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Abstract. We construct projective models for Humbert surfaces and QCM-curves, i.e.,
Shimura curves together with their natural embedding into the coarse moduli space for princi-
pally polarized abelian surfaces. The points of a QCM-curve correspond to an abelian surface,
such that its algebra of complex multiplications is an order in an indefinite rational quaternian
algebra. Moreover, we determine the structure of such orders.

1. Introduction. In this paper we are mainly concerned with constructing, in a con-

crete way, projective models for arbitrary QCM-curves. For maximal orders of the indefinite

quaternion division algebras with discriminant 6 and 10, Hashimoto and Murabayashi con-

structed in a recent paper ([HM]) projective models of the corresponding QCM-curves. These

examples inspired the author to study this question. In [HM] the authors furthermore construct

a preimage under the Torelli map (which is an immersion).

Let A be a simple principally polarized complex abelian surface, End(A) its ring of en-

domorphisms and L = End(A) <g> Q the algebra of endomorphisms (= the algebra of complex

multiplications). Then, as is well-known, the ring End(A) is of one of the following types:

an order in a CM-field of degree four, an order in an indefinite rational quaternion algebra, an

order in a real quadratic field, or Z. The dimensions of the corresponding moduli spaces—

named Shimura varieties of PEL-type—is 0, 1,2, 3, respectively. In the first three cases we

refer to these Shimura varieties, together with their embeddings into the Satake compacti-

fication Λ2 = Proj(A(/~2)) of Γ2\H2, as CM-points, QCM-curves (quaternionic complex

multiplication), and Humbert surfaces. As a projective variety the Satake compactification

Λ2 is a quotient of P 3 by a finite group G of order 46080, see [Rl]. We are mainly concerned

with QCM-curves, i.e., Shimura curves with their natural embedding into Λ2. CM-points are

special points on Humbert surfaces, which are easy to compute.

Let us define a QCM-order to be any order in an indefinite rational quaternion algebra

which occurs as an endomorphism ring of an abelian surface. The first result is to determine

the structure of QCM-orders. We prove that a QCM-order may be written as R = Z 0 Zot 0

Zβ 0 Zaβ, where a and β are Rosati invariant elements of (positive) discriminant Δ(α),

), such that the discriminant matrix

Δ(α) Δ(α,j8)\
Δ(α,j8) A(β) I
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is positive definite. The discriminant of R is d(R) = det(5Λ)/4. Changing the basis gives

a similar matrix S&[g] = lgS&g for some g e G/(2, Z). This implies that QCM-orders are

parametrized by certain classes of binary quadratic forms.

The main result of this paper is to prove that the QCM-order uniquely determines the

QCM-curve, if the QCM-order has a primitive discriminant matrix (i.e., g.c.d.(Δ(α), Δ(α, β),

Δ(/3)) = 1). This is no longer true in the non-primitive case, where the embedding of the

QCM-curve depends not only on the (isomorphism class of the) QCM-order R, but also on

the (class of the) embedding R ^> M^(Z). In that case it remains as an open problem to

determine the QCM-curves. Finally, a projective model for QCM-curves (both in the primitive

and in the non-primitive cases) can be given by determining the component in the intersection

of two Humbert surfaces with discriminants Δ(α), Δ(/3). This new method generalizes what

was done in [HM]. For making this procedure a general method, it is indispensable to have an

algorithm for computing a projective model for arbitrary Humbert surfaces.

Humbert surfaces //Λ are classified by their discriminant Δ. For fundamental discrimi-

nants they are isomorphic to symmetric Hubert modular surfaces, which were studied exten-

sively by Hirzebruch, Zagier, van der Geer, and many others (see [HG], [vdG2]). For square

discriminants they were studied by Hermann [He]. However, projective models are known

only in rate cases. In this paper we present a new geometric argument which is crucial to get a

model for any discriminant. The covering of Aι of level Γp* (2, 4) is isomorphic to P3 ([Rl]).

Hence, by KrulΓs Hauptidealsatz, any irreducible component of the covering of //Λ of level

Γ*{2, 4) is given as the zero set of a single irreducible homogeneous polynomial. This allows

to get an algorithm for determining a projective model for any discriminant.

In the late 70's Ihara computed the equation of the Shimura curve of discriminant 6. In

Kurihara's paper [K] one can find models of Shimura curves, when the discriminants are 6,

10, 14, 22 and 46, hence the corresponding orders are maximal. Ron Livne and Bruce Jordan

have done more equations. In his Harvard thesis in 1981 Jordan uses the terminology "QM

abelian surface" for an abelian surface with multiplication by a QCM-order. Such a surface

produces a point on the corresponding QCM-curve in our terminology. Ron Livue kindly

informed me that there are related results (universal families of Kummer surfaces) by Besser

in his Tel-Aviv University thesis. For maximal orders R the discriminant is square-free, and

hence the discriminant form is primitive. The approach in [K] is to view the group Γ of units

in R of reduced norm 1 as a subgroup of 57(2, R) on fixing an isomorphism R ®R = M2(R)

(cf. [Shi]). Then Γ is a Fuchsian group of the first kind and Γ\H is compact if and only if

R®Q is a division algebra. This was already observed by Poincare. These Shimura curves for

orders in division algebras together with their natural embedding into Λj are just the simple

QCM-curves in our terminology. They do not intersect the boundary in Λ2

2. Notations and first results. Throughout the paper we will use the same notation

as in [Rl], [R2]. For general facts we refer to [I] and [F]. So let (the traditional model of the
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Siegel upper half space)

Hg = {τ e MaigXg(C); τ is symmetric, Im(τ) > 0},

Γg = Sp(2g,Z).

Let Γ be a subgroup of finite index of Γg. Denote by A(Γ) = 0 ^ [ Γ , k] the ring of modular

forms for Γ. Let Λg{Γ) = Proj(Λ(Γ)) be the corresponding Satake compactification; it

contains Γ\Hg as an open dense subset. The open part Γ\Hg is the coarse moduli space for

principally polarized abelian varieties with level-Γ structure.

The important new ingredient is to consider a fixed order contained in the endomorphism

ring. One may consider more generally an arbitrary level Γ and an arbitrary polarization.

However, polarization and level have nothing to do with the endomorphism algebra. Changing

the polarization just changes the Rosati anti-involution. Hence, to keep things simple, our

general policy is to study the case of level 1 and principal polarization. Any other case is only

notationally more difficult.

We recall some standard facts in an explicit form. For proofs we refer to [M]. For any

τ in Hg we have the lattice Λτ = Z9 + τZ9 in C9 and the abelian variety Aτ = C9/Λτ. On

Aτ we choose the principal polarization L τ, which maps under the Chern class map to the

standard alternating form (Riemann form)

£ τ(λ, μ) = (x\,y2) - (X2, yι) for λ = τx\ + X2 and μ = τy\ + y2 .

One extends the Riemann form to an / -̂bilinear form on C9 x C9 —• R. This form satisfies

E(iλ,iμ) = E(λ, μ) and defines the (hermitian) Riemann form H(λ, μ) = E(iλ, μ) +

iE(λ, μ). One easily computes, for λ = τx\ + X2,

//τ(λ,λ) = £τ(/λ,λ) = mτΓιmτ)xι+x2), (SW(τ)jci + xi)) + (3(T)XI,JCI> .

Hence Hτ{ , ) is positive definite. An endomorphism φ e End(Λτ) is given by

φ = A + τC with φτ = B + τD ,

where A, B,C, D e Mg(Z), and one easily checks that the rational representation

PQ : End(Aτ) 3 φ \-> Mφ =

is a Z-algebra embedding. On M2g(Z) we have the Rosati anti-involution, defined by

:»

This map satisfies M = M and (M1M2) = M2M1, and hence is an anti-involution. The

endomorphism φ is defined by M? = Mψ. It is easily verified that

Eτ(φ-,-) = Eτ(-,φ-) and Hτ(φ-, -) = # τ(-, φ-),

and hence φ is adjoint to φ with respect to Eτ and Hτ. Because of

] =A-σ(τ)C for σ = [Λ BΛ eSp(2g,R),
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the action of the endomorphism ring is in accordance with the action of Sp(2g, R) on Hg x C9

by

σ ( τ , z) = ( σ ( τ ) , \Cτ + D)~xz) , σ{τ) = (Aτ + B)(Cτ + D ) " 1 .

We have deg(0) = άet(Mφ) for the degree of an endomorphism. The positivity of the Rie-

mann form implies that Tr(φφ) = (1/2) Ύr(MφMφ) = Tr(A ' D - C *B) is positive for φ^O.

The positivity of the Rosati involution is essential for the study of the algebra of complex

multiplications End°(Aτ) = End(Aτ) ®z Q of Aτ. This is a semi-simple algebra and was

classified by Albert. We fix the following notation for τ e Hg:

Q (- p __ if Rosati ς- c T Rosati

n n
K C L = End°(A τ)C M2g(Q).

In the above diagram # is the center of L, and F is the Rosati invariant part of K. Hence

F = S Π ̂ . For simple τ e Hg the algebra L is a division algebra. An algebra L c M2g(Q)

is called an Albert algebra if L is Rosati invariant (I e L =ϊ I e L) and the restriction of the

Rosati anti-involution is positive. An algebra L c M2g{Q) is called admissible if there exists

a τ G //^ with L — End°(Aτ). An admissible algebra is an Albert algebra. The following

theorem (the classification of Albert algebras) is well-known ([M, p. 201]):

THEOREM 1. Let L be an Albert division algebra of dimension d2 over its center K,

then F = j β
r R o s a t l is a totally real number field. We have one of the following cases:

(i) F = K = S = Lisa number field.

(ii) F = K C S C L, dim fS = 3, dim fL = 4. In this case for any enbedding

F ^-* R it holds that L ®f R = M2(R) and the isomorphism may be chosen such that the

F-vector space S is just the set of symmetric matrices.

(iii) F = K = S C L, dim fL = 4. Then L <g>f R is the skew field of Hamilton

quaternions for any embedding F ^ R.

(iv) [K : F] = 2 = dimρ(L) : άimQ(S), K is a totally imaginary number field. In this

case for any embedding F ^ Rit holds that L<g>fR = L®κ(K<g>fR) = L®κC= Md(C)

and the isomorphism may be chosen such that the F-vector space S maps into the set of

hermitian matrices.

3. Algebraic families of principally polarized abelian varieties. For our purpose it

turns out to be convenient to consider another model of the Siegel upper half space. A period

matrix τ induces by

φτ I J = x — r v

an isomorphism φτ : R2g ->• C9, and Mτ = φ~ιiφτ defines the corresponding complex

structure on R2g. As a matrix we have
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because for/ = τq~ι—pq~ι weget/(jc —τv) = (pq~ιpy+qy—pq~ιx) — τ(q~ιpy—q~ιx).

The matrices Mτ are elements in Sp(2g, R) and satisfy Mτ = —Mτ = M~x. We furthermore

define Sτ = —MτJ and get an isomorphism of complex manifolds

Hg = {Sτ e Sp(2g, R); Sτ is symmetric and positive definite}.

In terms of matrices the bijection is given by

( I 1 1\ / y~. Π \ Γ / 1 Γ\\

q + pq p pq \ I q u \ / 1 Ό]
-I -l 1 = I o - 1 1 1

We call this the real (or algebraic) model of the Siegel upper half space. The Rosati anti-

involution restricts to an involution on Hg (in the standard model τ H> — τ " 1 ) . The action of

Sp(2g, R) on Hg corresponds to the action

σ Mτ = σMτσ~λ

on matrices of type Mτ and

σ o Sτ = σSτσ
ι

on the real model. Remark that

a Mτ = σSτJσ~ι = σSτσ
ι J = (σ o Sτ)J ,

hence the actions are equivariant. We will freely use τ, Mτ or Sτ to denote an element of

the Siegel upper half space in the standard model or in the real model. For our purpose the

algebraic model is more appropriate. One easily checks that for

pq~X q + pq~Xp\

-q~λ q~XP )

we have

M e End(AΓ) <=)> (A + τC)τ = B + τD

«=> MMτ =MτM.

This leads to the following definitions for any admissible algebra L c M2g(Q)

H(L) = {τ e Hg\ lMτ = Mτl for all / e L},

Γ(L) = {σ e Γg;σL = Lσ}.

Moreover we consider the diagram

Γ(L)\H(L) -• Γg\Hg
I n

A(L)^ C(L) c_> Ag,

where C(L) denotes the closure of the image of Γ(L)\H(L) in the Satake compactifica-

tion Ag and A(L) its normalisation. We call A(L) the Shimura variety of type L and

C(L) the cycle of type L. It is obvious that Γ(L) is acting on H(L), and the induced map

Γ(L)\H(L) -> Γg\Hg is injective for points with End°(Aτ) = L. Therefore it is generically

injective. The group Γ(L) is the largest subgroup of Γg acting on H(L). It is proved in [R6]
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that C(L) and Λ(L) are projective varieties and that the map L M- Γ(L)\H(L) is an equiv-

alence of the category of admissible algebras with Rosati-equivariant embeddings in M2g(Q)

and that of irreducible varieties with closure C{L) parametrizing principally polarized abelian

varieties Aτ with L c End°(Aτ). Similar embeddings are studied in [Sa].

For small genus the following division algebras occur as endomorphism algebras ([Sh2],

[R6]): In genus g = 1 there occur only Λ(Q) — Λ\ and the CM-points Λ(K). In genus

g = 2, the 3-fold Λ(Q) = Λ2, the surfaces Λ(F) for the real-quadratic fields F/Q, the curves

A(L) for the indefinite quaternion algebras L/Q and the CM-points. In genus g = 3, the

6-fold A(Q) = A3, the 3-folds A(F) for the real-cubic fields F/Q, the surfaces A(K) for the

indefinite imaginary-quadratic extensions K/Q and the CM-points.

4. Humbert surfaces. We start by reviewing the classical terminology. As remarked

in the last chapter, the equation MMτ = MτM for a matrix M — I 1 is equivalent
\—L D J

to (A + τC)τ = B + τD. The disadvantage of the classical terminology is that one gets

a quadratic equation for the entries of the period matrix τ = I x 2 J. A Rosati invariant

matrix is of type

M = M =

and the above equation is equivalent to

-c(τ 2

2 - ΠT3) + b = 0,

which is the type of equations studied by Humbert in the last century [Hu]. Humbert called

such a relation a singular relation.

Any Rosati invariant matrix M satisfies M2 — Tr(Λ)M + det(A) + be = 0, and hence

has the reduced Trace t(M) = Tr(A) and the discriminant

Δ(M) = Tr(A)2 - 4(det(A) + be) = (a\ - aA)
2 + 4(α2<23 - be).

We call M primitive if Z[M] = Q(M) Π M4(Z) and normalized if Tr(A) e {0, 1}. The first

aim is to prove the following theorem similar to the main result in [Hu]:

THEOREM 2. Let M\ = M\ and M2 = M2 be Rosati invariant elements in M$(Z).

Then there exists an element σ e Γ2 such that σ M\ = σM\σ~ι = M2 if and only if

t(M\) = t(M2), g.c.d(Mi) = g.c.d(M2) and Δ(M\) = Δ(M2).

PROOF. Conjugation preserves the minimal equation, and hence preserves t(M) and

Δ(M). So let assume t(M\) = t{M2) and Δ(Λfi) = A(M2). Moreover, we may assume that

both matrices are primitive and normalized.
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First step: Let M = M be as above. We have

0 0 1 0\ (ax a2 0 b

0 a 0 β\ (33 (34 -b 0
- 1 0 0 0 | 0 C (31 (33

0 γ 0 δl \-c 0

*
*
0

«2 «4> [a2δ — bγ
bγ — a2δ

0

Writing —ailb as a reduced fraction γ/δ, g.c.d.(y, δ) = 1, it is easy to find

5/(2, Z) such that a2δ — bγ = 0. Hence we may assume c = 0.

Second step:

0

Let g\ = g.c.d.(α2^3^) and pip2 = g.cd.(α3, Z?), then b/g\g2 and a^/g\g2 are coprime.

Choose α such that ^?/̂ i 2̂ + &a?>/g\ 92 is prime to a2 (e.g., a big prime number, using Dirich-

let's theorem on primes in arithmetic progressions). Then the above equality shows that we

may assume (a2, b)\ai.

Third step: Let

(33 = px,

a2 = py,

b = pz with (j, z) = 1.

Then the equality

0 0 0\
0 a 0 /3

0 1 0
\0 γ 0 δj

implies that for

b = c = 0.

Fourth step: Using

0

0 s(a2δ — bγ) —
* 0

0 ab- a2β\
* 0
* *
* *

G Sl(2,Z) and s = xγ we get a matrix M with

-x a\ (04 -

we may assume that the g.c.d.(«2, a3) = 1.

Fifth step: Let (a ^ J e 5/(2, Z) with a = a2, β = a3. Then

f 1
0

βy
i 0

0
a
0

1
0

1 + βγ
0

0

β
0

(31

fl3

\
0

ax a3

(32 ύAj

a ι

* *

* *y
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By using a step similar to Step 4, we may assume a\ = 0. Therefore we finally obtain a

normal form for primitive normalized matrices

M s t a n d a r d = Γ l π J . ί ( M ) = / , Δ(M) = 4fc + /

withfceZand/ e {0, 1}. D

COROLLARY 3. Lei Mi αra/ M2 be Rosati invariant elements. Then Q(M\) (Ί M4(Z)

and Q(M2) Π M4{Z) are isomorphic as Z-algebras if and only if the orders are conjugate by

an element of Γ2.

In classical terminology Humbert proved that up to equivalence any relation may be

written as kτ\ + lτ2 = 13 (see [HM, 2.7]).

The theorem allows us to construct the following standard model for Humbert surfaces.

Let F = Q[ω] be a quadratic β-algebra with positive discriminant Δ^, OF its ring of integers

and O = Z[ω] the order of discriminant Δ = Δ/r/2 in Of. Hence F is a real quadratic

number field or is isomorphic to Q x Q. Let σ\, σ2 be the projections F ®ρ R=R®R -> R.

Let σ : F 3 x ι-> diag(σi (JC), σ2(x)), which induces a map

[a) σ(bγ
σ : 5/(2, F) 3

(a

We fix aZ-basis 1 = ω\,ω = ω2for O and denote by R = (σ/(ωy)) the Gram matrix of F.

Then '/?/? is the symmetric positive definite rational matrix *RR = (Γ/τ/Q(ω/ω; )),,7, where

TF/Q denotes the trace map. Let x e F be arbitrary. Then jcω, = Σj ^ijωj f° r s o m e matrix

A(x) = (Aij) e Mn(Q). It is easy to check that

A(x) = tRσ(x)tR~^

and

x e O «=> A(x) e M2(Z).

We fix the embedding

iflxΫ 3 (τi,τ 2)ι-^ 7Γ = ^ eH2.

Because of

(A)(π[R]) = (tRσ(ω)tR~ι)(tRπR) = CRπR)(R~ισ(ω)R) =

we get a diagram (twice the regular representation)

O C End(Aπ [ Λ ]) C M4(Z)
n n n
F C End(Aπ[R]) c M 4 ( β ) ,
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where the inclusion is given by

'*R 0 \ (σ{ω) Λ x /tΊΛ Λ x ~*(ω) 0 \ f'R 0
0 σ(ω)){θ R~

By the last theorem any period τ = π[R] with (9 C End(Λτ) lies in a manifold H(F)

as constructed above. By taking the quotient Γ(F)\H(F), we get the standard model for

Humbert surfaces. The Humbert modular group Γ(F) = Γ(Δ) is described in the following

lemma.

LEMMA 4. For any order O in a real quadratic algebra F there exists a Rosati equi-

variant embedding ψo : M2(F) —>• M4(Q) and an element GQ^X £ Fz = 5/7(4, Z) of order

two, such that ψ^\\m{ψΌ) Π Γ2) = 5/(2, O) and

where JC i—> JC generates the Galois group Gal(F/Q). The Humbert modular group Γ(F) =

Γ(A) is generated by σoal and ψo(Sl(2, O)).

PROOF. Let ω2 — lω — k = 0 be the minimal equation of ω. Hence ώ = I — ω and

A(ω) = Ak + /. Then define

« ((a\-\-aio) b\-\-b2(ι>\\ I /c«2 a\-\-la2 b\-\-lb2 kb2-\-l(bχ-\-b2)
yyCi+C2Ct> d\-\-d2ωjJ \kc2 — lc\ c\ d\

\ c\ c2 d2 d\

This embedding is obtained by extending the above embedding of F by

υ }~
σ(d) J\0

where V = 2ω — 1 is the different of the order O. The Galois element is given by

σ G a l = ' ^ , ι

\ 0 - 1 /

We omit further details, which are similar to computations in [R3]. D

We remark that the Humbert modular group Γ(Ap) is just the symmetric Hubert modu-

lar group if O is the full ring of integers Of in a real quadratic number field.

5. Modular forms and projective models of Humbert surfaces. The theta con-

stants (of second kind) are given by (we use Mumford's notation f a ) .

fa(τ) = θ [jjl (2τ) = £ exp2πi (τ \x + \a
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for a e Zg. The functions fa(τ) depend only on a mod 2, and hence a is regarded as an

element in F | . The action of Sp(2g, Z) on Hg induces for any k e Z a (right) group action on

the algebra of holomorphic functions {/ : Hg -> C] by

f\kσ(τ) = det(Cτ + DΓkf(σ(τ)).

A holomorphic function / on Hg is a modular form of weight k, or in short / € [Γg, k], if

and only if /Uσ = / for all σ e Γg. In genus g = 1 one has to add a condition for the cusps.

We recall from [Rl] that the ring of modular forms of even weight is given by

A(Γg){2) = 0 [Γg, k] = (C[fa(τ)]H')N .
2|*

Here TV denotes the normalization (in its field of fractions). Hg is a finite group obtained as

the image of the theta representation ptheta •' Γg —• Hg/(±\) (see [R3]). The kernel of ptheta

is denoted by Γ* (2,4).

DEFINITION 5. A holomorphic function / on H(L) is a modular form of weight k and

type L, or in short / e [Γ(L), k], if / | * σ = / for all σ e Γ(L).

(In genus g = 1 one has to add a cusp condition, but this case is not interesting for our

purpose. The varieties Λ(L) are just points for L φ Q.) Denote by A(L) = (&k[Γ(L), k]

the ring of modular forms of type L and by Λ(L) = Proj(Λ(L)) the corresponding Satake

compactification, which is the normalization of C(L).

Strictly speaking, it is very easy to compute the ring A(L) of modular forms. The first

step is to find all relations for the restricted functions / f l(τ) on H(L). Let G(L) = {σ e

Hg\ σ = (±)ptheta(#) for some g e Γ(L)} be the image of Γ(L) in the finite group Hg.

The element / is always contained in G(L), therefore we always get modular forms of even

weight. The following theorem is a consequence of the corresponding result for the group

Γ;(2,4).

THEOREM 6. The ring of modular forms of even weight is given by

A(L)ω = 0 [Γ(L), k] = (C[fjΐ)]G(LY .
2|*

The problem is to find all relations and to compute the normalization. This is usually

a difficult problem. However, in some low-dimensional cases it is possible to finish the

computation ([I], [R2], [R4]). For small genus we have A(Γ\) = C[fa(τ)]H\ A(Γ2){2) =

C[fa(τ)]Hl and A(Γ3) = C[fa(τ)]H3. We use binary numbers to index the theta constants,

i.e., (in genus g = 2) /o = /o, f\ — f\, fi = /o and fa = f\. In particular, Proj(Λ(Γ2)) is

isomorphic to the quotient of P3 by the finite group G = H2 of order 46080.

By a well-known geometric argument (KrulΓs Hauptidealsatz, [H, Ex. I 2.8]) any Hum-

bert surface H& is given as the zero set of a single irreducible homogeneous polynomial

^Δ,/(/O> /i> fi, fa) of positive degree in P3 divided out by the finite group G(Δ, /) =

±Λheta(^(#Δ,*)), where / labels the components of the covering of HA in level Γ2*(2,4).

All the groups G(Δ, /) are conjugate in G. The equation is not unique. However, all these
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equations are in one orbit under the action of the finite group G. It is a famous observation by

van der Geer ([vdGl]) how to find the degree. Consider the modular form of weight 5/2 on

Γii(4) (in the +-space) with ^-expansion (q = exp(2πiτ))

fo{fs--4/ηω
= 1 - V aAq

A = 1 - (lOq + ΊOq4

Let

1 10 Δ ΞΞ 1(8)

60 Δ Ξ O ( 4 )

6 Δ = 5(8)

be the number of components of the covering of HA in level JΓ2*(2,4) (this computation is

straightforward, see also [B3, 7.13] for a similar computation in level 2, where the number of

components is 10, 15 and 6, respectively for the cases as above) and let

1/2 x = 1,

v(x) = \
0 else.

= Σ υ (li)m [i
Then we have

Using a formula of Siegel, the coefficients of the modular form may be computed alternatively

by

ίA~χ2\ ί 1 2 Δ - 2 if Δ is a square,

Therefore we get the following table:

Δ

deg(F
Δ
)

1

10
2

4

70
1

5

48
8

8

120
2

9

250
24

12

240
4

13

240
40

16

550
8

17

480
48

20

528
8

21

480
80

24

720
12

25

1210
120

28

960
16

29

720
120

32

1080
16

We remark that [R5] answers the question (posed in [vdGl, p. 333]) to give a direct way

to compute the Hodge diamond of ^2(2). The Hodge numbers are given by hij = 1 and

hij = 0 for i φ j. After blowing up the singularities, one gets h\,\ = /*2,2 = 16, /*o,o =

/z3 3 = 1 and hij = 0 for / φ j. This information is sufficient to compute deg(FΛ,/),

which is explained in [vdGl, Chapter 8]. In principle this allows us to compute equations

FΔJ for HA for any discriminant Δ = 4k + /. One takes one of the components in level

Γ2*(2, 4) (we call this component the standard component and put FA = ^Δ,standard* because

it is associated to σstandard with t (αstandard) = / e {0, 1} and Δ(α?standard) = 4£ + /) containing

period matrices of type I , . ) and takes the (p—q) -expansion with pq = exp 2πiτ/4

and q = exp 2πiz/4 of the theta constants

(2x+a)2+k(2y+b)2

n l{2y+b)2+2{2x+a){2y+b)

x,yeZ

l
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which is a power series in Z[[p,q]]. The equation FΛ(/O, / I , fi, h) = OinZ[/?, q]/(qn, pn)

for n ^> 1 has a unique non-trivial solution of the correct degree, which can be computed by

solving a linear problem for the coefficients of F&. For the following examples we use the

notation {a, b, c, d) = fβ f 1/2/3 - To get the equation of the other components in level

Γ2*(2,4) one uses the theta representation. If σ(a) = αstandard> then σ H(ά) = //(^standard)

and AhetaίoOί^Δ) is the equation of the component containing Γ(A,a)\H(a).

The easiest example is H\ with F\ = (1, 0, 0, 1) - (0, 1, 1, 0) = /0/3 - /1/2. This

Humbert surface is a quotient of P 1 x P 1 . We refer to [R5] for more detailed information. For

discriminant 4 we get the linear equation F4 = (0, 1, 0, 0) — (0, 0, 1, 0) = /\ — fa. Therefore

H4 is a quotient of P 2 . For discriminant 5 we get F5 = (4,4, 0, 0) + (4, 0, 4, 0) + (4, 0, 0, 4) +

(0, 4, 4, 0) + (0, 4, 0, 4) + (0, 0, 4, 4)+2(2, 2, 2, 2)-2((5, 1, 1, 1) + (1, 5, 1, 1) + (1, 1, 5, 1) +

(1, 1, 1, 5)). For discriminant 8 we get F 8 = 2(1, 1,0, 0) - (0, 0, 2, 0) - (0, 0, 0, 2), and

for discriminant 12 we get Fϊ2 = 4(2, 1,1,0)+ 4(0, 1, 1, 2) - (0, 4, 0, 0) - (0, 0, 4, 0) -

2(0, 2, 2, 0) - 4(2, 0, 0, 2). In Appendix we give equations for the discriminants 16, 20, 24

and 28 of degree 8, 8, 12 and 16, respectively. Using the old-fashioned theta constants of

Riemann, instead of the /α 's, Humbert calculated an equation for discriminant 1,4, 5 and 8 in

a much more complicated way ([Hu]). This was reestablished by Hashimoto and Murabayashi

in [HM] (see also [B1-3]).

6. QCM-orders and QCM-curves. We recall that an order R in an indefinite rational

quaternion algebra A = R<g>Q is called a QCM-order if R = End(X) for some abelian surface

X. This is equivalent to that L = R <g) Q is admissible and R = L Π M^(Z) for some Rosati

equivariant embedding L c M$(Q). In a rational quaternion algebra A any element satisfies

an equation x2 — t{x)x + n(x) = 0, where t(x) and n(x) are called the reduced trace and

norm (see [E]). The map n : A -» Q is multiplicative and t : A -+ Q is additive. The main

anti-involution is defined by x = t(x) — x and the "Zwischennorm" is defined by

n(x, y) = n(x + y) - n(x) - n(y) =n(y,x) = t(x)t(y) -t(xy) = xy + yx = yx + xy .

The discriminant form is defined by

Δ(;c, v) = ~(A(x + v) - Δ(JC) - Δ(v)) = 2ΐ(xy) - t(x)t{y) = t(x)t(y) - 2n(x, y),

and the discriminant d(x\, JC2, *3 , JC4) of a module generated by x\,... , X4 is defined by

d(xu X2, X3, M)2 = - det(ί(*,•*/))

Obviously, n(x, x) = 2n(x) = 2xx, A(x) = A(x,x) = t(x)2 - 4n(x) and n(x, 1) = t{x).
While the sign of the discriminant varies in the literature, we always choose the positive sign.

The discriminant of A is defined to be the discriminant of some maximal order R in A. The

discriminant form is identically zero on Q, and hence determines a ternary quadratic form on

A/Q.

THEOREM 7. Any QCM-order can be written as R =Z®Za®Zβ® Zaβ, where a

and β are primitive Rosati invariant elements 0/positive discriminant Δ(α), A(β), such that
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the discriminant matrix
Δ(α) Δ(α, β)\

ίβ) )(«, β) Mβ)
is positive definite. The discriminant ofRisd(R) = det(5>Λ)/4.

PROOF. It follows from Theorem 1 that R®Q = Q®Qa®Qβ® Qaβ, where a

and β are Rosati invariant elements of positive discriminant Δ(α), A(β). Moreover, up to

multiplication by a non-zero rational number, the element γ = aβ — βa is a unique element

with γ = — γ. The algebra /? (g) β is admissible if and only if γ2 = —n(γ) = (Δ(αr, β) —

A(a)A(β))/A is a negative number. Since we have R = R <g>QΠM4(Z), we may assume that

a and /3 are primitive normalized elements of R. By Theorem 2 we may assume that (α, β)

are as follows:

a =

We have t(a) = I, n(a) = -k, Δ(α) = 4k + I2,

A(β) = (a\ — a4)
2 + 4(a2a3 — be), Δ(α, β) —

— (ka2 + a3 — la\). We may assume furthermore that β — a2a — a\ is primitive, and hence

(a3 — ka2, a4 — a\ — la2, b,c) = I. We have

1 0 0 0\ /fli (22 0 fe\ / *
0 1 0 0 I aτ a4 -b 0 I I *

>-lx x 1 0
x v 0 \)

where c = c + x(a4 — a\ — la2) — y(ka2 — a3) •+• ^(JC2 — A:j2 + Ixy). We may choose JC such

that c + x(«4 — a\ — la2) = (c, a4 — a\ — Ia2)p\ for some prime p\ not dividing ka2 — a3,

and choose v such that c-\-x(a4 — a\ — la2) — y(ka2 — a3) — (c, a4 — a\ — la2, ka2 — a3)p2

for some big prime p2 not dividing b. Hence we may assume that the g.c.d.(&, c) = 1 for

a basis (a, β). Now it is easy to check that g.c.ά.(b, c) = 1 for a basis (α, β) implies that

Q(a, β) Π M4(Z) =Z®Za®Zβ®Zaβ. The computation of the discriminant is omitted. D

LEMMA 8. Let a and β be Rosati invariant elements of M4(Q). Then it holds that

aβ + βot = t(a)β + t(β)a - n(a, β).

In particular, ifQ(a) and Q(β) are real quadratic fields such that Q(a) φ Q(β), then Q(a, β)

is a quaternion algebra.

PROOF. This can be shown by routine calculation, which we omit here. D

The following results generalize those in [Ha].

COROLLARY 9. For an order O = Z[ω] of positive discriminant A with A = 0, 1(4)

and a discriminant matrix S& of a QCM-order R the following conditions are equivalent:

(i) Δ is primitively represented by the quadratic form 5Ά-

0 a2 a4 \-c 0
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(ii) There exists an embedding O c-^ R such that R Π Q(ω) = O.

(iii) A QCM-curve with QCM-order R is contained in the Humbert surface H& -

Moreover, for Δ(α) φ Δ(β), a QCM-curve with QCM-order R is a component in the

intersection H&(a) ^ ^A(β) if and only if

Δ(α) *

* Δ(j8)

for some ge G/(2,Z).

A QCM-curve with QCM-order R is a component in the quotient X\ Π X2/G(A, 1) Π

G(Δ, 2) of two non-identical components X\, X2 of the covering of H^ in level /^2*(2, 4) if

and only if

V

for some ge G/(2,Z).

PROOF. For any closed point τ of the QCM-curve C(R) outside a set of measure zero

(i.e., outside a countable set) we have End(Aτ) = R. If the curve is a component in the

intersection H^a) Π H^(β), then there exist Rosati invariant elements α, β in R with the

given discriminants. By Lemma 8 the elements a and β generate an order contained in /?,

which generates the same quaternion algebra Q(a, β) = R<8>Q. Therefore Z[α, β] is a QCM-

order. This induces an embedding of algebraic curves C(Z[α, β]) C C(R), which must be an

isomorphism on an open set. Hence Z[α, β] = R. D

If Δ is a non-zero square, the Humbert surface //Λ is the closure of a set of period points

corresponding to abelian surfaces which are isogenous to a self product of an elliptic curve

(i.e., σ(τ) = π xπ for some σ e M^(Z) with σσ = n e N). Therefore, in this case End(Λτ)

contains an order in Λf2(β). More generally, if the discriminant form of an QCM-order R

represents a non-zero square, all period points correspond to non-simple abelian surfaces. We

call the corresponding QCM-curves non-simple. Otherwise we call it simple. A CM-point is

simple if it corresponds to a simple abelian surface. There cannot be any simple CM-point on

a QCM-curve. The only CM-points on a QCM-curve which can occur correspond to abelian

surfaces with multiplication by some order in M2(K) for an imaginary quadratic number field

K. However, up to countable many exceptions any period point on a simple QCM-curve

corresponds to a simple abelian surface with complex multiplication (actually quaternionic

complex multiplication) given by the QCM-order.

Our next problem is to characterize bases up to conjugation by a symplectic matrix.

So consider two bases (a\, β\) and (α?2, β2) of abstractly isomorphic orders R\ and R2. By

Theorem 2 we may assume that a = a\ = α?2 is normalized and primitive of discriminant

Δ(α) = 4k + /. Moreover, we may assume that β\ and β2 are primitive and normalized. We

will compare (α, β[) with a certain standard basis (a, β) with the same discriminant matrix.
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We have that

ax a2 b2 bχ+lb2 \
+ l(b\ +b2)

kd2

d\ + ld2 )

l !U0
\-c

A2

t-A,
c
0

0
-b

Ax
Λ2

b
0

Λ3

t-Aχ
kc2 — lcχ ex dx

c\ c2 d2

0

= β =

with a = A3 4- kA2 — I Ax = —n(a, βx) and K = be 4- Axt — Aχ2 — A2A3 = n(β\), is

equivalent to

ex = Axax 4- A3a2 — c(bχ + lb2),

c2 = A2aχ 4- (t — Aχ)a2 4- cb2 ,

d2 = —ba2 -\- Aχb2

dx = bax + A3b2 4- (t - Aχ)(bχ

The matrix M with these (ci, c2, dx, J2) is symplectic if and only if

1 = ax dx + ka2d2 — kb2c2 — bxcx ,

which is equivalent to

1 =(ba2χ + (f - 2Ai - lA2)aχbχ + cb\) + /(fcαifl2 4- (t - 2Aχ -

+ (A3 - £A2)(fli62 - 6ifl2) - kφaj + (ί - 2Ai - lA2)a2b2

Therefore we have reduced the question of the equivalence of a basis to the standard basis

(α, β) to the question if 1 is represented by the quadratic form q(x) = l/2(*xBx) with the

symmetric integral matrix

( 2b t-2Aχ-lA2 lb A3 - kA2 + l(t - 2Aχ - A2)\

* 2c kA2-A3 Ic
* * -2kb -k(t -2Aχ-lA2)
* * * — 2kc j

of determinant det(θ) = ((Δ(α)Δ(jβ) - Δ(α, β)2)/A)2 = d(R)2. Considered as a quadratic

form over the real numbers, the form has signature (2, 2). The discriminant matrix
Δ(α) Δ ( α , j N

SA \Δ(aβ) A(β)

of a QCM-order R is called primitive if g.c.d.(Δ(α), Δ(α, β), A(β)) = 1. The main result of

this paper is the following theorem, which is similar to Corollary 3:

THEOREM 10. Let Rx and R2 be two QCM-orders with primitive discriminant matrix

S&. If they are isomorphic as Z-algebras, then they are conjugate by an element of Γ2.

To prove the theorem we recall some facts about quadratic forms. For proofs we refer

to [Kn], [Ki] and [MH]. Let A be a commutative ring and E a free A-module together with



298 B. RUNGE

a quadratic form q : E —• A (q(ax) = a2q(x) and b(x, y) = q{x + y) — q(x) — q(y) is

bilinear). Let B = b(e[,ef) be the matrix of b with respect to some basis {e,}. The quadratic

module (£, q) is called regular \ϊd(E, q) = det(#) is a unit in A. In our applications, A is Z

or the complete discrete valuation ring Zp with quotient field Qp for a prime /? or Z ^ = /?.

For a quadratic Z-module £ we put Ep = E <g> Zp. Two quadratic Z-modules are in the

same class if and only if they are isomorphic as quadratic Z-modules and belong to the same

genus if and only if the Ep's are isomorphic as quadratic Zp-modules for all p including

p = oo. If (E, q) is a quadratic Z-module with d(E, q) φ 0, and the rational number t e Q*

is represented by all Ep including p = oo, then there exists a quadratic Z-module in the

genus of E representing t ([Kn, 21.1]). If (E, q) is a regular quadratic Z^-module for a prime

p of rank > 2, then every unit t e Z* is represented by (E, q) ([Kn, 14.6]). There is an

intermediate notion of spinor genus between class and genus. Putting [Kn, 24.2] and [Kn,

24.4] together we have:

THEOREM 11. Let (£, q) be a quadratic Z-module with d(E, q) φ 0 of rank > 3.

Suppose that £Όo is indefinite. For any (finite) prime p, suppose that Ep = (Mp, cpqp) _L Np

for some regular quadratic Zp-module (Mpyqp) of rank(Mp) > 2. Then the genus of E

contains only one class.

Now we can prove Theorem 10.

PROOF. Let R = Z 0 Za 0 Zβ Θ Zaβ be a QCM-order with a and β primitive Rosati

invariant elements of positive discriminant Δ(α?), Δ(β) and discriminant matrix SΔ Using

the notation as above, we see that some of the sub-determinants of B are given as follows:

- IΛ2 ' )

0 ' i ) detB=d{R)2

For any (finite) prime we have to study the conditions of Theorem 11. If the prime p is prime

to d(R) or bA(a) or cΔ(α), then the conditions are obviously satisfied and 1 is represented by

q. So suppose that p divides d(R), bA(a) and cA(a). If p divides Δ(α), then it divides also

Δ(α, β), and hence by the primitivity of SΔ we get that A(β) is prime to p and the conditions

are satisfied. So suppose that p is prime to Δ(α), and hence /? divides b and c. But we may

assume that (b,c) = 1 (see the proof of Theorem 7). Hnece all assumptions of Theorem 11

can be satisfied. Therefore 1 is represented by the quadratic form B. Hence there is a standard

basis like

/

/ 0
a
0

0
t

c
0

This standard basis

0
- 1
0
0

1\

o
a]
t

has Δ(α) = 4k + I2with the same discriminant matrix SΔ This standard basis has Δ(α) = 4k + /2, A(β) =

t2 — 4c, Δ(α, β) = t(a)t(β) + 2a, which provides a basis for arbitrary discriminant matrix

SΔ •
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COROLLARY 12.

a =

A basis

/O 1
k I

0
0
1

k β =

is equivalent to a standard basis, if the class number /* is 1, where

EXAMPLE 13. Consider the elements

a =
5 0

0

0

0 5
1 0)

, βι =

Then we have Δ(α) = 20, Δ(ft) = 25, </(Z θ Z α θ Zβ{ 0 Zαft) = 100, and the quadratic

form q and the discriminant matrix S& are given by

B =

4
1
0
5

1
- 6
- 5
0

0
- 5

-20
- 5

5
0

- 5
30

SA
_ /20 10\
" \10 25J '

It is easy to check, for example by computations mod 5, that 1 is not represented by q. (The

Corollary 12 cannot be applied, because /z++(25) φ 1.) Therefore the orders ZΘZa (&Zβ\ 0

Zaβ\ and Z®Za 0 Zft θ Zαj02 are abstractly isomorphic. However, they are not conjugate

mod Γ2. Therefore the primitivity of 5Λ is an important assumption in Theorem 10.

REMARK 14. It would be interesting to have a formula for the number of discriminant

forms of QCM-orders

= # |5 Δ =
Δ

Δ 2

Δ > 0, det 5 Δ = Ad
Δ I , Δ 2 Ξ = 0 , 1(4)

modG/(2,Z)

for the cardinality /iQCM,primitive of the subset of primitive classes and /zQCM,simpie for the

cardinality of the subset of simple classes. (A class is simple if it does not represent non-zero

squares, and a class is primitive if the g.c.d. is 1.) The first few values are given by

d

ΛQCM.primitiveW)

λQCM,simplefaO
Λ Q C M W

1

1
0

1

2

1
0

1

3

1
0

2

4

2
0

3

5

2
0

2

6

2
1

2

7

1
0

2

8

2
0

3

9

3
0

3

10

2
1

2

11

2
0

3

The computation is done by considering the reduced SA, which we define by 0 < Δ <

Δi/2 < Δi < Δ2 = ( Δ 2 + 4d)/Δ\. Using the action of G/(2,Z), any SA is similar

to a reduced matrix. There are only finitely many such reduced SA, which follows from

3 Δ 2 < I6d.
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We will denote by Cs the QCM-curves for QCM-orders R with primitive discriminant

matrix S. This notation is justified by Theorem 10. With this notation we get:

COROLLARY 15. For coprime discriminants A\ and Δ2, the intersection HA} Π H&2

contains all the QCM-curves C γ Δ \ with 0 < a, a2 < Δ1Δ2 as irreducible compo-

\a Δ2j
nents.

EXAMPLE 16. The intersection H5 Π H$ contains C/^ Q\ , C/^ 2\' C/5 i\ '

(0 8J (2 8J ( l 5J
C /Λ Q\ as irreducible components, because I ^ ~ I is similar to I „ .1 and I . ~ I

(0 4)

is similar to ( - j .

EXAMPLE 17. The intersection H\Π H4 = C /, Q\ is a quotient of a plane quadric.

(0 4)
It is a non-simple curve. If we put Γ = 5/(2, R)ΠR for the corresponding QCM-order R, we

get a non-standard model of the compactification of the modular curve Γ\H parametrizing

abelian surfaces with quaternionic multiplication by a maximal order R (of discriminant 1)

in Λf2(Z). There are two different QCM-curves for discriminant 6, namely C /•* Q \ (non-

(0 24)
simple, which is a component of H\ Π #24) and C/^ i\ (simple, which is a component of

(1 5)
H$Γ\ H$). There are two different QCM-curves for discriminant 10, namely C /•* Q \ (non-

\0 40/
simple) and C /* Q\ (simple, which is another component of H5 Π //g). For discriminant 26

(0 8J
the classes for discriminant matrices are given by

Λ 0 W 5 1\ /8 0\ /9 2\
V0 104/ ' Vl 2\) ' V0 13^1' \2 \2) '

which are all primitive. Therefore there are 4 different QCM-curves with discriminant 26. For

discriminant 15 the classes for discriminant matrices are given by

I 0\ /4 2\ (5 0\ /8 2\

0 60/ ' V2 16/ ' \p 12/ ' V2 8/ '

which are not all primitive. Therefore there are at least 4 different QCM-curves of discrimi-

nant 15. This covers the examples in [Ha].

These examples illustrate that in principle it is always possible to compute projective

models for QCM-curves. One has to identify various components between intersections of
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two Humbert surfaces. For this purpose it is useful to consider other Humbert surfaces con-
taining the corresponding QCM-curve. This produces equations which help to decide which
component is the right one.

APPENDIX. In this appendix we give formulas for Humbert surfaces of discriminant
16, 20, 24 and 28 of degree 8, 8, 12 and 16, respectively. For discriminant 16 we get

Fie =(0, 0, 8, 0) + (0, 0, 0, 8) - 4((0, 0, 6, 2) + (0, 0, 2, 6)) + 6(0, 0, 4,4)

+ 16((4, 0, 2, 2) + (2, 2,4, 0) + (2, 2, 0,4) + (0,4, 2, 2))

- 8((3, 1,4, 0) + (3, 1, 0, 4) + (1, 3, 4, 0) + (1, 3, 0, 4))

- 48((3, 1, 2, 2) + (1, 3, 2, 2)) + 64(2, 2, 2, 2)

For discriminant 20 we get

F20 =64((6, 0, 0, 2) + (2, 0, 0, 6)) + 70(0, 4, 4, 0)

- 16((4, 3, 1, 0) + (4, 1, 3, 0) + (0, 3, 1,4) + (0, 1, 3, 4))

- 32((4, 2, 2, 0) + (2, 4, 0, 2) + (2, 0, 4, 2) + (0, 2, 2, 4))

+ 128(4, 0, 0, 4) - 128(2, 2, 2, 2) - 96((2, 3, 1, 2) + (2, 1, 3, 2))

+ ((0, 8, 0, 0) + (0, 0, 8, 0)) + 8((0, 7, 1, 0) + (0, 1, 7, 0))

+ 28((0, 6, 2, 0) + (0, 2, 6, 0)) + 56((0, 5, 3, 0) + (0, 3, 5, 0))

For discriminant 24 we get

F24 =((0, 0, 12, 0) 4- (0, 0, 0, 12)) - 128((7, 3, 2, 0) + (7, 3, 0, 2)) + 64(6, 6, 0, 0)

- 128((6, 2, 4, 0) + (6, 2, 0, 4) + (2, 6,4, 0) + (2, 6, 0, 4))

+ 64((5, 5, 2, 0) + (5, 5, 0, 2)) + 15((0, 0, 8, 4) + (0, 0, 4, 8)) + 20(0, 0, 6, 6)

- 32((5, 1, 6, 0) + (5, 1, 0, 6) + (1, 5, 6, 0) + (1, 5, 0, 6))

- 352((5, 1, 4, 2) + (5, 1, 2, 4) + (1, 5, 4, 2) + (1, 5, 2, 4))

+ 240((4,4, 4, 0) + (4,4, 0, 4)) + 480(4, 4, 2, 2)

- 192((4, 0, 6, 2) + (4, 0, 2, 6) + (0, 4, 6, 2) + (0, 4, 2, 6))

+ 640((4, 0, 4, 4) + (0,4, 4, 4)) - 128((3, 7, 2, 0) + (3, 7, 0, 2))

+ 288((3, 3, 6,0) + (3, 3, 0, 6)) - 160((3, 3, 4, 2) + (3, 3, 2, 4))

+ 124((2, 2, 8, 0) + (2, 2, 0, 8)) - 400((2, 2, 6, 2) + (2, 2, 2, 6))

+ 1000(2, 2,4,4) + 20((l, 1, 10, 0) + (1, 1, 0, 10))

- 28((1, 1, 8, 2) + (1, 1, 2, 8)) - 184((1, 1, 6, 4) + (1, 1,4, 6)>

+ 256((0, 8, 2, 2) + (8, 0, 2, 2)) + 6((0, 0, 10, 2) + (0, 0, 2, 10))

For discriminant 28 we get

F28 =1024((10,4, 0, 2) + (10, 0,4, 2) + (2, 4, 0, 10) + (2, 0, 4, 10))

- 1024((10, 3, 3, 0) + (0, 3, 3, 10)) - 1024((10, 1, 1,4) + (4, 1, 1, 10))
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- 512((8, 6, 2, 0) + (8, 2, 6, 0) + (0, 6, 2, 8) + (0, 2, 6, 8))

- 512((8, 5, 1, 2) + (8, 1, 5, 2) + (2, 5, 1, 8) + (2, 1, 5, 8))

+ 1280((8,4,4, 0) + (0, 4, 4, 8)) + 1024((8, 3, 3, 2) + (2, 3, 3, 8))

- 512((8, 2, 2, 4) + (4, 2, 2, 8)) + 256(8, 0, 0, 8)

- 64((6, 9, 1, 0) + (6, 1, 9, 0) + (6, 9, 1, 6) + (0, 1, 9, 6))

- 1024((6, 8, 0, 2) + (6, 0, 8, 2) + (2, 8, 0, 6) + (2, 0, 8, 6))

+ 1536((6, 7, 3, 0) + (6, 3, 7, 0) + (0, 7, 3, 6) + (0, 3, 7, 6))

- 256((6, 6, 2, 2) + (6, 2, 6, 2) + (2, 6, 2, 6) + (2, 2, 6, 6))

- 896((6, 5, 5, 0) + (0, 5, 5, 6))

- 3328((6, 5, 1, 4) + (6, 1, 5, 4) + (4, 5, 1, 6) + (4, 1, 5, 6))

+ 2560((6, 4, 4, 2) + (2, 4, 4, 6)) + 256((6, 4, 0, 6) + (6, 0, 4, 6))

+ 512((6, 3, 3,4) + (4, 3, 3, 6)) + 3584((6, 2, 2, 6))

+ 480((4, 10, 2, 0) + (4, 2, 10, 0) + (0, 10, 2, 4) + (0, 2, 10,4))

- 640((4, 9, 1, 2) + (4, 1, 9, 2) + (2, 9, 1,4) + (2, 1, 9,4))

- 128((4, 8, 4, 0) + (4, 4, 8, 0) + (0, 8, 4, 4) + (0, 4, 8, 4))

+ 3168((4,8,0,4) + (4,0,8,4))

+ 768((4, 7, 3, 2) + (4, 3, 7, 2) + (2, 7, 3, 4) + (2, 3, 7, 4))

- 1216((4, 6, 6, 0) + (0, 6, 6, 4)) + 4992((4, 6, 2, 4) + (4, 2, 6, 4))

- 9472((4, 5, 5, 2) + (2, 5, 5, 4)) + 1088(4, 4, 4, 4)

+ 48((2, 13, 1, 0) + (2, 1, 13, 0) + (0, 13, 1, 2) + (0, 1, 13, 2))

+ 144((2, 12, 0 , 2 ) + (2,0, 12,2))

+ 32((2, 11, 3, 0) + (2, 3, 11,0) + (0, 11, 3, 2) + (0, 3, 11, 2))

- 2272((2, 10, 2, 2) + (2, 2, 10, 2))

- 304((2, 9, 5, 0) + (2, 5, 9, 0) + (0, 9, 5, 2) + (0, 5, 9, 2))

+ 1904((2, 8, 4, 2) + (2, 4, 8, 2)) - 576((2, 7,7, 0) + (0, 7, 7, 2))

+ 8640(2, 6, 6, 2) + ((0, 16, 0, 0) + (0, 0, 16, 0))

+ 8((0, 14, 2, 0) + (0, 2, 14, 0)) + 28((0, 12, 4, 0) + (0, 4, 12, 0))

+ 56((0, 10, 6, 0) + (0, 6, 10, 0)) + 70((0, 8, 8, 0))
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