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Abstract. In this paper we consider the existence of periodic solutions of neutral func-

tional differential equations. It has been proved that for convex neutral functional differential
equations of D-operator type with finite (or infinite) delay and hyperneutral functional differ-

ential equations with finite delay, there is a periodic solution if and only if there is a bounded

solution. The results proved by Massera, Chow and Makay are generalized.

1. Introduction. In this section we give a brief description of the background of and
solutions to the problem considered. As we all know, the existence of periodic solutions
of functional differential equations (i.e. FDE), which has been studied extensively, has great
theoretical and practical significance. A classical theorem due to Yoshizawa [1] shows that
if the solutions of a retarded functional differential equation (i.e. RFDE) with finite delay
are uniformly bounded and uniformly ultimately bounded, then it has an ω-periodic solution
provided that r < ω, where r is the time delay, and ω is the period of the equation. In recent
years, many authors devoted themselves to the generalization of Yoshizawa's theorem. Some
authors removed the restriction r < ω successfully (Li [2], indexed by SCI). Some authors
generalized Yoshizawa's theorem to different equations: Arino, Burton and Haddock [3],
Wang and Huang [4, 5] to RFDE with infinite delay; Gao [6] to neutral functional differential
equations of /^-operator type (i.e. NFDE(D, /)) with finite delay; Shi [7] to NFDE(Z), /)
with infinite delay.

A remarkable fact is that the uniformly ultimate boundedness (i.e. UUB) does not im-
ply the uniform boundedness (i.e. UB) for FDE as Kato [8] has shown, so a very interesting
and meaningful question is brought out: is it possible that UUB without UB still guarantee
the existence of periodic solutions? Burton and Zhang [9] succeeded in this way for RFDE
with infinite delay under the assumption that the considered equation has a weak fading mem-
ory. Ma, Yu [10] and Zhang [11] considered the same problem for RFDE with finite delay
and removed the UB assumption. A counterpart result was obtained by Fan and Wang for
NFDEφ, /) with finite delay [12] and for NFDE(D, /) with infinite delay [13]. Though
UB is dropped, UUB is still a very strong condition. However, for linear ordinary differential
equations, Massera [14] proved that the existence of a bounded solution implies the existence
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of a periodic solution. Chow [15] considered a one dimensional FDE with finite delay in a
special form: the right-hand side of the equation was a functional linear in φ plus a perturbing
term depending only on t. Makay [16] generalized Chow's result to convex RFDE with finite
and infinite delay and also to integral equations.

In this paper, we generalize the results proved by Massera for linear (inhomogeneous)
ordinary differential equations, Chow for linear retarded functional differential equations with
finite delay, and Makay for linear retarded functional differential equations with infinite delay
to convex NFDE(Z), /) with finite delay in Section 2, to convex NFDE(D, /) with infinite
delay in Section 3, and to hyperneutral functional differential equations with finite delay in
Section 4. It has been proved that for convex NFDE(D, /) with finite (or infinite) delay and
hyperneutral functional differential equations with finite delay, there is a periodic solution
if and only if there is a bounded solution. We define a stable operator in Section 2 and a B-
uniformly stable operator in Section 3 to overcome the difficulty caused by xt in the derivation
of the left-hand side of the considered equation. In Section 3 we also introduce a new phase
space with a strong fading memory to overcome the difficulty induced by the infinite delay.
Our theorems give a necessary and sufficient condition for having an ω-periodic solution and
generalize the known results.

2. Periodic solutions of convex neutral functional differential equations of D -op-
erator type with finite delay. Let (C, || ||) be the Banach space of continuous functions
φ : [—r, 0] —> Rn with the supremum norm. Consider the NFDE(D, /) with finite delay of
the form

(2.1) -j^- = f(t,xt),

where xt (s) = x(ΐ+s) for — r < s < 0; / : R x C -^ Rn be continuous and locally Lipschitz
in φ and f ( t + ω,φ) = f ( t , φ) for some ω > 0; Dφ = 0(0) — g(0) be a linear operator, and
# : C —>* /?" is linear and continuous in 0, namely

g(φ) = I dμ(θ)φ(θ), for any φ e C ,

where μ,(0) is a bounded variation matrix function. We also assume that there exists a nonde-
creasing continuous function l(s), s G [0, r] with 1(0) = 0 such that

r O

fJ - dμ(θ)φ(θ) < l(s) sup |0(0)l » for any φ e C .
-s<θ<0

Under the above assumptions, for each (ίo, φ) G R x C there is a unique solution Xt(tQ, φ)
of (2.1) that depends continuously on the initial data [17, 18], and if the solution is bounded,
then it can be continued for all future time [19].

DEFINITION 2.1. A functional differential equation is said to be convex if the solution
set of the considered equation is convex, i.e., xt and yt are solutions and a G [0, 1], then
ctxt + (1 — a)yt is also a solution.
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If an FDE is convex, we also say that the functional in the right-hand side of the equation

is convex. There are many convex NFDE, for example, one can easily prove that if the right-

hand side of (2. 1) is linear in 0, then (2. 1) is a convex NFDE.

Throughout the proof of the theorems in this paper we insist on not using the convexity

of the considered system if we do not have to.

DEFINITION 2.2 ([19]). Suppose that D : C -> Rn is linear, continuous and atomic

at 0. The operator D in (2.1) is said to be stable if the zero solution of the homogeneous

difference equation Dyt = 0, t > 0 with yo — Φ £ CD := {φ G C : Dφ = 0} is uniformly

asymptotically stable.

LEMMA 2.1. Suppose that f ( ΐ + ω, φ) = f(t,φ). I f x t ( t Q , φ ) is a solution of (2 A)

with xto = xtQ+ωι then

*f (Ό, 0) = *f+<ϋ(*θ, 0) , t > to .

By the uniqueness of solutions and periodicity of (2.1), Lemma 2.1 is obvious.

LEMMA 2.2 ([6]). IfD is a stable operator, then there exist positive constants b and c

such that for any h G C([τ, +00), Rn), every solution xt(tQ, φ, h) of Dxt — h(t), t > tQ with

xtQ = φ satisfies

l l * / ( f o * 0 , A ) l l <cexp{-b(t-t0)}\\xto\\+c sup |A(ιι) | .
tQ<U<t

LEMMA 2.3 ([6]). Suppose that D is a stable operator, a > — oo and h : [a, -hoc) ->

Rn satisfies

\h(tλ) - h(t2)\ <H\tι-t2\

for any t\,t2 G [of, +00). Then there is a positive constant N(H) such that the solution

Xt(to, φ) of Dxt = h(t),t > to with xto = φ satisfies

< N(H)\tι - t2\

for any t\,tι G [to, -foe), tQ > or, where N(H) = c(c -f I)//, c being the constant in Lemma

2.2.

THEOREM 2.1. Suppose that D is a stable operator and f(t,φ) is a convex functional

in φ. Then there is an ω-periodic solution of (2.1) if and only if there is a bounded solution of

(2.1).

PROOF. We only need to show that the existence of a bounded solution implies the

existence of an ω-periodic solution, since a periodic solution itself is a bounded solution. Let

η = max{r, ω], and define Co as the Banach space of continuous functions mapping [—77, 0]

into Rn with the supremum norm, i.e., ||0||o = sup.^^^ \φ(θ)\ for any φ G CQ. In the

following we will write xt(tQ, φ) or jc(fo, Φ)(t) for the solution of (2.1) starting at fy with the

initial functional φ G CQ with the understanding that if η > r then we use only the values of

φ on [— r, 0]. Suppose that the bound for the bounded solution xt of (2.1) is h. From the local

Lipschitz condition on /, there is a constant K > 0 such that \ f ( t , φ ) \ < K for ||0|| < h. Let

N ( K ) = c(c + 1)ΛΓ, where c is the constant in Lemma 2.2.
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Consider the set defined by

(a) | |0 | |o<λ,

Ω := < φ G Co (b) \φ(sι)-φ(s2)\<N(K)\s\-s2\ for any 51, s2 e [-η, 0],

(c) | | jc,(0,0) | |o<A for any ί >0

First of all, we need to show that Ω is nonempty. Consider the bounded solution xt. Since /

is an ω-periodic function in ί, we may assume (by a translation argument) that the bounded

solution xt is defined on the interval [—η — r, -hoc) and it satisfies the equation on [—77, +00).

Define 0o(s) := XQ(S) =x(s)fors G [—η, 0] and0o(s) := x-η(s) =x(s — η)fors G [—r, 0].

By definition, xt = jc/(0, 0o) = ^(—77, 0o) and hence 0o satisfies (a) and (c) in the definition

ofΩ.

The bounded solution xt of (2.1) satisfies

Dxt = Dxt(-η, 0o) = Γ
/ f(s, xs(-η,

J-η

:== h(t) .

For any G [— η, +00), by the local Lipschitz condition of /, we have

£
£
£

f(s,xs(-η,φo)ds

\f(s,xs(-η,φo)\ds

Kds

where we use the boundedness of xt. By Lemma 2.3, for any s \ , S 2 G [— η, -hoc), we have

\x(-η, fa)(si) - x(-η, <M(s2)\ < N(K)\sι - s2\ -

Hence

0ofe)l = l*o(0, ΦQ)(S\) - Λo(

= \x(-η, ΦQ)(S\) - x(-η,

<N(K)\sι-s2\

for any s\ , ^2 G [— η, 0]. This proves that 0o satisfies condition (b) as well as (a) and (c) in the

definition of Ω, so φo G ί2, and hence Ω is nonempty.

Next, we prove that Ω is convex. For any φ\ , 02 £ ^, α ^ [0, 1], we have

||α0ι + (1 - α)02llo < «||0ι l l o + (1 - α ) H 0 2 l l o < Λ

and

- 0ι(j2)l
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for any s\, $2 Ξ [— *?» 0]. So conditions (a) and (b) are satisfied for the convex linear combi-
nation. For condition (c), by the uniqueness of the solution and the convexity of the equation
(this is the only place we really need it), for any 0ι , 02 € Ω, one obtains

||*f (0, aφi) + (1 - α)02llo = ll«*r(0, φι) + (1 - α)*,(0, 02)||o

< α|MO, 0ι)||o + (1 - cOIMO, 02)llo < h ,

using the condition (c) for φ\ and 02, and hence condition (c) is satisfied. Now we have
proved that Ω is a convex set.

Obviously, Ω is equicontinuous and uniformly bounded. By Ascoli's theorem, Ω is
precompact. We conclude that Ω is closed. In fact, if φn e Ω and φn — >> 0 as n -> H-σo
in the supremum norm || ||o, then φ clearly satisfies (a) and (b) in the definition of Ω. If
the condition (c) is not satisfied, for contradiction, we suppose that ||jc/(0, φ) ||o > h for some
t > 0. By the continuous dependence of the solution on the initial function, we can find an
n > 0 such that ||^(0, 0/,)||o > h, a contradiction to the fact that φn e Ω. This proves that φ
satisfies (c) and hence φ e Ω. Therefore Ω is closed, so it is compact.

Now, let us define the mapping P : Ω —> Ω by

Pφ:=xω(0,φ),

namely

Pφ(s) := jcω(0, 0)0) = jc(0, φ)(s + ω) for s e [-r?, 0] .

First we prove that P maps Ω into Ω. By (c) for φ e Ω we find that Pφ satisfies (a). For
condition (c) on Pφ we note that by the periodicity of / and the uniqueness of the solution
we find that

To prove (b) for Pφ we do exactly the same as we did in proving that 0o e Ω. We can prove
that for any t\ , fy G [0, -hoc), we have

(2.2) |*(0, 0)(ίι) - *(0, 0)(ί2)l < N(K)\tι - t2\ .

Since φ e Ω, for any t\,tι e [—η, 0], we obtain

(2.3) |*(0, 0)(ίι) - ^(0, 0)(ί2)l - 10 (ίi) - 0(ί2)l < N(K)\tι - t2\ .

Now we can conclude that

\Pφ(sι)-Pφ(s2)\<N(K)\sι -s2\ for any si, s2 e [-η, 0] .

In fact, if s\9 $2 e [— ω, 0] (resp. s\,S2 € [—77, — ω]), by (2.2) (resp. by (2.3)), one gets

= |jc(0, φ)(sι H- ω) - jc(0, 0)(j2 H-

<N(K)\tι-t2\.
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If s\ e [—77, — ω], $2 e [— ω, 0], then clearly 51 < -ω < 5-2 and by (2.2) and (2.3) we have

\Pφ(sι) - Pφ(s2)\ = \xω(0,φ)(sι)-xω(0,φ)(s2)\

, φ)(s\ + ω) - jc(0, 0)Cs2 + ω)|

ω) - jc(0, 0)(0)| + |jt(0, 0)(0) - *(0, 0)(j2 + ω)|

ω) + N(K)(s2 + ω) =

Hence, P0 satisfies (a), (b) and (c), so P indeed maps Ω into Ώ. Moreover P is continuous

from the continuous dependence of the solution on the initial function. By Schauder's fixed

point theorem P has a fixed point in Ω, i.e., there is a φ e Ω such that Pφ = 0, which means

that jcω(0, 0) = 0 = Jto(0, 0), and by Lemma 2.1 we have

xt (0, 0) = ;cί+ω(0, 0) for all t > 0 .

Therefore ;tr(0, 0) is an ω-periodic solution of (2.1), and now the proof is complete.

REMARK 2.1. The periodic solution we find in the proof of Theorem 2.1 is bounded

by the bound of the bounded solution.

REMARK 2.2. Theorem 2.1 generalizes the results obtained by Chow [15] and Makay

[16] for linear RFDE with finite delay. In fact, if Dφ = 0(0), then Theorem 2.1 is Theorem

1 in [16]. If Dφ = 0(0) and /(ί, 0) = L(ί, 0) + f ( t ) , where L and / are continuous and

periodic with ω in ί, and L is also linear in 0, then Theorem 2. 1 is Theorem 1 proved by Chow

[15] and the assumption ω > r is removed.

3. Periodic solutions of convex neutral functional differential equations of D -oper-

ator type with infinite delay. In this section we consider NFDE(D, /)

(3.1) = /<'•*>

with infinite delay, i.e., xt(s) = x(t + s ) for s e (—00, 0].

The development of the theory of NFDE with infinite delay depends on a choice of a

phase space. In order to overcome the difficulties caused by the infinite delay we first establish

the phase space B with a strong fading memory for NFDE with infinite delay.

Suppose that (B, \ |#) is a Banach space of continuous functions mapping (—00, 0] into

Rn with norm |#, i.e., B = C((— oo, 0], Rn). For any given a > 0 and 0 e B, to e R, we

define

fa ttQ(φ) = {x I x : (— oo, to + a] — > Rn, xto = 0, x is continuous on [ίo, ίo + <*]} ,

φeB

We assume that the space B satisfies the following hypotheses:

(β\) There is a positive constant k > 0 such that

<k\φ\B
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for any φ e B.

(β2) If* € Fa^B), then xt e B for any t > tQ and #, is continuous in ί on [ίo, fo+α]

If * G Fα,f0(^)» men there exist a constant &ι > 0 and a continuous function
B -> #+ such that

M % + α | β < f c ι SUP
,se(

and satisfies

k2(a, 0) = 0 , £2(0, 0) -> 0 as α -> +00 , ^(α, 0) < £2(0) for |0|# < a ,

where £2 ^+ — > ^+ is continuous.
The phase space B defined here is a special case of the phase space defined in [20]. The

phase space (C/,, | \h) defined in [5] satisfies our assumptions (β\) — (#3) on B.

DEFINITION 3.1. (B, \ - |#) is said to be with a strong fading memory, if for any

compact set / c R~ and φn G B, n — 1, 2, . . . , the condition that \φn — φ\l -> 0, as

n -^ H-oo and \φn\B is bounded imply that φ e B and \φn — φ\s — ̂  0 as n -> +00, where
|0|7 :=supθeί\φ(θ)\.

The phase space (C/ι, \ \h) defined in [5] has a strong fading memory.

DEFINITION 3.2. The operator D in (3.1) is said to be ^-uniformly stable, if there

exist constants £3 > 0, £4 > 0 such that the solution xt(to, φ) of Dxt = g ( t ) , t > to with
xίQ = φ satisfies

l*(*o,0)(OI <*3 sup \ g ( s ) \ + k 4 \ x t 0 \ B ,
Θe[t0,t]

where φ e B, xt e B and g e C([ro, +00), /?w).

In (3.1), we assume that D is linear and ^-uniformly stable; / : R x B -> /?Λ is

continuous functional and satisfies f(t + ω,φ) — /(ί, 0) for some ω > 0, and there exists a

constant L > 0 such that

(3.2) \f(t,Φ\)~f(t,φ2)\<L\φι -φ2\B

Wu [20] establishes the fundamental theory for NFDE with infinite delay. Since (3.2) is

satisfied, we can conclude from [20] that for each (to, φ) G R x B there is a unique solution

*f (^o> 0), which depends continuously on the initial data, and if the solution is bounded, then

it can be continued for all future time.

LEMMA 3.1. Suppose that D is linear, continuous and B-unίformly stable, and there

is a constant G > 0 such that

-t2\
for g e C([a, +00), Rn) (a > — oo) and t\,tι € [a, +00). Let xt(tQ, φ) be a solution of

Dxt = g(t), t > to with xtQ = φ, φ e B. Then there is a constant N(G) > 0 such that

I*('o,0)(fi)-*(fo,0)(f2)l <N(G)\tι -t2\

for any t\,tι^ [ίo, +00) (ίo > α), where N(G) = (1
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PROOF. First we note that by the linearity of D we can find that

D(xt+Δ(tQ, 0) - xt(to, 0)) = Dxt+Δ(to, 0) - Dxt(to, φ) = g(t + Δ) - g(t)

for any t G [to, H-oo) and Δ > 0. By the /^-uniform stability of D one can obtain

<k3 sup

-XtQ\B

For any s G [to, t], by the B -uniform stability of D and the assumption (^3) on B, we also

have

\x(tθ,φ)(s)-x(tΌ,φ)(to)\ < k3 sup \g(τ) - g(tQ)\ + k4\xto - xto\B
τe[tQ,s]

<k3G\S-tQ\,

\xto(tQ, Φ) - xtQ(to, Φ)\B < k\ sup |*(f0, 0)(τ) - *(f0, 0)(ίo)l + fe(^ - ίo, 0)

Hence

(3.4) 1*16+4-;% I* <

By (3.3) and (3.4), we have

|jc(f0, 0)(ί + ̂ ) - *(ίo, 0)(OI < ^3GZ\ + kιk3k4GΔ := N(G)Δ .

Therefore for any t\ , ^2 £ l/o> +°°)? there is a constant N(G) > 0 such that

where Λ^(G) = (1 + fcifcO&aG. This completes the proof.

DEFINITION 3.3. The solution xt(tQ, φ) of (3.1) through (to,φ) e R x B is said to be

^-bounded, if there exists a positive constant M > 0 such that

M for ί > ί0.

THEOREM 3.1. Suppose that (B, \\-\\B) has a strong fading memory, D is B-unίformly

stable and /(ί, 0) w α convex functional in φ (see Definition 2.1). TTzen ί/z^r^ w an ω-periodic

solution of (3.1) if and only if there is a B-bounded solution 0/(3.1) defined on R.

PROOF. As before, we only need to show that the existence of a bounded solution

implies the existence of an ω-periodic solution.

Suppose that the bound for the bounded solution of (3.1) is h. By (3.2), for 0 6 B,

\Φ\B < h we have
|/(ί,0)| <L|0|β <Lh:=G.

Let N(G) = (1 -h k\k^)kzG. Now we consider the subset

(a) |0|* < A,

β := φe B (b) |0(5i) -0(^)1 < N(G)\sι -s2\ for any si, S2 e (-00, 0],

(c) |jtί(0, φ)\B <h for any t > 0
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We do exactly the same as in Theorem 2.1, with only slight changes. The proof of the

nonempty and the convexity of Ω is very similar to that of Theorem 2.1 with η = -hoc. To

prove that Ω is compact we cannot use Ascoli's theorem, because we have an infinite interval.

Instead, consider a sequence [φn] C Ω. Obviously [φn] is equicontinuous. First we point out

that {φn} is uniformly bounded on [—m, 0] (m is any positive integer) in the supremum norm.

Since φn e Ω, by the assumption (β\) on the phase space B, for any θ e [—m, 0], we have

10*(0)1 - 10.(0)1 < \φn(θ) - 0Λ(0)| < N(G)\Θ\,

moreover

\Φn(θ)\<\φn(0)\ + N(G)\θ\

< k\φn\B + N(G)\Θ\ <kh + N(G)\Θ\.

Hence \\φn ||[~
m'°] < kh + mN(G), which means that {φn} is uniformly bounded in the supre-

mum norm on [—m, 0]. Using Ascoli's theorem on the interval [— 1, 0], we find a subsequence

{φ^} C {φn} converging in the supremum norm. For this sequence we find a subsequence

{φn ^} converging on [—2, 0], etc. Let ψn \= φ^\ Then ψn converges to a continuous func-

tion φ uniformly on any compact subinterval of (—00, 0]. In particular, it converges point-

wisely to 0, since (B, \ \B) has a strong fading memory (this is the only place where we really

need it). Hence φ e B and \φ^ —φ\B -> O a s r c -> +00. Moeover we conclude that φ e Ω.

In fact, since

\Φ\B <\Φ~ Φ^lB + \φ(

n

n)\B < \Φ ~ Φ™\B + A ,

letting n —> H-oo, we have |0|# < h, namely, the condition (a) for φ is satisfied. For any

s\, s2 £ (—00, 0], we have

-0te)l < \Φ(s\)-Φ(

n

< \φ(sι) ~ φ(n\S\)\ + N(G)\Si - S2\

By letting n —> +00, one obtains \φ(s\) — 0(^2)1 < N(G)\s\ — s2\9 so (b) is satisfied. By the

continuous dependence of the solution on the initial function, (c) is clearly satisfied. Now we

reach 0 G Ω. Since Ω is a closed set (this can be proved as before), Ω is compact.

Define P : Ω -> ί2 by

P0:=*ω(0,0).

By the continuous dependence of the solution on the initial function, we know that P is

continuous. Next, we show that P maps Ω into Ω. By (c) for 0 we find that Pφ satisfies (a)

in the definition of Ω. For condition (c) on Pφ we note that by the ω-periodicity of / and the

uniqueness of the solution we find that

To prove (b), we proceed as follows. We know that (3.1) with XQ = 0 is equivalent to

pt
Dxt = Dφ+ I f(s,xs(0, φ))ds := g(t), t> 0.
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For any t\, ti e [0, +00), we have

\g(tι)-
Jt\

|/(5,*,(0,0))|d5 <G|ίι - f 2 | ,

where we used the boundedness of jt,(0, 0). By Lemma 3.1, the solution xt(Q, 0) satisfies

(3.5) |jt(0,0)(ίO - χ(0, 0)(ί2)| < N(G)\tι - t2\,

for t\, ti e [0, +00). Since 0 e ί2, for any t\,tι e (—00, 0], we have

(3.6) |jt(0, 0)(ίι) - ;c(0, 0)(/2)l < N(G)\t\ - t 2 \ .

We conclude that

|P0(5j) — P0(52)| < N(G)\s\ — S2\, for any 5i, 52 e (—00, 0].

In fact, if 5i, 52 e [—ω, 0] (resp. s\,S2 e (—00, — ω]), by (3.5) (resp. by (3.6)), one obtains

\PΦ(S\) — Pφ(S2)\ < Λ:ω(0, 0)(5j) — JCω(0, 0)(52)|

= |^(0, 0)(5j + ω) - *(0, 0)(52 + ω)|

<N(G)\sι-s2\.

If 5i € (—00, —ω], 52 € [—ω, 0], obviously 5i < —ω < 52, by (3.5) and (3.6), we obtain

\Pφ(s\) - Pφ(s2)\ = \xω(Q, 0)(5i) - jcω(0, 0)(52)|

ω) - Λ(0, 0)(0)| + |jc(0, 0)(0) -

- -N(K)(sι + ω) + 7V(/Γ)(52 + ω) - #(/O|5i - 52| .

Now we have proved that P maps Ώ into £?. By Schauder's fixed point theorem, P has a

fixed point in Ω, i.e., there is a ̂  € ί2 with Pψ = ψ. This means that *ω(0, τ^r) = jco(0, ψ),

and hence by the periodicity of / and the uniqueness of the solution we find that

We find an ω-periodic solution and the proof is complete.

REMARK 3.1. The periodic solution we find in the proof of Theorem 3.1 is bounded

by the bound of the bounded solution.

REMARK 3.2. If Dφ = 0(0), then Theorem 3.1 is Theorem 2 proved by Makay [16]

for RFDE with infinite delay.

4. Periodic solution of convex hyperneutral functional differential equations with

finite delay. In this section we consider the existence of periodic solutions for convex hy-

perneutral functional differential equations with finie delay.
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Let

C := {φ\φ : [-r, 0] ->/?", φ is continuous},

C1 := {φ G C 10 exists and φ e C].

We define

||0||;:= max sup |0(0)|, sup
[-r<<9<0 -r<6><0 J

for any φ G C1 . For any # > 0, let

C^ -^GC1!^!!^//}.

Consider the hyperneutral functional differential equation

(4.1) x ( t ) = f(t,xt,xt)

with finite delay, i.e., xt(θ) = x(t + 0), jt,(0) = i(f -f θ) for <9 G [-r, 0], where / :
R x C1 x C -> /?n is continuous and ω-periodic in ί. We assume that (4.1) has a unique

solution xt(tQ, 0) (or ;c(ίo, 0X0) for any (ίo, φ) € R x C1, which depends continuously on
the initial data.

THEOREM 4.1. Suppose that for any H > 0 ί/z^re w α continuous function WH :

[0, +00) -> [0, +00) with WH(Q) = 0 such that

\f(t,xt],xt])-f(t,xt2,xt2)\ < WH(\tl -ί2|)

/or β/tj t\, t2 £ R and for any xt e C{

H (we may call f(t,xt,xt) equίcontinuous in t uniformly

forxt G CJ^). Assume, also, that f(t,φ, φ) is a convex functional (see Definition 2.1). If there
is a bounded continuous solution of (4.1), then there is an ω-periodic solution.

PROOF. We do exactly the same as in the proof of Theorems 2. 1 and 3. 1 with only small
changes. Let h be the bound for the existing bounded solution and Wh be the function defined
above for h. Let 5 be the set of continuous differentiable functions mapping [—77, 0] into Rn

with the norm \\φ\\l

η = maxfsup.^^^ |0(0)|, sup.^^o |0(0)|}, where η = max{ω, r}. In
the following we will write xt (fo, Φ) for the solution of (4. 1) through (to,φ) e R x S with the
understanding that if η > r then we use only the values of φ and φ on [— r, 0]. We define Ω
in a little bit different manner this time.

Let

Ω := φ€S

(a) I I 0 H 1 < A,

(b) |0(5i) - 0(^2)1 < W(\s\ - 521) for any ,

(c) *,(0, 0) G C1 and ||jt,(0, 0)||i < h for any r > 0

For the rest of the proof we need to be careful when we use the Lipschitz condition on / in the
proof of Theorem 2.1 or 3.1. Instead, we say (when proving that Ω is nonempty, for example)
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that

!</>oOι) - Φofa)} = \χ(-η,

(-*?> 0θ)) - f(*2, Xs2 (-*?» 0θ),

for any si, $2 € [— r?, 0]. Also, Ascoli's theorem can be applied, since condition (b) implies
the equicontinuity of the function in Ω. The remainder of the proof is exactly the same as

before. The proof is complete.

The equicontinuity of / in t uniformly for φ may seem to be a strong condition, since

there are examples (the equation x ( t ) = a(t) + b(t)x(t — r) + x(t — r), for example), for

which this condition is not satisfied. For these equations we can prove the following.

THEOREM 4.2. Suppose that f(t,φ) is a convex functional If there is a bounded

uniformly continuous solution xt (or x ( t ) ) o/(4.1), then there is an ω-periodίc solution of

(4.1).

To prove the theorem, we need a definition.

DEFINITION 4. 1 ([16]). We say that the function y : R -> Rn is in the equicontinuity

class of the uniformly continuous function x : R — >> Rn, if 3; is also uniformly continuous,

and if 8 > 0 is of the uniform continuity for ε > 0 for x9 then the same 8 works for y in the

definition of the uniform continuity for ε.

Let h be the bound of the uniformly continuous solution x ( t ) , and define

(a) | | 0 | | < A ,

Ω := φ e 5 (b) the solution ;c(0, φ)(t) is in the equicontinuity class of x(t},

(c) ||jt,(0,0)||J <h for any ί >0

Clearly, the functions in Ω are equicontinuous. The rest of the proof is the same as that of

Theorem 4.1.

Finally, we point out the following.

1. From the proof of our theorems it is clear that the convexity condition on the equa-

tions cannot be dropped, because we use it to prove the convexity of the set Ω. But we use

the convexity only at that particular point; one might be able to find some condition to ensurre

the convexity in another way.

2. The condition in Section 3 that (B, \\ - ||#) has a strong fading memory cannot be

dropped too, since we use it to prove the compactness of Ω. But one might be able to find

other conditions to guarantee the compactness.

3. In order to find a bounded solution for convex differential equations, we can use

conditions implying that all solutions are bounded (see [16], [21] and their references).
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