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MODULAR INEQUALITIES FOR THE CALDERON OPERATOR
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(Received June 1, 1998, revised January 5, 1999)

Abstract. If P, Q : [0, oo) -> are increasing functions and T is the Calderόn operator

defined on positive or decreasing functions, then optimal modular inequalities f P ( T f ) <

C f Q ( f ) are proved. If P = Q, the condition on P is both necessary and sufficient for
the modular inequality. In addition, we establish general interpolation theorems for modular
spaces.

1. Introduction. Let (M, μ) and (ΛΛ v) be two σ-finite measure spaces, and let

Lo(μ) and LQ(V) be the sets of measurable functions defined on λΛ andΛΛ respectively. An

operator T : LQ(V) -> Lo(μ) is called quasilinear if \T(λf)(x)\ = \λ\\Tf(x)\ and if there

exists a constant K > 0 independent of / and g such that \T(f + g)(x)\ < K(\Tf(x)\ +

|Γ0(jc)|). If ^Γ = 1, T is said to be sublinear.

A function Q : [0, oo) —»> [0, oo) is called a modular function if Q is an increasing

(non-decreasing) function and β(0+) = 0. If, in addition, Q satisfies the /^-condition

β(2f) < Cβ(f)

for any f > 0, then 2 is called a Z\2-modular function and we write Q e ^2-

Let β be a modular function and set

ί f 1
LQ(μ) = LQ = | /eLo(μ); | | / | | β = / β(|/(jc)|)rfμ(jc) < oo .

I JΛ^ J

Then, we want to study mapping properties for which T : Lg(μ) —> Lp(v) is bounded, for

certain operators T.

Modular inequalities have been studied previously by several authors (cf. [KK], [C],

[L]) in connection with weight characterizations. However, unlike the case treated here, the

functions P and Q are typically Young's or TV-functions, and the optimality of P and Q is

not in general considered.

Recall that if T is an operator of weak type (a, a) and (b, b), 0 < a < b < oo; that is,

y({jc e ΛΛ, \Tf(x)\ > y}) < (C||/||α,μ/v)α where a = a andα = fc, then

(1) ί P ( \ T f ( x ) \ ) d v ( x ) <C f
Jλί JM
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is satisfied for P(x) = Q(x) — \x\p and a < p < b. Moreover, such operators satisfy the
rearrangement inequality

( 1 Γ* 1 Γ°°
Wa / /μ*(V/fl-'^ + Wb / f*μ
' «/o ^ t/ 1

where /^ (r) inf {s > 0; λ^ (s) < t] is the rearrangement decreasing function of / and λ^ (y) =

β({x', I/O*) I > y}) is the distribution function of /. Similarly it is understood for (Γ/)*. The
term in parenthesis on the right of (2) is called the Calderόn operator.

In order to prove (1) for general modular functions, observe that for Q modular, an

elementary argument shows that

/

/«oo />oo

β(|/(*)|)dμOO - / β(/;(0)Λ = / tf
M JO Jo J

such that a general (P, Q) modular inequality will follows if
roo /»oo

/ p[c((sβ/;χo + (Sbfxmw < c, / «2(/
Jo Jo

holds, where

and

--ikff \ / b I
J t

Note that 5Ί = S is the Hardy averaging operator and Soo = S is the conjugate Hardy operator.

The purpose of this paper is to provide optimal conditions characterizing modular pairs

P and β, for which (P, Q) (and in case Q = P, (P)) modular inequalities
r OO /»ooΛOO / 00

/ P(Saf(t))dt < C I Q(f(t))dt
Jo Jo

/•oo / oo

/ P(Sbf(t))dt < C I Q(f(t))dt
Jo Jo

are satisfied for 0 < α, b < oo. The case where b = oo and Γ is bounded on L°° is

also considered. These results yield sharper estimates and interpolation theorems for several

classical operators.

The paper is organized as follows: In Section 2, we characterize (P, Q) modular inequal-

ities for Sfl, 0 < a < 1 (Theorem 2.3) and give a corresponding characterization in the case

when a = 1 and / is decreasing for a reverse Hardy modular inequality (Theorem 2.1). In

order to prove corresponding (P, Q) modular inequalities for 5fl, a > 1 and 5&, 0 < b < oo,

some general modular results are required. These are proved in Section 3 and yield general

modular interpolation theorems (Corollary 3.6). Finally the last section contains the (P, Q)

and (P) modular inequalities for 5α, a > 1 and %, 0 < b < oo. A characterization of P, β

modular functions for which a (P, β) modular inequality for the Hubert transform holds and
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a short proof of an interpolation theorem of Miyamoto ([M]) for modular functions are also
given.

The notation used in this paper is standard: If f/g is bounded above and below by pos-
itive constants, we write / ^ g and say that / and g are equivalent functions. Constants
denoted by C, sometimes with subscripts, are assumed to be positive and independent of
the functions involved, and may differ at different places. If 0 < g is decreasing, we write
g**(x) = (1/x) f£ g, where the measure under which the rearrangement occurs is deleted
when there is no ambiguity. XE is the characteristic function of the set E and its Lebesgue
measure is denoted by \E\.

Finally, inequalities, such as (1), are interpreted in the sense that if the right side is finite,
so is the left side and the inequality holds. Unless indicated to the contrary, we assume that P
and Q are modular functions or are equivalent to modular functions.

2. Modular inequalities for the Hardy operator. We begin this section by proving
(P, Q) modular inequalities for the Hardy averaging operator.

THEOREM 2.1. (i) There exist two constants C\ > 0 and €2 > 0 such that

/»oo / f* f \ /»oo

(3) / P [J-^L }dt < Cι I Q(C2f(t))dt
Jo \ t J Jo

is satisfied for every decreasing nonnegative function f if and only if there exist constants
Cs > 0 and €4 > 0 such that, for every t > 0,

f
k

(4) P(t} + t -dy < C3Q(C4t) .
k y2

(ii) The inequality (3) is reversed for every decreasing nonnegative function f if and
only if the inequality (4) is reversed.

(iii) There exist constants C\ > 0 and €2 > 0 such that

00

β(C2/(0)Λ

is satisfied for every decreasing nonnegative function f if and only if there exist constants
Cs > 0 and €4 > 0 such that, for every r > 0,

sup - <
u<r U r

We thank J. Soria for pointing out that the argument in proving (i) applies also to the
proof of (iii).

PROOF, (i) To show the necessary condition, let us take f ( s ) = f χ[o,r)(Ό Then, we
have that

/ P ί-min(r,x) j dx < CγrQ(C2t}\
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that is,

Γ ί°° ftr\ [l P(y)
I P(t}dx+ I P { — )dx = r P ( f ) + r f / -¥rdy

Jo Jr \χ J Jo r
from which the result follows with €3 — C\ and €4 = €2.

Conversely, if (4) holds, then we may assume that for small t > 0, /J P(y)/y2dy < oo,
and from this it follows that P ( y ) / y —>• 0 as 3; —> 0.

Now, writing f**(t) = (1/0 /J f(s)ds, we have
/•oo /

/ />(/** (f))Λ = /
Jo Jo

where the distribution function of /** satisfies (see [CS])
1 f 2 f

(5) λΛ( S) < λ/**(,S) < ~λJr

and hence

z)< Γ°-(Y /(*)<** W<z>
JO Z \J(χ;f(χ)>z/2} /

/ 1/•oo / / 2

= 2 / /(*) /
JO \Jθ

dP(z) ,
dx

/•OO

<2C3 / Q(2C4fW)dx.
Jo

That is, (3) holds with C\ = 2C3 and C2 = 2C4.
(ii) The proof follows as in (i), but now the first inequality of (5) is applied.
(iii) The weak type characterization follows analogously. D

REMARK 2.2. (i) If either P or Q is equivalent to a Z\2-modular function, then the
estimate of the theorem holds with C2 = €4 = I . In this case, under strong additional
conditions on P, the result was proved in [HL, Prop. 2].

(ii) Since /0°° Q ( f ( t ) ) d t = /0°° Q(f*(t))dt and /J / < /J /*, one can easily see that
(4) is also a necessary and sufficient condition for (3) to hold for every measurable positive
function.

(iii) If M is the Hardy-Littlewood maximal operator, then (M/)* ^ M/* ^ /** =
(1/jc) /Q" /* ([BS, Theorem 3.8]). Therefore, it follows from Theorem 2.1(i) that (4) is nec-
essary and sufficient for the modular inequality

P(Mf(x))dx<C I Q(\f(x)\)dx
jRn JRn

to be satisfied.

For Sfl, we have the following result:
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THEOREM 2.3. Let 0 < a < 1. Then, there exist constants C\ > 0 and C^ > 0 such

that

roo / ι ft

/o KϊWo

satisfied for every decreasing nonnegative function f if and only if there exist constants
s > 0 and €4 > 0 such that, for every t > 0,

Jo ya+l(7) P(t) + ta I dy < C3β(C4ί) -

PROOF. Let <7(s) = af(sa). Then obvious change of variables shows that (6) is equiv-
alent to

Γ°° / 1 /"' \ f°° ( Ci \
P ( - 9(s)ds ta~ldt < Ci / Q( -±g(t) ta~ldt .

Jo V t Jo J Jo V a J
(8)

For the necessary condition, it is enough to apply the hypothesis to the functions f ( s ) =

fX(θ,r)Cs) Then (7) follows with C3 = C\ and C4 = C2/^.
For the converse, first observe that we can assume /Q P(y)/ya+ldy < oo for small ί,

since otherwise the result is trivial. Also, in this case, lim^o P(y)/ya — 0.
To show that (7) implies (8), note that, interchanging the order of integration and apply-

ing (5), we obtain

,00 ̂  ̂  SI ̂  ̂ _^ ^ ^ fC°[λg»(z)]adP(z)

Jo \χ Jo / a Jo
2a r°° / i \a

~ a JQ \z 9 J
2a foo / r

= T / I / 9(:
a JO \J{^U)>z/2}

9« roo / rλQ(z/2)

= - ( see)β Jo \Jo
oo / f λg(z/2} / rx \ fl-1roo / f λg(z/2} / r

= 2β / / ( /
Jθ \Jθ VJO

dP(z)
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But, since g is decreasing and 0 < a < 1, it follows that (f£ g)a~l < (xg(x))a~l and hence

/•oo / oo / f λ g ( z / 2 ) \ dP(τ}
/ P(g**(x))X*-ldX <2a ( x"-lga(x)dx -̂H

Jo Jo \Jo I z

r°° , / r29(χ} dP(z}\
= 2* X

a-l9a(X)( J^-\dX
Jo \Jo z" /

f00 , / P(2a(χ}} f2g(χ) p<7\ \
= 2a *fl-V(*)( +a / f̂ dz } dx

Jo V g(χ)a Jo za+l /
/•oo

<C3 / xa-lQ(2C4g(x))dx,
Jo

where the last inequality follows from (7) with t = 2g(x). Hence, (8) holds with C\ = €3
D

3. General results. Clearly the arguments in proving Theorem 2.3 do not apply to
obtain (P, Q) modular inequalities for Sa with a > 1. In order to obtain such estimates for
Sa and 5&, 0 < b < oo, we need some general results for quasilinear operators and the notion
of admissible functions. As a consequence, we obtain a number of weak type estimates and
general interpolation theorems.

Our first result shows that, under a simple condition on Γ, a (P) modular inequality

implies P G ΔΊ.

Let L c Lo(μ) be a set such that R+L c L. For us, L will be either Lo(μ) or the set of

measurable decreasing functions on R+.

PROPOSITION 3.1. Suppose that T satisfies a (P) modular inequality for every func-

tion in L. If there exist a measurable set E such that XE C L and μ(E) < oo and a constant

d > 1 such that

then P <Ξ Z\2.

PROOF. Take λ > 0 and f ( x ) = λχE(x). Then, since

JM
we get

P(y)v({x', \λ\\TχE(x)\ > y } ) < CP(λ)μ(E).

Choose now y = dλ. Then we get

P(dλ}< p(λ),
'- v({x;\TχE(x)\>d})

from which the ΔΊ condition for P follows. D

Now, for our next purpose, we need to give the following definition:
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DEFINITION 3.2. We say that a function A : [0, oo) -> [0, oo) with A(0) = 0 is

admissible for T and L if, for every function / e L,

„ /*

i/ jΛ/ί

REMARK 3.3. (i) In terms of the decreasing rearrangement the above inequality is

Tv\ f
U

(TfTv M

Since we are assuming R+L c L, for every admissible function A for T and L and every

y > 0, it holds that for any f € L

(9) λv

τf(y) < f A dμ(x) .J JM \ y
(ii) If B is a modular function such that B(x) > 1 for every x > 1 and, for every

L,

ί B(\Tf(x)\)dv(X)< ί A ( \ f ( x ) \ ) d μ ( x ) ,
JM JM

then

s u p y B [ ( T f ) * v ( y ) ] < sup jΓ B[(Tf)*v(t)]dt

= f B ( \ T f ( x ) \ ) d v ( x ) < f A(\f(x)\)dμ,(x).
Jλf JM

In particular, if y = fM A(\f(x)\)dμ(x)9 then B [ ( T f ) * ( f M A(\f(x)\)dμ,(x»] < 1. Then,
by the hypothesis of B, this implies (Tf)*(fj^ A ( \ f ( x ) \ ) d μ ( x ) ) < 1, and hence A is admis-
sible for T and L.

(iii) If T is of weak type (/?, /?) with p > 0, then A(0 = \\T\\(Ptp)tp is an admissible

function for T and Lo(μ).

Observe that, for 0 < α < oo, ||^/||oo < « l l / l l o o and that if / is decreasing, then for
0 < b < oo, supp(5b/) C supp/. For operators which satisfy conditions of this type we
have the following result:

LEMMA 3.4. Let L be a set as above and T a quasilinear operator defined on L.

(i) Let L = {g = fX[\f\>y}', f £ L, y > 0} and A an admissible function for T and L.
Suppose that T : L°°(μ) -> L°°(v) is bounded with (operator) norm less than or equal to M.
Then, for every f e L and every y > 0,

(10) ~ , r χ , χ - , -,
/{ |/( jr) |>y/(2AfA-)} V

where K is the constant arising from the quasίlinearity ofT.

(ii) Let L = {g= fχ{\f\<y}\ / 6 L, j > 0} and A an admissible function for T and L.
If there exists a constant C > 0 such that v(supp Tf) < Cμ(supp /), then, for every ε > 0,
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every y > 0 and every / G L,

[\f(χ)\<y]

PROOF, (i) Fix y > 0 and write / = f\ + /2, where /ι(x) = /(*) if |/(;c)| >
y/(2MK) and zero otherwise. Then,

v({*; \Tf(x)\ >y})<v ({*; |Γ/ι (*)| > ̂ )) + v ({*; \Tf2(x)\ > ̂  J) .

But, since ||Γ/2||oo,v < Λ^ll/2l loo,μ £ )>/(2^), the second term is zero, and hence, since
/i G L, we obtain by (9) that

(2K\f(x)\\
[ - dμ(x) .
\ y /

To show (ii), fix y > 0 and write / — f\ + /2, where /ι(jc) = /(jc) if |/(jc)| > y and
zero otherwise. Then, for every ε > 0,

[ (2K\fr(x}\\ f
^ Λ( - dμ(χ) =JM \ y / J[\f(x)\

; IT"/, Wl >

0}) + v({χ K ( \ + ε ) \ T f 2 ( x ) \ > y})

D

The lemma implies now the following (P, Q) interpolation theorem:

THEOREM 3.5. (i) Let L be as in Lemma 3.4 (i). Let T be a quasilinear operator
such that T : L°°(μ) —> L°°(y) is bounded with norm M. If there exist a constant C and an
admissible function A for T and L such that, for every t > 0,

r2MKt /2Kt\
(12) / A - }dP(y)<CQ(t),

Jo \ y )
then T satisfies a (P, Q) modular inequality for every function in L.

(ii) Let L be as in Lemma 3.4 (ii). Suppose that for every f G L, v(suppΓ/) <
Cμ(supp f ) f o r some constant C independent off. If there exist a constant C and an admissi-

ble functin A for T and L such that, for every t > 0, limz^o P(t/z)A(z) = 0 and, for some

(13) P(t)+ A(ϊ -}dP(z)<CQ(t),
Jt \ Z /

then T satisfies a (P, Q) modular inequality for every function in L.
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PROOF, (i) By (10) and (12),

ί P(\Tf(x)\)dv(x) = j λv

τf(y)dP(y)

[\f(x)\>y/(2MK)}
2MK\f(x)\

<C ί Q ( \ f ( x ) \ ) d μ ( x ) ,
JM

which proves (i).

The proof of (ii) follows in the same way, using now (11) and (13). D

Note that if S(x) = X(i,oo)(jt), then L$(v) = {/; λy (l) < oo}. Similarly, if one defines

L°(μ) by L°(μ) = {/; μ(supp /) < oo}, then Theorem 3.5 has the following formulation:

COROLLARY 3.6. Suppose that T : LΛ(μ) -> Ls(v) is bounded.

(i) If L is as in Lemma 3.4 (i), T : L°°(μ) -^ L°°(y) is bounded with norm M and

A is an admissible function for T and L, then T : Lρ(μ) -> Lp(v) is bounded for (P, Q)

satisfying (12).

(ii) IfL is as in Lemma 3.4 (ii), T : L°(μ) -> L°(v) w bounded and A is an admissible

function for T and L, then T : Lρ(μ) ̂  Lp(v) w bounded for (P, g) satisfying (13).

4. The Calderόn operator. We now derive (P) and (P, Q) modular inequalities for

Sa with a > 1 and S&, 0 < Z? < oo, as well as for S. In addition, we give a short proof and an
extension of an interpolation theorem of Miyamoto [M].

PROPOSITION 4.1. Assume that a > 1 and χ(o,i) G L. TTzerc, ι/ 5α satisfies a (P)

modular inequality for L , P e ^2-

PROOF. Let E = (0, 1) in Proposition 3.1. Then, it suffices to show that, for some

d > 1, |{;t; |S f lX(o,i)C*:)| > d}\ / 0. But, since a > 1, we can choose a > d > 1, and hence,
since

a if x < 1
. l/aa/xi/a if x > 1 ,

we get

>d}| = (^)β^O. D

The main result for 5fl is the following:

THEOREM 4.2. Let a > 1 and assume that, for every r > 0, X(o,r) £ £• Then the
following hold.
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(i) If Sa satisfies a(P,Q) modular inequality for L, there exists a constant C such that,
for every t > 0,

pt

(14) i

(ii) If there exists an ε > 0 such that

. p Γ2t P(y)
(15) P(2ί) + ί + / — - ^ — r d y < C Q ( t ) ,

k ya+ε+l

then Sa satisfies a (P, Q) modular inequality for L.
(iii) Sa satisfies a (P) modular inequality for L if and only if P e AΊ and there exists

a constant C such that, for every t > 0,

(16) i

PROOF, (i) It is enough to check the hypothesis on the functions / = ί/(o,r)
(ii) Clearly, Sa : L°° -+ L°° is bounded with norm a and Sa : LaΛ -> Lα'°° is

bounded. Therefore, by inteφolation, Sa : La+ε -+ La+ε is bounded for every ε > 0, and
hence, for some constant C, A ( t ) = Cta+ε is an admissible function for Sa and every subset

Now, by Theorem 3.5 with M = a and Λ(ί) = Cta+ε, the linear operator Sa satisfies the
(P, Q) modular inequality provided that

Λ+P ί2at dP(y)
(Λ'~l\ Ot\ * I <" (~*(~}(t\

Jo y
But since (15) is satisfied, it follows that lim};_>o+ P(y)/ya+ε = 0, and hence an inte-

gration by parts shows that (17) is equivalent to (15).
(iii) If Sa satisfies a (P) modular inequality, then by Proposition 4.1, P € ΔΊ and (16)

now follows from (14) with Q = P. Conversely, if P e A2, then there exists q > a such that
P(y)/yq is decreasing (see [KK]), and hence, by (16)

cP(t)>^ , ya+l~s~-

For m = 0, 1, 2,. . . , define

Λm = t Jo ~y°^ «! dy'
Then, by (16),

A .<> Γ P(y} t Γ dog(fA))m~' ds\
Λm=t I ̂ -(/ (m-1)! -)dy
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Therefore, Am < CmA0 = Cm+1P(Y). Choose 1 < C < M and ε < \/M. Then

m=0 w=0

Also

^o r
and hence

But, since P e AΊ, this implies (15) with Q = P, and so Sa satisfies the (P) modular
inequality. D

We now consider the operator 5̂  with b > 0.

PROPOSITION 4.3. Assume that b > 0 and χ(o,i) € L. Then, if Sb satisfies a (P)
modular inequality for L, P e ^2- Moreover, in this case, the A^ constant for P is less than
or equal to C((2 -f b)/b)b ', where C is the constant arising from the (P) modular inequality.

PROOF. It is enough to see that the set E = (0, 1) and d = 2 satisfies the con-
dition of Proposition 3.1. But %X(o,i)00 = b(x~l/b — l)X(o,i)(*). It then follows that

^0,andhence

, >»0. D

We shall also need the following lemma.

LEMMA 4.4. Let M > 0. If/is a decreasing function on [M, oo) and 0 < /? < q <
σo, then, for every x > 2M,

αoo jt\ 1/q / POO \ 1/p

(tl/pf(tW-} <C( fp(t)dt\ ,
t / \JM /

where the constant depends only on p and q.

PROOF. The result follows from a straightforward modification of the case M = 0
given in [St. p. 273]. D

THEOREM 4.5. Let 0 < b < oo and assume that Sb is defined on decreasing func-
tions.

(i) IfSb satisfies a (P, Q) modular inequality, then there exists a constant C such that,
for every t > 0,

r σo

(18) 7'Jt
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(ii) If there exists an ε > 0 such that

(19) ί
then St> satisfies a (P, Q) modular inequality.

(iii) Sb satisfies a (P) modular inequality if and only if there exists a constant C such

that, for every t > 0, (18) holds for Q = P.

PROOF, (i) It is enough to check the hypothesis on the functions / = ίχ(o,r)

(ii) Let us consider first the case b > 1. Choose ε > 0 such that b — ε > 1. Then,

it follows from the weighted (conjugate) Hardy inequalities ([Mu]) that Sb : Lh~ε ->> Lb~ε

is bounded and therefore, for some constant C, the function A(t) = Ctb~ε is an admissible

function for Sb and every subset of LQ(/?+).

Consequently, the function A(t) = C\tb~ε is an admissible function for Sb and L and,

since |supp Sbf\ < |supp /|, we can apply Theorem 3.5(ii). Hence, if for some ε',

ίJt

dP(z)

then we see that Sb satisfies a (P, Q) modular inequality.

Since we may assume that the integral on the left side of (19) is bounded, it follows that

P(y)/yb~ε — > 0 as y —> oo. Integration by parts argument then shows that (19) implies the

above inequality.

Let now 0 < b < 1. Then, we do not know if the Λ(ί) — C\tb~ε is an admissible

function for Sb and L, but the inequality (11) still holds. To see this, we have to apply Lemma

4.4 as follows. Let / be a decreasing function and set g = fX{\f\<y} with y > 0. Choose

ε > 0 such that α? = b — ε > 0. Applying Lemma 4.4 with p = a and q = 1, it then follows

that, if x > 2 λ / ( y ) ,

/

oo / o

g(s)S

l/b-ldS = *-'/* /
Jx

oo

/

oo
g(s)sl"'-lds<Cχ-l'a\\g\\a.

..

Therefore, for every z > 0,

\{x > 0; \Sbg(x)\ > z}\ < 2λ/(j) + \{x > 2λ/(y); \SbgM\ > z}

< 2λf(y) + \{x > 2X/00; Cχ-l/a\\g\\a
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and hence, for every ε > 0,

> 0; \Sb(f - g)(x)\ >
εy

c; \sbg(χ)\ > y
d+ε)

< \(χ; \~Sb(f - g)(x)\ > 0}| + \{χ; (1 + ε)\Sbg(x)\ > y}\

< C(\(x; \f(x)\ > y}\ + \{x < 2λf(y); (1 + ε)\Sbg(x)\ > y}\

+ \{x > 2λf(y); (1 +ε)\Sbg(x)\ > y}\)

which is the inequality (11). The proof now proceeds as for the case b > 1.

(iii) If Sb satisfies a (P) modular inequality, then by (i), (18) holds with Q = P.

Conversely, if (18) holds with Q = P, then it follows that P(y)/yb tends to zero when

y tends to infinity, and an integration by parts shows that (18) is equivalent to

Jth y" Jo
This implies that dP satisfies a Bb condition (see [AM]), and hence it is known (see

for example Lemma 3 of [CW]) that there exists an ε > 0 such that dP e Bp^ε. Again an
integration by parts shows that

and the result follows from (ii). D

If b = oo, we have the following result for the conjugate Hardy operator.

THEOREM 4.6. Assume that, for every r > 0, X(o,r) £ L. Then

(i)
ΛOO / / 00 f ( s \ \ fOO

(20) / P ( I J-^-ds \dί <C P(f(t))dt , / G L

if and only if P e A^.

(ii) If either P or Q e AΊ, then S satisfies a (P, Q) modular inequalities if and only if

P < CQ.

PROOF, (i) If the inequality (20) holds, we have that P e AΊ by Proposition 3.1,

since obviously

Conversely, if P 6 Δ2, then (see [KK]) there exists p > 0 such that P(t)/tp is equivalent

to a decreasing function and hence

rJt
An integration by parts shows that tp+l ft°°(l/yp+l)dP(y) < CP(t) and, since we

already know that A(t) = tb+l is admissible for 5, we get (i) from Theorem 3.5 (ii).
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(ii) Suppose P or Q satisfies Δ2. Then, by (i) a (P) or (Q) modular inequality is

satisfied. Since P < CQ, we get the (P, Q) modular inequality in either case.

Conversely, if we apply the (P, Q) modular inequality to the functions f ( x ) = ίχ(o, i

we get

ίl

/
Joo

and with z = t log(l/;c), we obtain

1 1 Γ°° Γ 1 / 1 \
-P(t)<- P(z)e~z/tdz< P(t\og-)dx <CQ(t). D
e t Jt Jo \ xj

Theorem 2.1(i) and Theorem 4.6 now yields a characterization of a (P, Q) modular

inequality for the Hubert transform.

COROLLARY 4.7. Suppose either PorQ satisfies the Δ2 condition. Then, the (P, Q)

modular inequality for the Hubert transform

(21) I P(\Hf(x)\)dx <C I Q ( \ f ( x ) \ ) d x
JR JR

is satisfied for f e L$(dx) if and only if P < CQ and

ft p(s\

(22) t I -±J-ds<CQ(t).
Jo s2

PROOF. Clearly (21) is equivalent to

ΛOO /»OO

/ P ( ( H f ) * ( x ) ) d x < C I Q(f*(x))dx .
Jo Jo

But, since (see [S])

Π Γ* ί°° f*(t) Ί
(HfΓW <Cι\- f*(t)dt + / J-^dt < C2(Hf*?(x) ,

LX Jo Jx t J

it follows that (21) is satisfied if and only if

Γ°° Π fx 1 C°°
I P - 1 Γ(t)dt \dx < C I Q(f*(x))dx ,

Jo LX Jo J Jo

and
/•oo Γ Γ°° f*(Λ Ί Γ
I P \ L-LLdt \dx<C

Jo LJx t J ^o
is satisfied. Then, by Theorem 2.1(i) and Theorem 4.5 (ii), this holds if and only if P < CQ

and (22) holds. D

Finally, we give a short proof of an interpolation theorem proved by Miyamoto in [M] in

the case where P is continuous, P G Δ2 and P(x) = 0 if and only if x = 0. As we shall see,

these conditions can be removed.
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THEOREM 4.8 . Let T be a quasilίnear operator such that T is of weak type (a, a) and
(b, b), where 0 < a < b < oo. Then, T satisfies a (P, Q) modular inequality for every
measurable function f with

PROOF. It follows from the definition of Q that

r , πlim - = hm — r- = 0 .
ί->0 ta t^oo tb

Now, fix 3; > 0 and write / = f\ -h/2, where f\ (x) = f ( x ) if |/(jc)| > y and zero otherwise.
Then, by assumption

λv

τf(y) < λv

τfι(y/(2K))+λv

τh(y/(2K))

<C

and therefore

ί ί fw\\,, Λ , f f fw\\ j , j/ dμ(x) + / dμ(x) ,
J[\f(χ)\>y} \ ? / ^{ |/WI<y} V 3> / J

ί P ( \ T f ( x ) \ ) d v ( x ) = f λv

τf(y)dP(y)

\cΓ\f ί w» V ,μΛ [Λi/u)^}'} V y /

= c
/

/•I/WI ^p(y) /• h Γ
\fW\a ϊ^dμ.(X)+l \f(X)\"

M Jo ya JM J\'I/MI r

Since P(ί) < bQ(t), using an integration by parts, we obtain that

The estimate for h follows similarly. D
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