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A NON-LIFTABLE CALABI-YAU THREEFOLD IN CHARACTERISTIC 3

MASAYUKI HIROKADO

(Received February 16, 1998, revised May 13, 1999)

Abstract. We show the existence of a Calabi-Yau threefold in characteristic 3 with
its third Betti number zero. This example admits no lifting to characteristic zero and hence
indicates that a theorem by Deligne that any K3 surface in positive characteristic has a lifting to
characteristic zero cannot be generalized straightforward to the case of Calabi-Yau threefolds.

0. Introduction. Calabi-Yau threefolds as complex manifolds have been studied by

a number of algebraic geometers as well as physicists, and a great deal of advancement has

been achieved in the theory. On the other hand, K3 surfaces in positive characteristics have

also been studied intensively through the seventies and eighties. It is the purpose of our study

to see to what extent we can understand Calabi-Yau threefolds in positive characteristics with

the help of these two theories. In this paper, we observe several results with strong emphasis

on specific phenomena of Calabi-Yau threefolds in positive characteristics which are known

at this stage.

One of the interesting problems of Calabi-Yau threefolds in characteristic p is whether

they have liftings to characteristic zero or not. For K3 surfaces it was proved by Deligne [2]

that any K3 surface lifts protectively to characteristic zero.

We consider, in this paper, quotient varieties of P 3 by ^-closed rational vector fields, and

obtain a Calabi-Yau threefold X with its third Betti number zero. Then it is seen that this X

admits no lifting to characteristic zero, which illustrates a clear difference from the case of

K3 surfaces.

I would like to express my sincere gratitude to Professor Toshiyuki Katsura for his advice

and encouragement.

1. Preliminaries. We consider a smooth protective variety X defined over an alge-

braically closed field k of characteristic p > 0.

DEFINITION 1.1. A smooth protective threefold X is said to be a Calabi-Yau threefold

if KX ^ Oχ and H\OX) = H2(Oχ) = 0.

One of the most important properties of Calabi-Yau threefolds in positive characteristics

is that the invariant ht(X), called the height of X, can be defined.

DEFINITION 1.2 (Artin-Mazur [1]). Let X be a Calabi-Yau threefold and Φ3(X/k,Gm)

be the Artin-Mazur formal group associated to X. Then we define the height ht(Z) associated

to X to be the height of Φ3(X/k, Gm)
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Let WOχ denote the sheaf of Witt vectors over X introduced by Serre [14]. Then the

above definition is equivalent to the following:

dim* #3(X, WOχ) ®w K if H3(X, WOX)

{ oo if H3(X, WOχ) <g)W K = 0,

where K is the quotient field of the ring of Witt vectors W(k). In particular, we say that X is

a supersingular Calabi-Yau if ht(X) = oo, after the case of K3 surfaces.

As is the case with K3 surfaces, this invariant is expected to be closely related to the

specific phenomena of positive characteristics. It is known that the following property, which

is well-known for K3 surfaces, continues to hold for Calabi-Yau threefolds.

THEOREM 1.3. If a Calabi-Yau threefold X is uniruled, then X is supersingular.

The proof of this theorem is based on the following observation (cf. [5]). Let A: be a

field of characteristic p > 0 and / : Y —> X be a generically finite surjective morphism of

smooth complete varieties over k. If Hj(WOγ) ®w K = 0, then Hj(WOχ) <g>w K = 0. In

particular, if W(Oγ) = 0, then W(WOχ) Θw K = 0.

REMARK 1.4 (The Hodge Symmetry). For a smooth projective complex n-fold X, it

is well-known that the following equalities, known as the Hodge symmetry, hold:

d i m e H j ( Ω ^ ) = d i m c H ι ( Ω J

χ ) , 0<iJ <n.

In characteristic p > 0, the Hodge symmetry does not hold in general. However, Rudakov-

Shafarevich proved in [10] that these equalities hold for K3 surfaces, by showing the non-

existence of non-zero vector fields. For a Calabi-Yau threefold X, we have the equality Ω\ =

7χ and the Serre duality. So we see that the Hodge symmetry would follow if one could prove

the vanishing H°(Ωχ) = H°(Ωχ) = 0, which is one of the main questions about Calabi-Yau

threefolds in positive characteristics.

We use the following notation in this paper:

NOTATION 1.5.

X : a smooth projective threefold defined over an algebraically closed field k

of characteristic p > 0.

bi(X) : the /-adic Betti number of X given by dimρ/ H
ι
€i(X, β/) (/#/?), which

is also equal to rank^Hι

cτys(X/fW).

b?R(X) : the de Rham Betti number of X, which is given by dim* H{yR(X). If τ,

denotes the number of generators of the torsion part of Hι

CYys{X/ W), then

bγR(X) = bi(X) + τ, + τ/+i holds.

e(X) : the Euler number of X defined by e(X) = Σ f = o ( ~ ^ ' ^ W

X —> χ(~1^ : the relative Frobenius morphism of X.

8 : a rational vector field on X which is ^-closed, i.e., 8P = aδ for some

a e k(X).
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(8) : the divisor on X associated to a /7-closed rational vector field 8, which is

given as follows: Locally 8 is expressed as 8 = a(Ad/dx + Bd/dy +

Cd/dz), where JC, y, z are local coordinates and A, 5, C are regular func-

tions without common factors. Then the divisor (a) is given in each affine

open set, and can be glued together to form a divisor (8) on X.

Sing 8 : the set of singular points of a /7-closed rational vector field 8. This is given

locally by {A = B = C = 0} under the expression of 8 as above.

C C Tx : the 1-foliation induced by a p-closed rational vector field 8, i.e., a satu-

rated invertible subsheaf of the tangent bundle Tx which is locally gener-

ated by 8.

Pn : the n-dimensional projective space defined over k. When considering a

different base field, for example Fp, we indicate it as Pp .

For a Calabi-Yau threefold X, we have χ{Oχ) = 0 and e(X) = -2χ(Ωι

χ) by the

Riemann-Roch theorem.

We call a morphism / : X —• S a fibration if S is normal and f*Oχ = Os- We say that

X has a projective lifting to characteristic zero if there exists a smooth projective morphism

X -> Spec R

over a discrete valuation ring R such that the closed fiber is isomorphic to X, and the quotient

field of R is of characteristic zero.

2. Construction. In this section, we investigate a Calabi-Yau threefold obtained as

the quotient of P3 by a p-closed rational vector field. Our method of constructing quotient

varieties by rational vector fields was introduced by Rudakov-Shafarevich, and has been used

in various works. We refer the reader to [3] and [11].

PROPOSITION 2.1. i) Let A3 := Speck[x,y,z] C P3 be an affine open set. The

derivation

8 := (XP - x)— + (yP - y)— + (XP - z) —
dx dy dz

determines a p-closed rational vector field on P3 with p3 + p2 + p + 1 isolated singular

points Sing 8. Each singular point of 8 can be resolved by one point blowing-up.

ii) Let π : S —> P3 be the blowing-ups at p3 + p2 + p + 1 singular points Sing 8. Then

the smooth rational vector field on S, which we denote by 7Γ*δ, induces a smooth projective

threefold X as its quotient.

9 9 ί λ\

kb — — ^ zί. — — y o

(2-A)
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where g (resp. go) is the finite and flat (resp. finite) morphism of degree p which is induced by

π*δ (resp. δ). π is a naturally induced birational morphism. In particular, we have

(
(3 - p) Σ Ei

where {Ei} are the exceptional divisors ofπ.

THEOREM 2.2. Suppose p = 3. Then the birational morphism π : X —> V in (2-A)

is a crepant resolution. The smooth projective threefold X satisfies the following properties:

i) X is a Calabi-Yau threefold.

ii) X is unirational, therefore supersίngular.

iii) πf\X) = {1}.
iv)

v) H°(Ωλ

χ) = H°(TX) = 0, therefore the Hodge symmetry holds.

vi) X has quasi-elliptic fibrations.

COROLLARY 2.3. The Calabi-Yau threefold Xin p = 3 obtained above does not ad-

mit a projective lifting to characteristic zero.

PROOF. Suppose that the Calabi-Yau threefold X in question has a projective lifting to

characteristic zero:

X -+ Spec R ,

over a discrete valuation ring R (cf. Section 1). Let Xή be its geometric generic fiber. Then

we have, by the Hodge theory, b?>(Xή) = dim H^R(Xή) = Σi+j=3 ^ 7 (^£-) However, from

the fact that the Betti numbers and the arithmetic genus are invariant under deformation, we

deduce that b^iXη) = 0 and h3(Oχή) = 1. But this is absurd. D

Before proceeding to the proof of the theorem, we first introduce the following notation.

NOTATION 2.4.

C ^ Ts stands for the smooth 1-foliation on S, which is locally generated by π*δ.

We denote a general hyperplane of Pn by Opn (1). The hyperplanes in Pp are denoted by

{Fi\i — 1,... , p3 + p2 + p + 1}. The base change F; xsPecFp Speck is also denoted by the

same F,.

Fi is the strict transform of Fι^ by π : S -> P3 in (2-A). In particular, π\p. : Ft -> Ft

corresponds to blowing-ups at Fp -rational points of Fi = Pp .

PROOF OF PROPOSITION 2.1. i) Suppose that the local coordinates are given by

U := Spec£[x, y, z], U\ := Spec*[JCI, yuz\] C P3 := Proj£[X0, XuXi, X3],

where (Xo» ^i» Xi * Xi) = (1» *> y-> z) = (JCI, 1, yi, zi). In ί/i, the derivation <5 is expressed
as:
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It can be observed that 8 has a pole of degree p — 1 at JCI = 0, and the singular points Sing 8

correspond to the Fp-rational points of Pp := Proj Fp[Xo, X\, X2,X?>].

Consider the blowing-up at the origin: x = s, y = st, z = su. Then we have d/dx =

d/ds - {t/s)d/dt - (u/s)d/du, d/dy = (l/s)d/dt, d/dz = (l/s)d/du and

π*<5 = s

We see that π*8 vanishes along an exceptional divisor E\ := {s = 0} with degree one, that

is, the equality of divisors (π*8) = π*(8) + E\ holds. Moreover, 7Γ*5 has no singular points

lying on E\, so the singularity at the origin is resolved. Other singular points in Sing8 can

also be resolved in the same way.

ii) The first assertion follows from the result (i). For the second, we use the canonical

bundle formula (cf. [11]):

g*Kχ~Ks-(j>-mπ*&),

where (τr*<5) - -(/? - l)π*OPs(l) + Σ£*P*+P+l Ei D

REMARK 2.5. Let q e Sing 8 be a singular point of 8 in Proposition 2.1. Then the

complete local ring of the singular point go(q) e Sing V is given as:

k[[x, y , z]] ^ k[[xiyjzk \i+j+k = O m o d /?, 0 < ί, j , k < p]]

In particular, this is a toric singularity of type (1//?)(1, 1,1), and there exists a crepant reso-

lution if p = 3.

LEMMA 2.6. Let πo : F ->- P2(= Pp. x Spec k) be the biratίonal morphίsm obtained

by blowing up the Fp-rational points in Pp . Then we have

= 0 '

where e\,... , epi+p+ι are the exceptional curves for KQ.

PROOF. Consider the lines {/,-1 / = 1,... , p2 + p + 1} in P^ . We denote the strict

transform of // xspecFp Spec k for πo : F ->• P2 by the same Z, . Then it can be expressed as

Suppose that there exists an effective divisor D e H°(πQ(DP2((p — l)p) 0

-pΣfJiP+l ejV- T h e n w e h a v e ί^ W = ~2P < ° τ t ά s imP!ies that D has

h as its component. On the other hand, we have the intersection number (D —

kπ$OP2(l)) = -2/7 - 1 < 0, which contradicts the fact that 7r*Op 2(l) is nef.

Thus we have the desired assertion. D
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PROOF OF THEOREM 2.2. If p = 3, we h a v e / Kx ~ 0 by Proposition 2.1 (ii), that is,

Kx is numerically equivalent to zero. Here, we show that X is indeed a Calabi-Yau threefold.

First, we prove HO(C~P) = 0, where C = π*OPs(-(p - 1)) ® O ( E f I i ~ p 2 + P + 1 £/).

Suppose there exists an effective divisor D e H°(C~P). Then consider the exact sequence

0 -> H°(Os(D - Fi)) -> H°(Os(D)) -> H°(OPi(D | ^ ) ) ,

where the last term vanishes because of Lemma 2.6. This implies that D — Y^J

is an effective divisor. On the other hand, we have
J[P + / ? + Fi

_

D- Σ FiXπ*OP3(l))2\<0.

But this is absurd. Thus, we have H°(C~P) = 0.

Secondly, we show that Hι(Oχ) = 0 is derived from H°(C~P) = 0. Consider the

smooth 1-foliation C ^ Ts locally generated by π*δ, and let Ω$ -> C~ι be its dual. Con-

sider the composition map with the universal derivation d.

This composition map is the one which sends s e Os to δ(s) e C~ι. Taking the direct images

by the quotient morphism g : S -> X, we have the following diagram:

0 -• Oχ -> g*Os -•

Here, these two rows are exact by definition. Then the assertion verified above H°(C~P) = 0

indicates that the first term in the following exact sequence vanishes:

H°(g*Os/Oχ) -• H\θχ) -» H\

Indeed, the last term also vanishes, since g is a finite morphism and S is a smooth rational

threefold. Thus we obtain the desired assertion Hι (Oχ) = 0.

Thirdly, we prove H2(Oχ) = 0 and Kx = Oχ. By the Riemann-Roch formula, we

have χiPx) = h°(Ox) - h\θχ) + h2(Ox) - h3(Oχ) = 0. Then by the Serre duality and

the facts: h°(Oχ) = 1, hι(Oχ) = 0, we have the following inequality:

1 <1 +h2(Oχ) = h\Ox) = h°(Kχ).

Here, we see that the last term is at most one, because Kx is numerically trivial in p = 3, from

which the assertions H2(Oχ) = 0 and Kx = Oχ follow. Thus X is a Calabi-Yau threefold.

The assertions ii), iii) follow from the construction, iv) follows from the equalities b[ (S) =

bι (X) for / = 0, . . . , 6, since the quotient morphism g in (2-A) is finite and purely insepara-

ble. The quasi-elliptic fibrations in vi) are induced from the projection P -> P2, where P

is a one point blowing-up of P3. So there remains to prove v).
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Let Λ4 := 7χ/s(-o c-> Tx be the smooth 1-foliation of rank two on X, which corre-

sponds to the purely inseparable finite morphism g : X -> S*"1* of degree p2. Then we have

the following exact sequences:

0 -> g*M~ι -> Ωs -> CΓX -> 0,

0 -> p * / : " 1 -> ί2χ -> ΛΊ" 1 -> 0.

Then look at the long exact sequence:

0 -* H0(g*£~l) -> H°(Ωχ) -> /

Here we have / f 0 ^ " 1 ) = 0 because of the inclusion H°(g*M~ι) <-* H°(ΩS) = 0.

Moreover, H°(g*C~ι) = 0 holds, since we have

and we already know that the last term vanishes. Thus we have H°(Ωχ) = 0.

The assertion H°(Tχ) = 0 follows from Proposition 2.7 mentioned below. Thus we

complete the proof of Theorem 2.2. D

PROPOSITION 2.7. Consider the p-closed rational vector field on P3 given by

δ = (GΪ- x)-H- + (Gp

2 - v ) | - + (Gp

3 - Z ) A
1 dx dy J dz

with G\, G2, G3 e k[x, y, z]. Let go : P 3 -> V be its quotient and suppose that the resolution

of singularities π : X -+ V such that X \ π~x (Sing V) = V \ Sing V exists. Suppose further

that {1, G\, G2, G3} U {GiGj| /, j e {1, 2, 3}} m k[x, y, z] are k-linearly independent and

8 i H°(TP3). Then we have H°(TX) = 0.

PROOF. For the proof, we consider the purely inseparable morphisms which factor the

Frobenius morphism:

Then there exist 1-foliations £0 : = TP3/V C Γp3 and .Λ/ίo •= ̂ v/p3(-i> C Γy which corre-

spond to #0 and <7o> respectively. Consider the exact sequence:

0 -• £0 -> 7>3 -> 7>3/>Co -> 0.

We also have an exact sequence on Vb ' = V \ Sing V:

0 -• Mo -+ Ty -> flfjA) -• 0,

and TP3/Co = g^Mo holds on ^ό^^b) ( c f [3]). So the following long exact sequences are

induced:

0 -• H°(Co) -• H°(Tp3) -> H°(TP3/Co) -+ 0,

0 -• if°(Vo, Mo) -> ^°(V
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Here //°(£0) = 0 holds from the hypothesis 8 i # 0 ( 7 > 3 ) . Then //°(Vb, 5o£o) = 0 also

follows. By computation of local cohomologies, we have H°(P3, TP3/CQ) = H®(g^

TP3/Co). So, we obtain the inclusion H°(V0, Tv) ^ //°(7>3).

Now, we show that there exists no element θ e H°(TP3) such that the restriction i

determines a derivation of k(V). Take a basis of H°(TP3):

d d d d d d d d d d d d

dx ' dx ' dx ' dx ' dy ' a^ ' 3y ' 3y ' 3z ' 3z ' 3z ' 3z '

a a a

The function field of V is given by k(V) = k(xp, yp, zp, w\, W2), where w\ := (Gp

χ —

*)(GP

2 - y)P'λ and w2 := (Gf - v)(Gf - z)^" 1 .

So, it suffices to show that there exists no element θ e H°(TP3) such that (8(θw\),

δ(βu)2)) = 0 in k(P3) Θk(P 3). This is equivalent to the following elements in k(P3) Θk(P3)

being A:-linearly independent:

This is, indeed, the case under the assumption of Proposition 2.7. Then the desired assertion

follows from the inclusion:

//°(X, TX) <-+ H°(π-χ(V0), TX) = H°(Vo, Tv) = 0.

This completes the proof of Proposition 2.7. D

REMARKS 2.8. i) The smooth quotient threefold X obtained in Proposition 2.1 in

other characteristics is classified as a rational threefold if p = 2, and as a threefold of general

type (i.e., the Kodaira dimension κ(X) = 3) if p > 5.

ii) It is not known if the existence of Calabi-Yau threefolds with the third Betti number

zero is a phenomenon specific to characteristic three or not. It follows that such Calabi-Yau

threefolds are supersingular.
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