4 n )

where (4.7) stands for an isomorphism of coalgebras and (4.8)-(4.10) stand for isomorphisms

of<3(V) -comodule s.

We give the proof of this theorem in the next subsection.
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THEOREM 4.3. Let V be as in the theorem above. Assume also that V has the gener-

ating vertex Q Then we have:

(4.12) άimQ(Li) = μ(i) ( i e V ) ,

where [μ(/)]/ev denotes the normalized Perron-Frobenius eigenvector of V.

PROOF. By (4.10) and (2.3), we have

(4.14) dimρ(L/) dimg(Ly) = y^ Nf dimg(L^).
keV

Using (3.15), we see that [dimρ (L;)];Gy *s a n eigenvector of the matrix [#((?/;)];,y<=y. Hence

(4.12) follows from the uniqueness of the Perron-Frobenius eigenvector. Let Q be the right-

hand side of (4.13). Using (4.11) and (4.14), we obtain

TrπL^(β) = 2 ^ — ~ * Njk — tt(V) μ(k).
ijeV μ ^

Similarly, using (1.30) and (2.4) in addition, we get T r ^ ( β ) = β(V) μ(/:). The verification

of the relations (1.24)-( 1.28) is straightforward. D

PROPOSITION 4.4. Let Vand Π be as in the theorem above.

(i) (A reciprocity ofSchur type) For each m > 0, we have

C(πVm(<δ(V)*)) ~ Strm(V), C(Strm(V)) ~ τrv«(β(V)*),

where C denotes the commutant in the algebra End(Vm).

(ii) (cf. [01]) Let πym be the tracial state on End<$(y)(Vm) defined as in Subsection

2.2. Then we have

(4.15) rVm(Γ(Eab)) = μ(i)μ(ΠΓmδab (m > 0, i e V, a,b e G%).

PROOF, (i) As 6(V)*-modules, {Lλ \ λ e Λ™} are still irreducible and mutually non-

isomoφhic. Hence, the map πym <&(V)* -> Costm(V)* is surjective. This proves the

second isomoφhism. The other isomoφhism follows from the double commutant theorem.

(ii) Using (4.13), we obtain

for each α, b e G™. On the other hand, using the unitarity and the renormalization rule, we

obtain

2~2 M W /~^ Y(ai b' >c'c) = β(i)βϋ)δab
keV ceG™k

This proves (ii). •
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For a flat face model (V, w) of connection type, we define another flat face model (V, w)

of connection type via

w(ua <8> ub) = Y^w i c l% b \ uc <g) ud (a b e Q 2 ) .
c4 ^ '

THEOREM 4.5. Let V, D and μ(i) be as in Theorem 4.3. For each i e V such that

μ(i) > 1, the Jones' index of the \l\-subfactor N(i) C M(i) associated with Li is μ(i)2,

where Li is as in Theorem 4.2. If (V, w) is associated with a ll\-subfactor N C M which

satisfies the conditions stated above, then N(Ώ) C Λf (D) is isomorphic to N C M.

PROOF. The first assertion is obvious. Let Vm, Wm etc. be as in Subsection 2.5. Using

(1.30) and (3.15), we compute

Hence, we have Vm ~ Wm ~ Vm as 0(V)-comodules. Hence, by the proposition above, we

have Bm ~ Cm ~ Strm(V). Moreover, the inclusions Cm C Cm+\ and Bm C Bm+\ are iden-

tified with ιm\, and the inclusion Cm c Bm+\ is identified with V\m : Str^V) ® Strm(V) ^^

Str m + 1 (V). Hence, by (4.15), the ladder (2.10) of the commuting squares is identified with

that of Ocneanu which appeared in [01, p. 131]. Therefore the second assertion follows from

a theorem of [01, p. 134], whose proof is given by Popa [P]. D

Let N c M be an AFD Πj-subfactor of index less than 4 with principal graph Q. Let 0

be its Galois face algebra. By (1.30), we have

(4.16) dim(Hom0(L*, Li®Lj)) = S^ .

In [I], M. Izumi shows that the fusion rules of sectors corresponding to subfactors with index

< 4 are computable by means of results which are analogous to (1.29) and (4.16). Hence, the

fusion rules of (5 are also computable. For example, in case Q = A/+i, these are given by

1 d ' - J \ < k < i + j , i + j + k e 2Z and < 21)

0 otherwise,

where the labeling of the vertexes of Aι+\ is as follows:

* = 0 D = l 2 3 l-\ I

These numbers are well-known as fusion rules of kS'f/(2)/-Wess-Zumino-Novikov-Witten mod-

els (cf. [T-K]). In general, the fusion algebra of (3 (i.e., the representation ring of 0*) is com-

mutative, and the involutionv: V —> V is of order 2 if Q = D^n (n > 1) and is an identity if

otherwise. For the convenience of readers, we write down the fusion rules of 0 when Q = D4.

D4 * /D

•j
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j ΐ Li j , L/ / (X) Li i Li if. , Li i (X) Li j Li i ,

L\j — LQ , Li — Lj , Lj — Li .

It is natural to ask the relation between Izumi's descendant sectors and the family of Πi-

subfactors which is obtained by applying the theorem above to 0 .

4.3. Simply reducible group like element. Let fj be a V-face algebra such that S) 2̂

0 λ 6 y l End(Lχ)* as coalgebras for some irreducible right comodules {Lχ | λ € A}. Let g be
a central group-like element of $). We say that g is simply reducible if there exist a subset
A C A and a bijection φ : A x Z>o —• Λ such that Lφ(χ,n) ~ Rcp&Lχ for each λ e vΐ and

rc G Z>o, and that <p(λ, 0) = λ.

THEOREM 4.6. Lei ή , ^ etc. be as above. Then the following hold.

(i) The element g is not a zero divisor ofS).

(ii) The quotient S) := 9)/5){g — \)9) is isomorphίc to @χe^ End(L^)* as coalgebras.

(iii) As an $)-comodule, Lφ(χ,n) is irreducible and isomorphic to Lχ. In particular, 9)

is hollowless if S) is hollowless.

(iv) The fusion rules of 9) are given by

where Nχ denote the fusion rules ofS).

PROOF. For each λ e A, let Qχ denote the dimension graph of Lχ. Let {uq\q e (Gλ)L}

be a basis of Lχ(i, j), and [x%] the corresponding matrix corepresentation. Using Lemma 1.3,

we see that [(fx!q]pq is a matrix corepresentation of (R(f<g>Lχ, {e^cf1 <8> uq \q e G\})

Hence \(py?q \ λ e A,p, q e G\,n e Z>o} is a basis of S). Therefore (i) is obvious.

Since g is central, we have

= Σ ΣΣ

Since {^,(^- 1 ) / ^ I λ € ^»^»ί E $bn e z>o} is a basis of ίι, {xq \ g e A,p,q e Q{)
gives a basis of S), where x% denotes the image of ypq via the projection 9) -» S). Hence (ii)

follows from span{x£ \p,q e G\\ ~ End(L^)*. The proof of the other assertions is now

obvious. D

Now we are in a position to give the proof of Theorem 4.2. Since Q is bipartite, we

have A := Av = \JieV{(i, m(i) + 2n)\n > 0}, where m(i) = min{m | (ί, m) e A}. We

define a subset A of A and a bijection φ : A x Z>o —> yi by yϊ = {(/, m(i)) \i € V}

and φ(i, n) = (i, m(/) + 2«). Using the second assertion of Proposition 3.4(ii), we see that
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g = det satisfies the conditions of the theorem above. Therefore Theorem 4.2 follows from

Proposition 3.4.
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