COHOMOLOGY THEOREMS FOR ASYMPTOTIC SHEAVES

JORGE MOZO FERNÁNDEZ

(Received December 8, 1997, revised November 18, 1998)

Abstract. In this paper, we study the sheaves $\mathcal{A}_E^{<0}$ and $\mathcal{A}_E^{<-\kappa}$ of strongly asymptotically developable functions with null expansion, which are subsheaves of \mathcal{A} defined by Majima. Following the method developed in one variable by Sibuya, and in several variables by Majima, we compute the first cohomology group of the n-torus and the boundary of the real blow-up with coefficients in these sheaves. The same technique is used to study the multiplicative case (sheaves of non-abelian groups), in order to calculate the first cohomology set. This generalizes previous results of Majima, Haraoka and Zurro.

1. Definitions and notations. A polysector $V = V_1 \times \cdots \times V_n$ in \mathbb{C}^n is a product of open sectors, an open sector being a set of the type

$$V_{\alpha,\beta,R} = \left\{ z \in \mathbf{C} \mid \alpha < \arg z < \beta, 0 < |z| < R \right\},\,$$

where $R \in (0, \infty]$. The number $\beta - \alpha$ is the opening of $V_{\alpha,\beta,R}$. A subpolysector W of V (W < V) is $W_1 \times \cdots \times W_n$, where W_i is a closed sector of finite radius and strictly smaller opening than V_i .

 $\mathcal{A}(V)$ will denote the C-algebra of functions that are strongly asymptotically developable in V, introduced by Majima in [M1]. Let us recall that $f \in \mathcal{A}(V)$ if and only if there exist a family of functions

$$\mathcal{F} = \left\{ f_{\alpha_J}(z_{J^c}) \in \mathcal{O}(V_{J^c}) \mid \emptyset \neq J \subseteq \{1, \dots, n\}, \alpha_J \in \mathbb{N}^J \right\}$$

such that, if W < V and $N \in \mathbb{N}^n$, there exists $C_{W,N} > 0$ with

$$|f(z) - \operatorname{App}_N(\mathcal{F})(z)| < C_{W,N} \cdot |z^N| \text{ in } W,$$

where

$$\operatorname{App}_{N}(\mathcal{F})(z) = \sum_{\emptyset \neq J \subseteq \{1,\dots,n\}} \sum_{j \in J} \sum_{\alpha_{J} < N_{J}} (-1)^{\sharp J+1} \cdot f_{\alpha_{J}}(z_{J^{c}}) \cdot z_{J}^{\alpha_{J}}$$

and $J^c = \{1, ..., n\} \setminus J$. We have used the following notations: if $J \in \{1, ..., n\}$, $V_J := \prod_{j \in J} V_j$, and z_J is the element of V_J obtained by projection of $z \in V$ to V_J . This family \mathcal{F} (the *total family of coefficients of* f) is unique, and it will be denoted by TA(f). As in [M1], for $f \in \mathcal{A}(V)$, $\emptyset \neq J \subseteq \{1, ..., n\}$, $FA_J(f)$ will denote the series

$$FA_J(f) = \sum_{\alpha_J \in N^J} f_{\alpha_J}(z_{J^c}) z_J^{\alpha_J} \in \mathcal{A}(V_{J^c})[[z_J]].$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 41A60; Secondary 55N30.

Partially supported by the TMR (Training and Mobility Researchers) European Network ERBFMRXCT960040 and the DGICYT (Dirección General de Investigación Científica y Técnica).

The author wants to thank the referee and the editorial office for their remarks.

If $J = \{1, ..., n\}$, we shall write FA(f) instead of $FA_J(f)$.

For the main properties of A(V) the reader can see [M1, M2, Mo].

We shall use freely multi-index notations, such us $z^{\alpha} := z_1^{\alpha_1} \cdots z_n^{\alpha_n}, \ldots$, as we have already done. Also, if $\alpha, \beta \in N^n$, $\alpha < \beta$ will mean that each component of α is strictly smaller than the corresponding component of β .

If $s = (s_1, \ldots, s_n) \in \mathbb{R}^n_{\geq 0}$, $A_s(V)$ is the *C*-subalgebra of A(V) of s-Gevrey type functions (see [Ha]). This means that, with previous notations, one can choose $C_{W,N} = C'_W \cdot A^N_W \cdot N!^s$, for certain $C'_W > 0$ and $A_W \in (\mathbb{R}_{>0})^n$, independent of N.

As usual, \mathcal{O} will be the ring of germs of holomorphic functions at the origin, and $\mathcal{O}(U)$ the set of holomorphic functions defined in the open set U. This defines a sheaf, that we shall also denote by \mathcal{O} .

Fixing coordinates z_1, \ldots, z_n , E will be a (germ of) normal crossing divisor or a linear subvariety. So, if H_i is the hyperplane defined by the equation $z_i = 0$ for $i = 1, \ldots, k$, then $E = H_1 \cup \cdots \cup H_k$ or $E = H_1 \cap \cdots \cap H_k$. $A_E^{<0}(V)$ is the subset of A(V) whose elements vanish on E, i.e., equivalently,

- 1. If $f \in \mathcal{A}(V)$ and $TA(f) = \{ f_{\alpha_J}(z_{J^c}) \in \mathcal{A}(V_{J^c}) \mid \alpha_J \in \mathbb{N}^J \}$ is the total family of coefficients of asymptotic development for f, then
 - (a) if $E = H_1 \cup \cdots \cup H_k$, $f_{\alpha_J}(z_{J^c}) = 0$ whenever $\{1, \ldots, k\} \cap J \neq \emptyset$,
 - (b) if $E = H_1 \cap \cdots \cap H_k$, $f_{\alpha_J}(z_{J^c}) = 0$ whenever $\{1, \ldots, k\} \subseteq J$.
 - 2. If W < V, there exists a C^{∞} extension F of $f|_W$ such that $F \equiv 0$ on E.

This equivalence is an easy consequence of the results in [Z].

Obviously, $E_1 \subseteq E_2 \Leftrightarrow \mathcal{A}_{E_2}^{<0}(V) \subseteq \mathcal{A}_{E_1}^{<0}(V)$. We define analogously, if $\kappa = 1/s = (1/s_1, \ldots, 1/s_n)$, $\mathcal{A}_E^{\leq -\kappa}(V) = \mathcal{A}_E^{<0}(V) \cap \mathcal{A}_s(V)$ (we keep the usual notations of the 1-dimensional case used by Malgrange and Ramis).

Let $\pi: \tilde{C} \to C$ be the real blow-up of C at 0, with $\pi^{-1}(0) = S^1$, the points of S^1 representing real directions from 0 in C. \tilde{C}^n will be the componentwise real blow-up (we blow up each component separately, see [M2, p. 37]). It is a real manifold with boundary $\partial \tilde{C}^n$, where $\partial \tilde{C}^n$ is the inverse image by $\pi_n: \tilde{C}^n \to C^n$ of the coordinate hyperplanes $H_1 \cap \cdots \cap H_n$. Let us put $X_i = \pi_n^{-1}(H_i)$. So, $\partial \tilde{C}^n = X_1 \cup \cdots \cup X_n$. Over \tilde{C}^n we define sheaves A, A_s , $A_E^{<0}$, $A_E^{<-\kappa}$ from the above definitions. If $z \notin \partial \tilde{C}^n$, the stalk \mathcal{F}_z (\mathcal{F} being one of the above sheaves) coincides with \mathcal{O} . So we are mainly interested in the study of these sheaves over $\partial \tilde{C}^n$. In particular, we shall compute the first cohomology group of $A_E^{<0}$, $A_E^{<-\kappa}$ following the method developed by Sibuya. We shall need to compute H^1 also over $T^n = X_1 \cap \cdots \cap X_n$. In this case, some of the results had already been obtained by Majima [M1], Haraoka [Ha] and Zurro [Z] (the last author uses a different method, following Malgrange in [M1]). We will reprove them in order to obtain a global vision.

Given a Fréchet space L, $\mathcal{A}(V; L)$, $\mathcal{A}_s(V; L)$, ... will denote the sets of strongly asymptotically developable functions with values in L (so, $\mathcal{A}(V) = \mathcal{A}(V; C)$), with obvious modifications of the definitions. The set $\mathcal{A}(V)$ is itself a Fréchet space, where a family of seminorms is given by

$$p_{W,N}(f) = \sup\{|D^N f(z)|/z \in W\},\,$$

and in fact we have canonical isomorphisms $\mathcal{A}(V_1; \mathcal{A}(V_2)) \cong \mathcal{A}(V_1 \times V_2)$. Precise details of this approach can be read in [He]. $L\{z\}$ will denote the C-algebra of convergent series with coefficients in L, i.e., if $\sum a_{\alpha}z^{\alpha} \in L[[z]]$ and p is a continuous seminorm on L, $\sum p(a_{\alpha})z^{\alpha} \in C\{z\}$.

2. First cohomology group of the asymptotic sheaves.

2.1. Main lemma. The following result generalizes Cartan's decomposition lemma of complex analysis.

LEMMA 2.1. Let $f \in \mathcal{A}^{<0}_{(z_1=0)}$. If $V_1 = \{z_1 \in C \mid a < \arg z_1 < b, |z_1| < R\}$, denote $\tilde{V}_1 = \{z \in C \mid a < \arg z < b + 2\pi, |z| < R\}$. Then there exist $F \in \mathcal{A}(\tilde{V}_1 \times V_2 \times \cdots \times V_n)$ such that

$$F(z_1e^{2\pi i}, z_2, \ldots, z_n) - F(z_1, \ldots, z_n) = f(z).$$

If $1 \notin J$, then

$$F_{\alpha_J}(z_1 e^{2\pi i}, z_{J^c \setminus \{1\}}) - F_{\alpha_J}(z_{J^c}) = f_{\alpha_J}(z_{J^c}).$$

If in addition, $f \in A_s(V)$, $F \in A_s(\tilde{V}_1 \times V_2 \times \cdots \times V_n)$.

SKETCH OF PROOF. As in the case of one variable (see [S]), we define F(z) as the Cauchy-Heine transform (with parameters) of f in the first variable. This F verifies the required properties.

2.2. Cohomology over T^n . A good covering of S^1 will be a covering by (at least three) open intervals, each three of them having empty intersection. Every interval in S^1 represents a sector at the origin in C, forgetting the radius. A good covering of T^n is a product of good open coverings of S^1 . As every open covering of T^n can be refined by a good covering U, we only need to compute $H^1(U; *)$. In the sequel, we shall identify sectors with intervals of S^1 .

PROPOSITION 2.2. Let $V = \{V_1, \dots, V_r\}$ be a good covering of S^1 , and V' a polysector in C^{n-1} . If $V_{ij} = V_i \cap V_j$, let $f_{i,i+1} \in \mathcal{A}(V_{i,i+1} \times V')$ such that

$$\sum_{i} FA_{\{1\}}(f_{i,i+1}) = 0 \in \mathcal{A}(V')[[z_1]].$$

Then, there exist $f_i \in \mathcal{A}(V_i \times V')$ such that $f_{i,i+1} = f_{i+1} \big|_{V_{i,i+1} \times V'} - f_i \big|_{V_{i,i+1} \times V'}$.

If $f_{i,i+1} \in \mathcal{A}_s(V_{i,i+1} \times V')$, then $f_i \in \mathcal{A}_s(V_i \times V')$ (provided that the openings of V_i and V' are sufficiently small).

REMARK 2.3. One can observe that this is a reformulation of [M2, Th. 3.2. (iii)].

PROOF OF PROPOSITION 2.2. By a theorem of Borel-Ritt, take $g_i \in \mathcal{A}(V_i \times V')$ such that

$$FA_{\{1\}}(g_i) = \sum_{k=1}^{i-1} FA_{\{1\}}(f_{k,k+1})$$

(i = 2, ..., r + 1 = 1). If $h_{i,i+1} = f_{i,i+1} - g_{i+1} + g_i$, $FA_{\{1\}}(h_{i,i+1}) = 0$. Let us suppose first that $h_{i,i+1} = 0$ if $i \neq 1$. Then, Lemma 2.1 gives us a function H_{12} , and we define $h_i = H_{12}|_{V_i \times V'}$. It follows that $h_{i+1} - h_i = h_{i,i+1}$.

In general, let $h_i^{i,i+1} \in \mathcal{A}(V_j \times V')$ such that

$$h_{j+1}^{i,i+1} - h_j^{i,i+1} = \delta_{ij} h_{i,i+1}$$
.

The functions

$$f_i = g_i + \sum_{i=1}^r h_j^{i,i+1}$$

give the result. The Gevrey case is similar.

Proposition 2.2 is essentially a result in one variable, but it can be used in order to prove the corresponding assertion in several variables:

PROPOSITION 2.4. Let $V = \{V_{i_1} \times \cdots \times V_{i_n}\}$ be a good covering of T^n . Then, the map

$$H^1(\mathcal{V};\mathcal{A}) \to H^1(\mathcal{V};\mathcal{A}/\mathcal{A}_F^{<0})$$

is injective. Namely, for each $i=(i_1,\ldots,i_n),\ i'=(i'_1,\ldots,i'_n),\ let\ f_{i,i'}\in\mathcal{A}(V_i\cap V_{i'})$ satisfying the cocycle condition, such that

$$[(f_{i,i'})_{i,i'}] = 0$$
 as an element of $H^1(\mathcal{V}; \mathcal{A}/\mathcal{A}_E^{<0})$,

[···] meaning the equivalence class. Then $[(f_{i,i'})_{i,i'}] = 0$ as an element of $H^1(\mathcal{V}; \mathcal{A})$. If $f_{i,i'}(z) \in \mathcal{A}_s(V_i \cap V_{i'})$ and $[(f_{i,i'})_{i,i'}] = 0$ in $H^1(\mathcal{V}; \mathcal{A}_s/\mathcal{A}_E^{\leq -\kappa})$, then $[(f_{i,i'})_{i,i'}] = 0$ in $H^1(\mathcal{V}; \mathcal{A}_s)$.

PROOF. Suppose first that E = (0). The exactness of the sequence

$$0 \to \mathcal{A}_F^{<0} \to \mathcal{A} \to \mathbf{C}[[z]] \to 0$$

shows that $\mathcal{A}/\mathcal{A}_E^{<0} \cong \mathbf{C}[[z]]$ (Taylor map).

If \tilde{i} and \tilde{i}' are (n-1)-tuples, we denote

$$A_{\tilde{\imath},\tilde{\imath}'} = \sum_{k} FA_{\{1\}} (f_{(k,\tilde{\imath}),(k+1,\tilde{\imath}')}) \in \mathcal{A}(V_{\tilde{\imath}} \cap V_{\tilde{\imath}'})[[z_1]],$$

$$B_{\tilde{\imath},\tilde{\imath}'} = \sum_{k} FA_{\{1\}} (f_{(k,\tilde{\imath}),(k,\tilde{\imath}')}) \in \mathcal{A}(V_{\tilde{\imath}} \cap V_{\tilde{\imath}'})[[z_1]].$$

The cocycle condition implies that

$$f_{(k,\tilde{i}),(k,\tilde{i}')} + f_{(k,\tilde{i}'),(k+1,\tilde{i}')} = f_{(k,\tilde{i}),(k+1,\tilde{i})} + f_{(k+1,\tilde{i}),(k+1,\tilde{i}')}$$

and so

$$B_{\tilde{\iota},\tilde{\iota}'} + A_{\tilde{\iota}',\tilde{\iota}'} = A_{\tilde{\iota},\tilde{\iota}} + B_{\tilde{\iota},\tilde{\iota}'}.$$

In the intersection $V_i \cap V_{i'}$, $A_{\tilde{i},\tilde{i}} = A_{\tilde{i}',\tilde{i}'}$ and so, they glue together in

$$A \in \mathcal{O}(D_2 \times \cdots \times D_n)[[z_1]].$$

The hypothesis shows that the Taylor series of A at the origin is 0, so $A = 0 = A_{\tilde{i},\tilde{i}}$. Now we use a kind of argument that has been developed in [M1]. By the previous proposition, we can find $f_{(i_1,\tilde{i})} \in \mathcal{A}(V_{i_1} \times V_{\tilde{i}})$ such that

$$f_{(i_1,\tilde{i}),(i'_1,\tilde{i})} = f_{(i'_1,\tilde{i})} - f_{(i_1,\tilde{i})}$$

and

$$\sum_{i_1} f_{(i_1,\tilde{\iota}),\alpha_J}(z_{J^c}) = 0 \quad \text{if } 1 \notin J.$$

Again by the cocycle condition, the equality

$$f_{(i_1,\tilde{\iota}),(i'_1,\tilde{\iota}')} - f_{(i'_1,\tilde{\iota}')} + f_{(i_1,\tilde{\iota})} = f_{(i''_1,\tilde{\iota}),(i'''_1,\tilde{\iota}')} - f_{(i'''_1,\tilde{\iota}')} + f_{(i''_1,\tilde{\iota})}$$

holds in the intersection of the domains (for indices i_1, i'_1, i''_1, i'''_1 and (n-1)-tuples $\tilde{\imath}, \tilde{\imath}'$). For, add $f_{(i_1,\tilde{\imath}),(i'_1,\tilde{\imath}')}+f_{(i''_1,\tilde{\imath})}=f_{(i_1,\tilde{\imath}),(i'_1,\tilde{\imath}')}+f_{(i_1,\tilde{\imath}),(i''_1,\tilde{\imath})}+f_{(i_1,\tilde{\imath})}$ to each side of the equality $f_{(i'_1,\tilde{\imath}')}+f_{(i'_1,\tilde{\imath}'),(i'''_1,\tilde{\imath}')}=f_{(i'''_1,\tilde{\imath}')}$. By glueing together the preceding functions, we obtain $f_{(\tilde{\imath},\tilde{\imath}')}\in \mathcal{A}(D_1\times (V_{\tilde{\imath}}\cap V_{\tilde{\imath}'}))$.

We keep the same conditions as in the beginning of the proof (identify $\mathcal{A}(D \times V) \cong \mathcal{A}(V; \mathcal{O}(D))$) and consider asymptotic developments with values in the Fréchet space $\mathcal{O}(D)$). So, for each (n-2)-tuple $\bar{\imath}$, construct functions

$$f_{(i_2,\bar{\iota})} \in \mathcal{A}(D_1 \times V_{i_2} \times V_{\bar{\iota}})$$

such that

$$f_{(i_2',\bar{\iota})} - f_{(i_2,\bar{\iota})} = f_{(i_2,\bar{\iota}),(i_2',\bar{\iota})}$$

and we iterate the process, obtaining for (n-k)-tuples $j=(j_{k+1},\ldots,j_n), j'=(j'_{k+1},\ldots,j'_n)$, and indices j_k,j'_k , functions

$$f_j \in \mathcal{A}(D_1 \times \dots \times D_k \times V_{j_{k+1}} \times \dots \times V_{j_n}),$$

$$f_{(j_k,j),(j'_k,j')} \in \mathcal{A}(D_1 \times \dots \times D_{k-1} \times (V_{j_k} \cap V_{j'_k}) \times (V_j \cap V_{j'}))$$

such that

$$f_{j,j'} = f_{(j_k,j),(j'_k,j')} - f_{(j_k,j')} + f_{(j_k,j)}$$
.

Defining

$$F_{(j_1,\ldots,j_n)} = f_{(j_1,\ldots,j_n)} + f_{(j_2,\ldots,j_n)} + \cdots + f_{j_n}$$

a straightforward computation shows the required property, i.e.,

$$F_{j'}-F_j=f_{j,j'}.$$

Consider now a general E. We have an exact diagram

from which we deduce an exact cohomology sequence (taking global sections)

$$0 \to C\{z\} \to C[[z]] \to H^1(\mathcal{V}; \mathcal{A}_F^{<0}) \to H^1(\mathcal{V}; \mathcal{A}) \xrightarrow{\delta_2} H^1(\mathcal{V}, C[[z]])$$

We have shown that $\delta_2 = \alpha \circ \delta_1$ is injective, so δ_1 is also injective. The same argument applies to the Gevrey case.

REMARK 2.5. The spaces $\Gamma(T^n; A/A_E^{<0})$ may be computed explicitly. Moreover, if we write

$$\hat{f}(z) = \sum_{\alpha} \hat{f}_{\alpha}(z_1, \dots, \hat{z}_i, \dots, z_n) \cdot z_i^{\alpha}$$

and $E = H_1 \cup \cdots \cup H_k$, it can be canonically identified with the set of series $\hat{f} \in C[[z]]$ such that if $1 \le i \le k$, then there exists a disk D around the origin in \mathbb{C}^{n-1} such that $\hat{f}_{\alpha} \in \mathcal{O}(D)$. This set is precisely the stalk at the origin of the formal completion of the sheaf \mathcal{O} along the divisor E (see [Gr]), i.e.,

$$\left(\varprojlim_k \mathcal{O}/\mathcal{I}_E^k\right)_0.$$

If E is a linear subvariety $H_1 \cap \cdots \cap H_k$, the above stalk is precisely

$$\lim_{D\to 0} \mathcal{O}(D_{k+1}\times\cdots\times D_n)[[z_1,\ldots,z_k]],$$

i.e., the set of formal power series

$$\sum f_{\alpha_1,\ldots,\alpha_k}(z_{k+1},\ldots,z_n) \cdot z_1^{\alpha_1} \cdots z_k^{\alpha_k}$$

such that $f_{\alpha}(z_{k+1}, \ldots, z_n) \in \mathcal{O}(D)$, D being a disk in \mathbb{C}^{n-k} .

Analogously, $\Gamma(T^n; A_s/A_E^{\leq -\kappa})$ is identified with the "formal Gevrey completion", i.e., if E is a normal crossing divisor $(z_1 \cdots z_k = 0)$, the set of series (*) such that, if K is a compact set in D,

$$\sum \|\hat{f}_{\alpha}(z_1,\ldots,\hat{z}_i,\ldots,z_n)\|_{K}\cdot z_i^{\alpha}\in C[[z_i]]_{s_i}$$

and when E is the linear subvariety $H_1 \cap \cdots \cap H_k$ we need in (**) that

$$\sum \|f_{\alpha_1,\ldots,\alpha_k}(z_{k+1},\ldots,z_n)\|_{K} \cdot z_1^{\alpha_1} \cdots z_n^{\alpha_n} \in C[[z_1,\ldots,z_k]]_{(s_1,\ldots,s_k)}$$

for every compact set K in D.

THEOREM 2.6. There are canonical isomorphisms

$$H^{1}(\mathbf{T}^{n}; \mathcal{A}_{E}^{<0}) \cong \Gamma(\mathbf{T}^{n}; \mathcal{A}/\mathcal{A}_{E}^{<0})/\mathbf{C}\{z\},$$

$$H^{1}(\mathbf{T}^{n}; \mathcal{A}_{E}^{\leq -\kappa}) \cong \Gamma(\mathbf{T}^{n}; \mathcal{A}_{S}/\mathcal{A}_{E}^{\leq -\kappa})/\mathbf{C}\{z\}.$$

PROOF. Take a good covering V of T^n , and the long exact sequences

$$0 \to C\{z\} \to \Gamma(T^n; \mathcal{A}/\mathcal{A}_F^{<0}) \to H^1(T^n; \mathcal{A}_F^{<0}) \to H^1(T^n; \mathcal{A}) \xrightarrow{\delta} H^1(T^n; \mathcal{A}/\mathcal{A}_F^{<0}),$$

$$0 \to \mathbb{C}\{z\} \to \Gamma(\mathbb{T}^n; \mathcal{A}_s/\mathcal{A}_E^{\leq -\kappa}) \to H^1(\mathbb{T}^n; \mathcal{A}_E^{\leq -\kappa}) \to H^1(\mathbb{T}^n; \mathcal{A}_s) \xrightarrow{\delta} H^1(\mathbb{T}^n; \mathcal{A}_s/\mathcal{A}_E^{\leq -\kappa})$$
. The assertion of the theorem is equivalent to the injectivity of δ , that is assured by the previous proposition.

REMARK 2.7. When $E = H_1 \cup \cdots \cup H_n$, this result can be seen in [M1] and [Ha]. When $E = H_1 \cap \cdots \cap H_n$, it is proved in [Z] using a different method, only in the general case (not Gevrey).

2.3. Cohomology over $\partial \tilde{\boldsymbol{C}}^n$. In order to compute $H^1(\partial \tilde{\boldsymbol{C}}^n;*)$, where * is one of the sheaves $\mathcal{A}_E^{<0}$, $\mathcal{A}_E^{<-\kappa}$, we write $\partial \tilde{\boldsymbol{C}}^n = X_1 \cup \cdots \cup X_n$ as in the beginning of the paper, and we shall apply a Mayer-Vietoris argument. At the end, we will remark the local case.

We need a previous technical lemma:

LEMMA 2.8. If $h \in \bigcap_{k=2}^{n} \mathcal{O}(\mathbf{C}^{n-2})\{z_1, z_k\}$, there exist $h_1 \in \bigcap_{k=2}^{n} \mathcal{O}(\mathbf{C}^{n-1})\{z_k\}$, $h_2 \in \mathcal{O}(\mathbf{C}^{n-1})\{z_1\}$ with $h_1 - h_2 = h$.

PROOF. h may be considered as a holomorphic function defined in a neighbourhood U of $\bigcup_{k=2}^{n} H_1 \cap H_k$ in \mathbb{C}^n . Let us suppose that U is a logarithmically convex Reinhardt domain (this is always possible because they form a fundamental system of neighbourhoods of the origin). We can find open subsets U_1 and U_2 of \mathbb{C}^n such that U_1 is a neighbourhood of $\bigcup_{k=2}^{n} H_k$ and U_2 is a neighbourhood of H_1 .

If $\mathcal{U} = \{U_1, U_2\}$ is an open covering of $U_1 \cup U_2$, since

$$H^1(\mathcal{U};\mathcal{O}) \hookrightarrow H^1(U_1 \cup U_2;\mathcal{O}) = 0$$
,

we can find $h_i \in \mathcal{O}(U_i)$ such that $h_1 - h_2 = h$. These are the required functions.

THEOREM 2.9. There are isomorphisms

$$H^{1}(\partial \tilde{\boldsymbol{C}}^{n}; \mathcal{A}_{E}^{<0}) \cong \Gamma(\partial \tilde{\boldsymbol{C}}^{n}; \mathcal{A}/\mathcal{A}_{E}^{<0}) / \bigcap_{i=1}^{n} \mathcal{O}(\boldsymbol{C}^{n-1})\{z_{i}\}$$

$$H^{1}(\partial \tilde{\boldsymbol{C}}^{n}; \mathcal{A}_{E}^{\leq -\kappa}) \cong \Gamma(\partial \tilde{\boldsymbol{C}}^{n}; \mathcal{A}_{s}/\mathcal{A}_{E}^{\leq -\kappa}) / \bigcap_{i=1}^{n} \mathcal{O}(\boldsymbol{C}^{n-1})\{z_{i}\}.$$

PROOF. First of all, we will compute $H^1(X_i; *)$ with * one of the above sheaves. Suppose i = 1. Recall that the real blow-up $\tilde{\boldsymbol{C}}^n$ of \boldsymbol{C}^n is constructed as a product of n times the real blow-up of \boldsymbol{C} . This latter is a product $S^1 \times \boldsymbol{R}_{\geq 0}$ (polar coordinates). So, a good covering of X_1 is composed by open sets such as

$$U = I_i \times (I_{i_2}^2 \times A_{k_2}^2) \times \cdots \times (I_{i_n}^n \times A_{k_n}^n),$$

where the I's are open intervals in S^1 and the A's in $\mathbf{R}_{\geq 0}$ (it is a product of good coverings of S^1 , $\mathbf{R}_{\geq 0}$). We reorder the indices in such a way that $0 \in A^l_{k_l} \Leftrightarrow k_l = 0$.

As before, we are going to prove that the natural maps

$$H^1(X_1; \mathcal{A}) \stackrel{\delta}{\longrightarrow} H^1(X_1; \mathcal{A}/\mathcal{A}_E^{<0}),$$

 $H^1(X_1; \mathcal{A}_s) \stackrel{\delta}{\longrightarrow} H^1(X_1; \mathcal{A}_s/\mathcal{A}_E^{<-\kappa})$

are injective. Suppose E=0. In this case, if $z=(z_1,\ldots,z_n)\in X_1$ and

$$J = \{ j \in \{2, ..., n\} \mid z_j \in S^1 \times \{0\} \subseteq \tilde{C} \},$$

then the sheaves of coefficients of the right hand side are

$$(\mathcal{A}/\mathcal{A}_E^{<0})_z = \mathcal{O}_{\{2,\ldots,n\}\setminus J}[[z_1,z_J]],$$

$$(\mathcal{A}_s/\mathcal{A}_E^{\leq -\kappa})_z = \mathcal{O}_{\{2,\ldots,n\}\setminus J}[[z_1,z_J]]_s.$$

Take

$$\left[f_{i,(j,k)}^{i',(j',k')} \in \Gamma\left((I_i \cap I_{i'}) \times \left(\prod_{l=2}^n (I_{j_l}^l \times A_{k_l}^l) \cap (I_{j_l'}^l \times A_{k_l'}^l)\right), *\right)\right] \in \ker \delta.$$

Fixing i,

$$\left[\{f_{i,(j,k)}^{i,(j',k')}\}_{(j,k),(j',k')}\right]$$

can be seen as a 1-cocycle over \tilde{C}^{n-1} , with parameters. We need here the following result, that we shall prove later. Remark that the first assertion is a particular case of [M2, Chapter 1, Theorem 3.3].

Proposition 2.10.

$$H^{1}(\tilde{\boldsymbol{C}}^{n}; \mathcal{A}_{E}^{<0}) \cong \Gamma(\partial \tilde{\boldsymbol{C}}^{n}; \mathcal{A}/\mathcal{A}_{E}^{<0})/\mathcal{O}(\boldsymbol{C}^{n}),$$

$$H^{1}(\tilde{\boldsymbol{C}}^{n}; \mathcal{A}_{E}^{\leq -\kappa}) \cong \Gamma(\partial \tilde{\boldsymbol{C}}^{n}; \mathcal{A}_{s}/\mathcal{A}_{E}^{\leq -\kappa})/\mathcal{O}(\boldsymbol{C}^{n}).$$

Then, there are $f_{i,(j,k)}$ on $I \times \prod_{l=2}^{n} (I_{j_l^l} \times A_{k_l^l})$ such that

$$f_{i,(j,k)}^{i,(j',k')} = f_{i,(j',k')} - f_{i,(j,k)}$$
.

As in Proposition 2.4, the equality

$$f_{i,(j,k)}^{i',(j',k')} - f_{i',(j',k')} + f_{i,(j,k)} = f_{i,(j'',k'')}^{i',(j''',k''')} - f_{i',(j''',k''')} + f_{i,(j'',k'')}$$

defines $F_{i,i'} \in \mathcal{A}_E^{<0}(I_i \cap I_{i'}; \mathcal{O}(\mathbb{C}^{n-1}))$ and hence $F_{i,i'} = F_{i'} - F_i$ with $F_i \in \mathcal{A}(I_i; \mathcal{O}(\mathbb{C}^{n-1}))$. The family of functions

$$g_{i,(j,k)} := f_{i,(j,k)} + F_i$$

has as coboundary the desired cocycle. The Gevrey case is analogous, and so,

$$H^{1}(X_{1}; \mathcal{A}_{E}^{<0}) \cong \mathbf{C}[[z]]/\mathcal{O}(\mathbf{C}^{n-1})\{z_{1}\},$$

 $H^{1}(X_{1}; \mathcal{A}_{E}^{\leq -\kappa}) \cong \mathbf{C}[[z]]_{s}/\mathcal{O}(\mathbf{C}^{n-1})\{z_{1}\}.$

Now we apply induction on n. Suppose that

$$H^{1}(X_{2} \cup \cdots \cup X_{n}; \mathcal{A}_{E}^{<0}) \cong \mathbb{C}[[z]] / \bigcap_{k=2}^{n} \mathcal{O}(\mathbb{C}^{n-1})\{z_{k}\},$$

$$H^{1}(X_{1} \cap (X_{2} \cup \cdots \cup X_{n}); \mathcal{A}_{E}^{<0}) \cong \mathbb{C}[[z]] / \bigcap_{k=2}^{n} \mathcal{O}(\mathbb{C}^{n-2})\{z_{1}, z_{k}\}.$$

The exact Mayer-Vietoris sequence [I]

$$0 \to H^1(\partial \tilde{\boldsymbol{C}}^n; \mathcal{A}_E^{<0}) \to H^1(X_1; \mathcal{A}_E^{<0}) \oplus H^1(X_2 \cup \dots \cup X_n; \mathcal{A}_E^{<0})$$
$$\to H^1(X_1 \cap (X_2 \cup \dots \cup X_n); \mathcal{A}_E^{<0})$$

is in this case

$$0 \to H^{1}(\partial \tilde{\boldsymbol{C}}^{n}; \mathcal{A}_{E}^{<0}) \xrightarrow{\varepsilon} \boldsymbol{C}[[z]]/\mathcal{O}(\boldsymbol{C}^{n-1})\{z_{1}\} \oplus \boldsymbol{C}[[z]] / \bigcap_{k=2}^{n} \mathcal{O}(\boldsymbol{C}^{n-1})\{z_{k}\}$$

$$\xrightarrow{\alpha} \boldsymbol{C}[[z]] / \bigcap_{k=2}^{n} \mathcal{O}(\boldsymbol{C}^{n-2})\{z_{1}, z_{k}\}.$$

Let

$$\beta: C[[z]] \to C[[z]]/\mathcal{O}(C^{n-1})\{z_1\} \oplus C[[z]] / \bigcap_{k=2}^n \mathcal{O}(C^{n-1})\{z_k\}$$

be the natural quotient map. It is clear that $\alpha \circ \beta = 0$. Moreover, if

$$f = \left(f_1 + \mathcal{O}(C^{n-1})\{z_1\}, f_2 + \bigcap_{k=2}^n \mathcal{O}(C^{n-1})\{z_k\} \right) \in \ker \alpha$$

then $f_1 - f_2 \in \bigcap_{k=2}^n \mathcal{O}(\mathbb{C}^{n-2})\{z_1, z_k\}$ and by Lemma 2.8, $f_1 - f_2 = h_1 - h_2$ with

$$h_1 \in \mathcal{O}(\mathbb{C}^{n-1})\{z_1\}; \quad h_2 \in \bigcap_{k=2}^n \mathcal{O}(\mathbb{C}^{n-1})\{z_k\}$$

and $f = \beta(f_1 - h_1 = f_2 - h_2)$. Then, im $\beta = \ker \alpha = \operatorname{im} \varepsilon$, and there is an injective map

$$\gamma: \boldsymbol{C}[[z]] \to H^1(\partial \tilde{\boldsymbol{C}}^n; \mathcal{A}_E^{<0})$$

such that $\varepsilon \circ \gamma = \beta$. So, $\ker \gamma = \ker \beta = \bigcap_{k=1}^n \mathcal{O}(\mathbb{C}^{n-1})\{z_k\}$ and this ends the result for E = (0) (the Gevrey case is analogous).

For E general, we apply a cohomological argument as in Proposition 2.4.

The only remaining thing is the proof of Proposition 2.10. The sheaf $\mathcal{A}/\mathcal{A}_E^{<0}$ over \tilde{C}^n (E=(0)) has stalks

$$(\mathcal{A}/\mathcal{A}_E^{<0})_z = \mathcal{O}_{\{1,\dots,n\}\setminus J}[[z_J]]$$

or

$$(\mathcal{A}_s/\mathcal{A}_E^{\leq -\kappa})_z = \mathcal{O}_{\{1,\ldots,n\}\setminus J}[[z_J]]$$

$$\big(J=\big\{j\in\{1,\ldots,n\}\;\big|\;z_j\in S^1\times\{0\}\subseteq\tilde{C}\big\}\big).$$

We argue as before. For a 1-cocycle $f_{(j,k)}^{(j',k')}$ of the sheaf \mathcal{A} , that is cohomologically trivial over $\mathcal{A}/\mathcal{A}_E^{<0}$, by the previous results (again with parameters) we can find, for $J \subsetneq \{1, \ldots, n\}$, $f_{(j,k)_J,(j',0)_{J^c}}$ such that

$$f_{(j,k)_J,(j',0)_{J^c}} - f_{(j,k)_J,(j,0)_{J^c}} = f_{(j,k)_J,(j,0)_{J^c}}^{(j,k)_J,(j',0)_{J^c}}$$

 $((j, k)_J \text{ fixed}, k_l \neq 0 \text{ if } l \in J).$

For each $J \subseteq \{1, ..., n\}$, $k_l \neq 0$ if $l \notin J$, we have open sets $D_J \times U_{(j,k)_{J^c}}$, where D_J is a polydisk obtained by glueing the polysectors corresponding to $\prod_{i \in J} (I^i_{j_i} \times A^i_0)$ and

 $U_{(j,k)_{J^c}}$ is the open set in C^{J^c} obtained from $\prod_{i \in J} (I^l_{j_i} \times A^l_{k_l})$. If \mathcal{U} is the open covering of C^n consisting in the just defined sets, it is well-known that $H^1(\mathcal{U}; \mathcal{O}) = 0$. We define a 1-cocycle on \mathcal{U} with values in the sheaf \mathcal{O} as follows:

i. If
$$J = \emptyset$$
, then $g_{(j,k)}^{(j',k')} := f_{(j,k)}^{(j',k')}$.

ii. If
$$J \neq \emptyset$$
, then on $(D_{J_1} \times U_{(j,k)_{J_s^c}}) \cap (D_{J_2} \times U_{(j',k')_{J_s^c}})$,

$$g_{(j,k)J_1^c}^{(j',k')_{J_2^c}} := f_{(j,0)J_1,(j,k)J_1^c}^{(j',0)J_2,(j',k')_{J_2^c}} - f_{(j',0)J_2,(j',k')_{J_2^c}} + f_{(j,0)J_1,(j,k)_{J_1^c}}$$

(as before, independent of $(j, 0)_{J_1}$, $(j', 0)_{J_2}$).

So, we have

$$g_{(j,k)_{J_1^c}}^{(j',k')_{J_2^c}} = g_{(j',k')_{J_2^c}} - g_{(j,k)_{J_1^c}}.$$

As before, the cochain defined by

$$F_{(j,0)_{I},(j,k)_{I^c}} := f_{(j,0)_{I},(j,k)_{I^c}} + g_{(j,k)_{I^c}}$$

has as coboundary the desired cocycle.

REMARK 2.11. Again, the spaces $\Gamma(\partial \tilde{\boldsymbol{C}}^n; \mathcal{A}/\mathcal{A}_E^{<0})$ and $\Gamma(\partial \tilde{\boldsymbol{C}}^n; \mathcal{A}_s/\mathcal{A}_E^{\leq -\kappa})$ may be computed explicitly, and they agree with the space of sections over \boldsymbol{T}^n .

REMARK 2.12. If, instead of $\partial \tilde{C}^n$, we restrict ourselves to a neighbourhood of the origin, say D, we obtain the same with C^n replaced by D, i.e.,

$$H^1(\partial \tilde{D}; \mathcal{A}_E^{<0}) \cong \Gamma(\partial \tilde{C}^n; \mathcal{A}/\mathcal{A}_E^{<0}) / \bigcap_{i=1}^n \mathcal{O}(D_1 \times \cdots \times \hat{D}_i \times \cdots \times D_n) \{z_i\},$$

$$H^1(\partial \tilde{D}; \mathcal{A}_E^{\leq -\kappa}) \cong \Gamma(\partial \tilde{C}^n; \mathcal{A}_s/\mathcal{A}_E^{\leq -\kappa}) / \bigcap_{i=1}^n \mathcal{O}(D_1 \times \cdots \times \hat{D}_i \times \cdots \times D_n) \{z_i\}.$$

If we take the inductive limit $(\partial \tilde{\boldsymbol{C}}^n, 0) = \underset{\longrightarrow}{\lim} \partial \tilde{D}_r$, we obtain

$$H^1((\partial \tilde{\boldsymbol{C}}^n, 0); \mathcal{A}_E^{<0}) \cong \lim_{n \to \infty} H^1(\partial \tilde{D}_r; \mathcal{A}_E^{<0}) = \Gamma(\partial \tilde{\boldsymbol{C}}^n; \mathcal{A}/\mathcal{A}_E^{<0})/C\{z\},$$

$$H^1((\partial \tilde{\boldsymbol{C}}^n,0);\mathcal{A}_E^{\leq -\kappa}) \cong \varinjlim H^1(\partial \tilde{D}_r;\mathcal{A}_E^{\leq -\kappa}) = \Gamma(\partial \tilde{\boldsymbol{C}}^n;\mathcal{A}_s/\mathcal{A}_E^{\leq -\kappa})/C\{z\},$$

as H^1 commutes with lim.

3. First cohomology set in the non-abelian case. Now, we shall consider sheaves of invertible matrices whose coefficients have asymptotic development. These are sheaves of non-abelian groups, for which only the 0th and the 1st order Čech cohomology are well defined (several non equivalent definitions of H^2 have been given). Moreover, H^1 is not a group, but a pointed set (set with a distinguished element). The main definitions and results of non-abelian sheaf cohomology can be seen in [F, Gi, Hz].

The sheaves we shall mainly use are:

- i. GL(m, A), $GL(m, A_s)$ of invertible $m \times m$ matrices with coefficients in A, A_s , respectively.
- ii. $GL(m, A)_{I_m, E}$, $GL(m, A_s)_{I_m, E}$ of invertible matrices that have the identity matrix I_m as asymptotic development in the divisor or subvariety E. These are the invertible matrices M such that $M I_m$ have coefficients in $A_E^{<0}$, $A_E^{\le -\kappa}$, respectively.
- 3.1. Main non-abelian lemma. The main lemma of Subsection 2.1 may be rephrased as follows.

LEMMA 3.1. Let $f \in GL(m, A)_{I_m,(z_1=0)}(V)$ and V_{11}, V_{12} be sectors in C with $V_{11} \cap V_{12} = V_1$. If W' < V, $W'_{11} < V_{11}$, $W'_{12} < V_{12}$ and $W'_{11} \cap W'_{12} = W'_1$, then there exist $f_i(z) \in GL(m, A)_{I_m,(z_1=0)}(W)$ (perhaps reducing the radius of W) such that $f = f_1^{-1} \cdot f_2$.

PROOF. We follow here the idea of the proof of Sibuya [S] for the case of one variable. We will omit the details that are similar to those encountered there.

Take a sequence of subsectors $W_1 > W_2 > \cdots$ such that $\bigcap_{k=1}^{\infty} W_k = W'$. If $g_1(z) = f(z) - I_m$, write (by Lemma 2.1) $g_1(z) = g_{12}(z) - g_{11}(z)$ on $W_1 \times V_2 \times \cdots \times V_n$. Define $g_2(z) = g_{11}(z) \cdot g_1(z) \cdot (I_m + g_{12}(z))^{-1}$ and write $g_2(z) = g_{22}(z) - g_{21}(z)$ on $W_2 \times V_2 \times \cdots \times V_n$. Iterating this process, you have a sequence $\{g_k(z) = g_{k2}(z) - g_{k1}(z)\}_{k=1}^{\infty}$. Define now

$$f_1(z) = \lim_{k \to \infty} (I_m + g_{ki}(z)) \cdot (I_m + g_{k-1,i}(z)) \cdots (I_m + g_{k1}(z)).$$

By the equality

$$(I_m + g_{k+1}(z)) \cdot (I_m + g_{k2}(z)) = (I_m + g_{k1}(z)) \cdot (I_m + g_k(z)),$$

it can be seen that $f_1(z) \cdot f(z) = f_2(z)$. Choosing $\{W_k\}_k$ carefully, the convergence of the expression defining $f_i(z)$ is assured, from the expression of the Cauchy-Heine transform and reducing the radius conveniently.

In order to show taht $f_i(z)$ has an asymptotic development, we use [M1, prop. 3] (for a proof, see [Mo]). A bound $C^k_{W'',N}$ for the derivative $D^N g_{ki}(z)$ on $W'' < W'_{i_1} \times W'_2 \times \cdots \times W'_n$ can be obtained by a universal polynomial P_N with natural coefficients

$$C^k_{W'',N} = P_N(\{C^{k-1}_{W'',N'}/N' \le N\}, R'')$$

(R'' the radius), such that R'' divides P_N , and so, reducing R'', the series

$$\sum_{k=1}^{\infty} C_{W'',N}^k$$

converges, which completes the proof.

4. Computation of the cohomology over T^n in the non-abelian case. The multiplicative analogue of Proposition 2.2 can be stated as

PROPOSITION 4.1. Let $V = \{V_1, \dots, V_r\}$ be a good covering of S^1 , and V' a polysector in \mathbb{C}^{n-1} . If $F_{i,i+1}$ are $m \times m$ matrices of functions with asymptotic development on $V_{i,i+1} \times V'$, and

$$FA_1(F_{12}) \cdot FA_1(F_{23}) \cdots FA_1(F_{r1}) = I_m$$

then there are F_i on $V_i \times V'$ such that $F_i \cdot F_{i,i+1} = F_{i+1}$ on $V_{i,i+1} \times V'$.

PROOF. As in the function case, if G_i on $V_i \times V'$ is such that

$$FA_1(G_i) = FA_1(F_{12}) \cdot FA_1(F_{23}) \cdots FA_1(F_{i-1,i})$$

and $f_{i,i+1} = G_i \cdot F_{i,i+1} \cdot G_{i+1}^{-1}$ ($G_1 = I_m$), then we can suppose $FA_1(F_{i,i+1}) = I_m$. As in that case, consider first the situation where only perhaps $F_{12} \neq I_m$. Take $f_1' \in GL(m, A)_{I_m,(z_1=0)}(V_1 \times V')$, $f_2' \in GL(m, A)_{I_m,(z_1=0)}((V_2 \cup \cdots \cup V_r) \times V')$ (Lemma 3.1). If, in the Riemann surface of $\log z$, we write $f_2' = f_r^{-1} \cdot f_r'$, with f_r on $V_2 \cup \cdots \cup V_r \cup V_1$, f_r' on $V_1 \cup \cdots \cup V_r$, the equality $f_r \cdot f_2' = f_r'$ allows us to define a function f on a big sector, and its restrictions to V_1 are the functions F_i .

In the general case, we argue as in the abelian case, by "multiplicative linearity". This argument was also used by Sibuya [S] and Majima [M1].

THEOREM 4.2. In the category of pointed sets, there are isomorphisms

$$H^1(T^n; GL(m, A)_{I_m, E}) \cong \Gamma(T^n; GL(m, A)/GL(m, A)_{I_m, E})/GL(m, C\{z\})$$
.

PROOF. We shall suppose E = (0). In this case, we have the equivalence

$$\Gamma(\mathbf{T}^n; GL(m, \mathcal{A})/\mathcal{A}_E^{<0}) \cong GL(m, \mathbf{C}[[z]]).$$

By a theorem of Borel-Ritt, the natural map (fixing a good covering V of T^n)

$$GL(m, C[[z]]) \xrightarrow{\alpha} H^1(T^n; GL(m, A)_{I_m, E})$$

can be constructed in such a way that $\alpha(F) = \alpha(FG)$ if $G \in GL(m, \mathbb{C}\{z\})$. So, it defines a map (again denoted by α)

$$GL(m, C[[z]])/GL(m, C\{z\}) \xrightarrow{\alpha} H^1(T^n; GL(m, A)_{I_m, E}).$$

It is easily checked that α is injective. Let us prove its surjectivity. If $[(F_{i,i'})_{i,i'}] \in H^1(\mathcal{V}; GL(m, \mathcal{A})_{I_m, E})$, we shall show, by induction on n, that:

- 1. There are $F_i \in \Gamma(V_i; GL(m, A))$ such that $F_{ii'} = F_i^{-1} \cdot F_{i'}$.
- 2. Fixing $\tilde{i} \in N^{n-1}$, then

$$FA_1(F_{(1,\tilde{i}),(2,\tilde{i})}) \cdot FA_1(F_{(2,\tilde{i}),(3,\tilde{i})}) \cdots FA_1(F_{(r,\tilde{i}),(1,\tilde{i})}) = I_m$$

as a matrix of elements of $\mathcal{A}(V_{\tilde{i}})[[z_1]]$.

If n = 1, the result is trivial. For bigger n, let

$$A_{\tilde{i}} = FA_1(F_{(1,\tilde{i}),(2,\tilde{i})}) \cdot FA_1(F_{(2,\tilde{i}),(3,\tilde{i})}) \cdots FA_1(F_{(r,\tilde{i})(1,\tilde{i})}) \in \mathcal{A}(V_{\tilde{i}})[[z_1]].$$

From the equality

$$F_{(k,\tilde{\iota}),(k,\tilde{\iota}')} \cdot F_{(k,\tilde{\iota}'),(k+1,\tilde{\iota}')} = F_{(k,\tilde{\iota}),(k+1,\tilde{\iota})} \cdot F_{(k+1,\tilde{\iota}),(k+1,\tilde{\iota}')}$$

we obtain

$$A_{\tilde{i}} \cdot FA_1(F_{(1,\tilde{i}),(1,\tilde{i}')}) = FA_1(F_{(1,\tilde{i}),(1,\tilde{i}')}) \cdot A_{\tilde{i}'}$$

The family

$$(FA_1(F_{(1,\tilde{i}),(1,\tilde{i}')}))_{\tilde{i},\tilde{i}'}$$

is a cocycle of the sheaf GL(m, C[[z]]). If L is a Fréchet space, L[[z]] has also a natural Fréchet structure, and the space A(V)[[z]] can be identified with A(V; C[[z]]). Using the induction hypothesis (for asymptotic developments with coefficients in a Fréchet space), we obtain $F_{\tilde{i}} \in GL(m, A(*, C[[z]]))(V_{\tilde{i}})$ such that

$$FA_1(F_{(1,\tilde{i}),(1,\tilde{i}')}) = F_{\tilde{i}}^{-1} \cdot F_{\tilde{i}'},$$

and so the equality

$$F_{\tilde{\imath}} \cdot A_{\tilde{\imath}} \cdot F_{\tilde{\imath}}^{-1} = F_{\tilde{\imath}'} \cdot A_{\tilde{\imath}'} \cdot F_{\tilde{\imath}'}^{-1}$$

defines a matrix with elements in $C\{z_2, \ldots, z_n\}[[z_1]]$. As $A_{\tilde{i}}$ has the identity matrix as an asymptotic development at the origin, $F_{\tilde{i}} \cdot A_{\tilde{i}} F_{\tilde{i}}^{-1} = I_m$ and hence $A_{\tilde{i}} = I_m$.

The rest of the reasoning is exactly as in the abelian case. We obtain $F_{(k,\tilde{t})}$ with

$$F_{(k,\tilde{\iota})} \cdot F_{(k,\tilde{\iota})(k+1,\tilde{\iota})}$$

and the identity

$$F_{(i_1,\tilde{\imath})}\cdot F_{(i_1,\tilde{\imath}),(i'_1,\tilde{\imath}')}\cdot F_{(i''_1,\tilde{\imath}')}^{-1}=F_{(i''_1,\tilde{\imath})}\cdot F_{(i''_1,\tilde{\imath}),(i'''_1,\tilde{\imath}')}\cdot F_{(i'''_1,\tilde{\imath}')}^{-1}$$

allows us to reason by recurrence. At last, we construct $F_i \in GL(m, A)(V_i)$ with $F_{i,i'} = F_i^{-1}F_{i'}$. If $\hat{F} \in C[[z]]$ is the series of asymptotic development at the origin of F_i , $\alpha(\hat{F}) = (F_{i,i'})_{i,i'}$ and so α is surjective.

For E general, it is possible to use a cohomological argument as in the function case (there is a "long" exact sequence in the category of pointed sets, see [F]), or to repeat the preceding argument for each E.

REMARK 4.3. As in the abelian case, if $E = H_1 \cup \cdots \cup H_n$, the result can be read in [M1] and [Ha] (general and Gevrey cases, respectively).

5. General and Gevrey cases. The only essential difference with the function case is in the use of Mayer-Vietoris principle. Such a result, for the non-abelian sheaf cohomology, seems to be known by the specialists, but we have not found a precise reference. With this result in hand, we could show:

THEOREM 5.1. There is an isomorphism of pointed sets

$$H^1(\partial \tilde{\boldsymbol{C}}^n; GL(m, \mathcal{A})_{I_m, E}) \cong \Gamma(\partial \tilde{\boldsymbol{C}}^n; GL(m, \mathcal{A})/\mathcal{A}_E^{<0}) / GL\left(m, \bigcap_{i=1}^n \mathcal{O}(\boldsymbol{C}^{n-1})\{z_i\}\right).$$

The Gevrey case is deduced from the general asymptotic case by the following observation: If $(f_{i,i'})_{i,i'}$ is a Gevrey 1-cocycle, we can write $(f_{i,i'})_{i,i'} = f_i^{-1} \cdot f_{i'}$ where f_i has asymptotic expansion (not necessarily Gevrey). If $(f_{i,i'})_{i,i'} = I_m + g_{i,i'}$, we have $f_i \cdot g_{i,i'} = f_{i'} - f_i$ with null asymptotic development s-Gevrey over the corresponding divisor or subvariety E. So, $f_{i'} - f_i = g_{i'} - g_i$, g_i s-Gevrey (by the function case). Then, $f_i = u + g_i$, with u convergent (u is formed by glueing $f_i - g_i = f_{i'} - g_{i'}$) and g_i is s-Gevrey, so f_i is s-Gevrey.

THEOREM 5.2. There are isomorphisms of pointed sets

$$H^1(\mathbf{T}^n; GL(m, \mathcal{A}_s)_{I_m, E}) \cong \Gamma(\mathbf{T}^n; GL(m, \mathcal{A}_s)/GL(m, \mathcal{A}_s)_{I_m, E})/GL(m, \mathbf{C}\{z\}),$$

$$H^{1}(\partial \tilde{\boldsymbol{C}}^{n}; GL(m, \mathcal{A}_{s})_{I_{m}, E})$$

$$\cong \Gamma(\boldsymbol{T}^{n}; GL(m, \mathcal{A}_{s})/GL(m, \mathcal{A}_{s})_{I_{m}, E}) / GL\left(m, \bigcap_{i=1}^{n} \mathcal{O}(\boldsymbol{C}^{n-1})\{z_{i}\}\right).$$

REFERENCES

- [F] J. FRENKEL, Cohomologie non abélienne et espaces fibrés, Bull. Soc. Math. France 85 (1957), 135–218.
- [Gi] J. GIRAUD, Cohomologie non abélienne, Grundlehren Math. Wiss. 179, Springer-Verlag, Berlin-New York, 1971.
- [Gr] A. GROTHENDIECK, Éléments de Géométrie Algébrique I, Springer-Verlag, 1971.
- [Ha] Y. HARAOKA, Theorems of Sibuya-Malgrange type for Gevrey functions of several variables, Funkcial. Ekvac. 32 (1989), 365–388.
- [He] J. HERNÁNDEZ ISLA, Desarrollos asintóticos en polisectores, Problemas de existencia y unicidad, Tesis de doctorado, Universidad de Valladolid, 1994.
- [Hz] F. HIRZEBRUCH, Topological methods in algebraic geometry, Grundlehren Math. Wiss. 131, Springer-Verlag, 1966.
- [I] B. IVERSEN, Cohomology of sheaves, Springer-Verlag Universitext, 1986.
- [M] H. MAJIMA, Remarques sur la théorie de Développement asymptotique en plusieurs variables I, Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), 67–72.
- [M1] H. MAJIMA, Analogues of Cartan's decomposition theorem in asymptotic analysis, Funkcial. Ekvac. 26 (1983), 131–154.
- [M2] H. MAJIMA, Asymptotic Analysis for Integrable Connections with Irregular Singular Points, Lecture Notes in Math. 1075, Springer-Verlag, 1984.
- [MI] B. MALGRANGE, Remarques sur les équations différentielles à points singuliers irréguliers, in Équations différentielles et systèmes de Pfaff dans le champ complexe (R. Gérard and J. P. Ramis, editors), Lecture Notes in Math. 712, Springer-Verlag, 1979.
- [Mo] J. MOZO FERNÁNDEZ, Teoremas de división y de Malgrange-Sibuya para funciones con desarrollo asintótico fuerte en varias variables, Tesis de doctorado, Universidad de Valladolid, 1996.
- [S] Y. SIBUYA, Linear differential equations in the complex domain: Problems of analytic continuation, Progress in Mathematics, Transl. Math. Monogr. 82, Amer. Math. Soc., Providence, RI, 1990.
- [Z] M. A. ZURRO MORO, Series y funciones Gevrey en varias variables, Tesis de doctorado, Universidad de Valladolid, 1994.

DEPARTAMENTO DE MATEMÁTICA APLICADA FUNDAMENTAL ETS DE ARQUITECTURA AVENIDA SALAMANCA S/N 47014 VALLADOLID SPAIN

E-mail address: jmozo@maf.uva.es