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Abstract. We consider Lie groups whose Lie algebra is the nilradical of a parabolic
subalgebra of a complex simple Lie algebra, endowed with left-invariant Hermitian metrics.
For such Riemannian Lie groups, we describe the Lie algebras of their maximal isotropy
groups.

1. Introduction. Let s be a semisimple complex Lie algebra and n the nilradical of
a parabolic subalgebra of s. Let N be the unique connected and simply-connected Lie group
whose Lie algebra is n. Let us consider a left-invariant Hermitian metric gon N and denote by
K the isotropy group of (N, g) at the identity element of N. Since N is nilpotent, a theorem
of Wolf [10] ensures that the isometry group of (N, g) is isomorphic to the semidirect product
of N and the compact group K.

In general, the dimension of such isotropy group (and hence of the isometry group itself)
varies from one metric to another. The aim of this paper is to determine those isotropy groups
of N endowed with a Hermitian metric which have maximal dimension. Since N is connected
and simply-connected, we may calculate the identity connected component of such maximal
isotropy group via exponentiation of its Lie algebra. Thus, we deal with the problem of
determining the compact Lie algebra € verifying that ¥ is the Lie algebra of a maximal isotropy
group K.

In this paper, when s is a simple Lie algebra, we study the case in which n is defined
by a subsystem S; of the system of simple roots of s. We obtain a complete classification,
depending of course on s and Sy, of those maximal isotropy algebras obtained for a Hermitian
metric. Our results are listed in Tables III to VII below.

I want to thank Professor J. F. Torres Lopera and Professor Yu. B. Hakimjanov for intro-
ducing me to the subject of this paper and for the careful reading of the details. I am also in
debt with the referee for drawing [7] to my attention and pointing out Remark 1.

2. Preliminaries. Let s be a complex semisimple Lie algebra, h a Cartan subalgebra
of s and R, R™, S, respectively, the systems of roots, positive roots and simple roots of s with
respect to .

Itis well-known that s = h + ), r Vu, Where V, is a complex vector space spanned by
a unique element e,. Moreover, the brackets in s are given by [e,, H] = a(H )e, for every
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where Ny g € R and Ny g # 0. We will denote by § € R™ the maximal root, this is, the only
positive root verifying that § + o ¢ R for every o € R*. A simple root @ € S is said to be
a singular root if § — a € R or, equivalently, if « is linked with § in the extended Dynkin
diagram of s (see Table II).

Let S; C S be a non-empty subsystem of S, and let us consider the sets A} = {y €
Riy =Y 4esis, Mo} and AT = (R\ A;) N R, The Lie algebra p = h + Y pcn, Vo +
D oac af Ve is a parabolic subalgebra of s. In fact, every parabolic subalgebra of s is con-
jugate to an algebra of this kind. It is well-known that such parabolic subalgebra admits a
decomposition p = t+n, wheret =h+ ) . A, Ve is its reductive summand and the ideal
n= Za ea} Ve 1s the nilpotent radical (which coincides with the nilradical of p).

DEFINITION 1. We say that n is the standard nil-subalgebra of s with respect to S; or,
for short, (s, S1)-nilalgebra if n = 3, A} Va, that is, if n is the nilradical of the parabolic

subalgebra of s given by
p=bh+ Z Vo + Z Vi .

aed aeA;'

Notice that if S9 = S\ S, then the partition § = Sy U S| defines a graded Lie algebra
5 = Zzz_v s (see [7], Theorem 1.7). With this notation, p = Zk>0 Sk, t =spand n =
Y k>0 5k A Lie group N is called a standard nil-group or a (s, S| )-niljgroup if its Lie algebra
is a (s, S1)-nilalgebra.

In what follows, two types of (s, S1)-nilalgebras will have a different treatment: the
abelian ones and those isomorphic to any of the Heisenberg algebras $x. The Heisenberg
algebra 9 is the complex Lie algebra spanned by 2k + 1 elements {xy, - - - , Xk, Y1, 5 Yk» 2}
with non-trivial brackets given by [x;, y;] = z, 1 < i < n. The whole set of (s, S1)-nilalgebras
which are abelian or Heisenberg have been described by Hakimjanov [4] and Hakimjanov and
Onischik [8]. They are listed in Table I, where we have corrected a small erratum in one of
the dimensions.

On the other hand, Wolf [10] and later Wilson [9] have proved that if N is a nilpotent real
Lie group and g is a left-invariant Riemannian metric on N, then the isometry group I (N, g)
of (N, g) is isomorphic to the semidirect product of N (acting on itself by left-translations)
and the isotropy group K at the unity of N. Further, if N is connected and simply-connected
then K is isomorphic to the group Aut(n, (., .)) of orthogonal automorphisms of (n, (., .)),
where n is the Lie algebra of N and (., .) denotes the euclidean product induced by g on n.
Hence, in this case, the identity connected component of K is completely determined by its
Lie algebra, namely the Lie algebra aut(n, (., .)) of skew-symmetric derivations of (n, (., .)).
Note that the algebra aut(n, (., .)) is always a compact Lie algebra.

Since the (s, S1)-nilgroups admit an obvious complex structure, all the left-invariant met-
rics considered in this paper will be Hermitian, that is, the euclidean product (., .) on n verifies
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(Jx,Jy) = (x,y) for all x, y € n, where J denotes the complex structure J? = —1. Itis
important to remark that, in this case, in order to compute the Lie algebra of K it is necessary
to calculate not only the skew-symmetric complex derivations of n but the skew-symmetric
real derivations of the underlying real algebra. In this sense, we will use some of the results
given in [1]. To avoid confusions, we will denote by detc(n) the set of complex derivations
of n and by der(n) the set of real derivations of (the underlying real algebra of) n. These
considerations justify the following:

DEFINITION 2. Let N be a complex Lie group, n its Lie algebra and denote by J the
complex structure. We say that a compact Lie subalgebra £ of der(n) is an isotropy algebra
of N if there exists a J-invariant euclidean product (., .) on n such that ¢ = aut(n, (.,.)). An
isotropy algebra € of N is said to be maximal if the dimension of ¢ is maximal among the
dimensions of all isotropy algebras of N.

In the sequel, if V is a real vector space, we will denote by V¢ its complexification. In
order to avoid possible confusions, when W is a complex vector space, we will write dim¢ W
for its complex dimensions and dim W for its real dimension (this is, the dimension of the
underlying real space).

3. Main results. We begin with the following proposition which, as far as we know,
has never been proved.

PROPOSITION 1. Let s be a simple complex Lie algebra, p the parabolic subalgebra
defined by the subsystem S| of simple roots, and let ¢, n be respectively the reductive summand
and the nilradical of p. The representation p : v — gl(n) obtained as the restriction of the
adjoint representation by p(s)(x) = [s, x] for every s € v, x € n is faithful.

PROOF. We first show that if B € Aj, then there exists « € A; such that 8 + o € R.

Suppose that 8 € Aj is a positive root such that 8 + o« ¢ R forall o € A; Clearly,
B is not the maximal root, since 8 € Aj. Hence, there exists y; € R, y; ¢ A; such that
B + v1 € R. Therefore, B + y; is a positive root not belonging to A;“ and thus 8 + y; € Ay.
Now, if there exists @ € A;’ verifying 8 + y1 + o € A;, then, by the Jacobi identity, we
would have 8 +a € R or y; + o € A}, which contradicts the assumption on 8. Thus, we
have that B = B + y; has the same property as 8, and we can repeat our argument infinitely.
Since the set of roots is finite, we conclude that our assumption on g leads to an absurd.

If B € A is a negative root, then (—8) € A; N R™ and, therefore, there exists o € A;
such thate = —B 4+ aj € A} and hence B +a = @) € R.

Now, let us consider s = H + } 5.1, agep € v with H € b and ag € C such that
p(s) =0. Foreacha € A;r we have

0=1[s,eq] = a(H)ey + Z agNg «€pia
B+aeR
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where Ng o # 0 and, since {e4} U {eg« : B +a € R} is a linearly independent set, it follows
that «(H) = agNgo = Oforall @ € A;’. Hence, ag = 0, since otherwise 8 + « ¢ R for
every o € A; , which may not occur.

These arguments lead ustos = H € hand a(H) =0 foralla € A;“ . Take an element
B e S.If B e then B(H) = 0since S| C A;. On the other hand, if 8 € S\ S then, by
the first part of our proof, there exists & € A} suchthaty =« + B € R. Then y € A} and
thus B(H) = y(H) — a(H) = 0. Noting that the system S of simple roots of s is a basis of
the dual space h*, we conclude that s = H = 0. O

LEMMA 1. Lets be a simple complex Lie algebra, S| a subsystem of simple roots of
s and n the corresponding (s, S1)-nilalgebra. Let (.,.) be an euclidean product on n invari-
ant under the complex structure J. If n is not abelian then the algebra aut(n, (., .)) of skew-
symmetric derivations of (n, (., .)) is contained in the algebra derc(n) of complex derivations
of n.

PROOF. Foreacho € A;“ , let Wy, be the R-vector space spanned by e,. Then the real
algebram =3 A} Wy is a real form of the nilalgebra n. Note that, from the definition of a
(s, S1)-nilalgebra, the center of m is always contained in its derived algebra [m, m] unless m
(and, hence, n) is abelian. Thus, 3(m) N [m, m]+ = {0} and we obtain from the theorem in [1]
that every F € aut(n, (., .)) is skew-hermitian and hence C-linear. O

The following theorem is the main tool for the classification of the maximal isotropy
algebras of the (s, S1)-nilalgebras given below. In its proof, Hakimjanov’s Theorems 2 and 3
in [4] will play an important role.

THEOREM 1. Let s be a simple complex Lie algebra, S| a subsystem of simple roots
of s and N a non-abelian connected and simply-connected (s, S))-nilgroup. Let us denote by
b1 the complex abelian Lie algebra spanned by elements {H, : o € S\ S1} and by g the
semisimple algebra g = by + Y, A, Yo If s and Sy verify one of the following conditions:

(1) Sj contains at least one non-singular root,

(i) s=Cy,and S| = {1},
then the maximal isotropy algebra of N is isomorphic to €, ® R¥, where ¥, is the compact real
form of g1 and k is the cardinal number of Sy.

PROOF. Let n be the Lie algebra of N, J the complex structure and let (.,.) be any
J-invariant euclidean product on n. Let us denote by aut(n, (., .)) the Lie algebra of skew-
symmetric derivations of the pair (n, (., .)). From the lemma above, aut(n, (., .)) is contained
in the complex vector space detc(n). Therefore, J F is also a C-linear derivation of n for
every F € aut(n, (., .)) and hence aut(n, (., .))¢ C derc(n).

Clearly, aut(n, (., )€ is reductive, since aut(n, (., .)) is compact. It is not difficult to
prove that if 9 is the nilpotent radical of detrc(n), then 9t N aut(n, (., NE = {0}. Thus we
have

dimc aut(n, (., .)€ + dim¢c M < dimc derc(n),
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and therefore if R is a reductive subalgebra such that derc(n) = R + 9, then
dim aut(n, (., .)) = dim¢ aut(n, (., .))C <dim¢fR.

Now, since s and S; verify one of the assumptions (i) or (ii), Theorems 2 and 3 in [4] are
applicable and these results together with the proposition above show that R is isomorphic to
t. Note that t = g; @ a, where a is an abelian direct summand and dim¢ a = card(S;) = k.
Hence, its compact real form is isomorphic to £, ®R* and thus dim aut(n(.,.)) < dim¥¢; ®R*.

Thus, it suffices to prove that there exists a J-invariant euclidean product ., .) on n such
that aut(n, (.,.)) = & @ RX.

As £ is compact and semisimple and the representation o in the proposition above is
faithful, the algebra p(¥;) is a compact and semisimple subalgebra of gi(n). Let K be the
unique connected subgroup of GL(n) with Lie algebra p(£;). It is clear that K is compact
and K = {e°™); x € £1}. Now, let us consider the connected compact Lie group K given by
the direct product K = KA ... Ay, where A; = {e”PUr5): )} e R} and {x1, x2, ... ,xx}isa
basis of a.

Since for every x € vtand y € n we have that p(x)(Jy) = Jo(x)(y), it follows that o (x)
is C-linear and hence so is ¢”®). Clearly, this implies that K is also composed of C-linear
mappings.

Now, let (.|.) be any J-invariant euclidean product on n, £2 a bi-invariant volume element
on K and define a new euclidean product on n by

(x,y)=/(Fx|Fy)S2.
K

A classical result assures that K is a subgroup of the group Aut(n, (., .)) of orthogonal auto-
morphisms of (n, (., .)). Further, since (.]|.) is J-invariant and every ¥ € K is C-linear we
easily get that (., .) is also J-invariant.

Therefore, the Lie algebra £ & Rk of K is a subalgebra of aut(n, (.,.)). Recalling
that dim aut(n, (.,.)) < dim¥; @ R¥, we conclude that both algebras must be equal, which
completes the proof. ]

REMARK 1. An euclidean product (., .) satisfying aut(n, {.,.)) = & & R* can be ob-
tained explicitly as follows: Let 8 be the conjugation of s with respect to a compact real form
u, and B the Killing form of the underlying real Lie algebra of s. Then, (x, y) = —B(x, 0y)
defines an euclidean product which satisfies our conditions (see [6], p. 253, Lemma 1.2), since
£ ® R¥ = 5o Nu, where s = Y J__ s is the attached graded Lie algebra.

THEOREM 2. Let s be a complex simple Lie algebra, S| a subsystem of simple roots
of s and N a connected and simply-connected (s, S1)-nilgroup. Then the maximal isotropy
algebra of N is one of the algebras listed in Tables 111, IV, V, VI and VII.

PROOF. Let n be the Lie algebra of N. We first consider the case that n is abelian
and dimc n = n. It is clear that for any euclidean product (., .) on n we have aut(n, {.,.)) =
50(2n). Thus in this case, the result follows from those obtained by Hakimjanov and Onischik
listed in Table 1.
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On the other hand, if the (s, S1)-nilalgebra n is a Heisenberg algebra of dimension 2n —
1, then n is isomorphic to the standard nil-subalgebra associated to (Cp, {e1}) and we may
compute its maximal isotropy algebra by means of the theorem above.

We finish pointing out that if n is neither abelian nor a Heisenberg algebra, then (s, S1)
verifies the Condition (i) of Theorem 1 and £ is isomorphic to ¢ & R*. Recall that k is the
cardinal number of S| and note that ¢; may be easily computed, since it is the compact real
form of the semisimple Lie algebra whose Dynkin diagram is obtained by elimination of the
roots of S; in the diagram of s. d

REMARK 2. Inthe Tables below we have written su(n+ 1), so(2n+ 1), sp(n), so(2n),
¢, f4, g2 for the compact real forms of the algebras of type A,, By, Cn, Dy, Ei, F4 and G,
respectively. The numbering of the roots coincides with that given in Table II and we consider
the indices ordered, meaning that if we write S = {&;,, &4,, ... , a; } theniy <ip < --- < iy.

In case that s is not a simple Lie algebra, we have a partial result which derives from
Theorem 1 and Proposition 2 in [2]. Since its proof is quite standard, we will omit it.

COROLLARY 1. Lets be a complex semisimple Lie algebra, S| a subsystem of simple
roots of s and let N be a connected and simply-connected (s, Sy)-nilgroup. Suppose that the
algebra s admits the decomposition into simple ideals s = s\ ®- - - @5, and that Sy, ... , S,
are the intersections of S| with the respective systems of simple roots of 51, ... , 54. For every
i < g, denote by ¥ the isotropy of a standard nil-group N; associated with (s;, S1,) with an
arbitrary Hermitian metric g;, and let g be the metric on N obtained as the product of the
metrics g;. Then the following hold:

(i) If none of the standard nil-subalgebras associated to (s;, S1,) is abelian, then the
isotropy algebra of (N, ) ist =%, & --- D ¢,.

(ii) If the standard nil-subalgebras associated to (s;, S1,) are abelian for every p < i <

q and their respective dimension over C is n;, then the isotropy algebra of (N, g) is
b=t D - - Dty ®s0(2m) wherem =np + - -+ ny.

TABLE I. (s, S1)-nilalgebras n isomorphic to an abelian or Heisenberg algebra.

Abelian Heisenberg
s M n s S1 n
An | Si={ai} | €D NI Ay | S1 = (@1, @n) | Dt
By | Si={a) |C*! Bu | Si = (a) Hon-3
Co [ Si=ten) [C@ 2]y [ 51 =te) | a0
Sy ={ay} cn-2 Dp | 81 = {ap} $n—4
D | S =tan1} | €@*=02 Eg | 81 = (@) 910
Si=ten) | €2 g [S1=ta) | %6
Eg Sy ={ay} cls Eg | S = {ag} 8
S) = {ag) clé Fy | $1={} 7
E7 | 81 = {a7} c? Gy | S1 ={a} £5))
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II. Dynkin extended Diagrams and maximal roots of simple Lie algebras.

Type of Dynkin extended diagram Maximal root
algebra
)
An ajtar+--ta
(n=2) --- o '
a) a [0 2 e
B o) o o3 Qp—| oy
’ —--0==0 Q1+ 20+ + 2
(n>=3)
)
C, -5 «a % Q- Q,
(nznz) ! 2 el 1 200 + -+ 20,1 +ap
[+9] %) [0 %] Oy—2 o1
D, __._Q<2 ) + 20y + -+ 202+
n >4 n Fan—1 +ay
)
o) a3 [\ 7} as &3
Ee a) + 202 + 23 + 34+
a +205 + 6
-8
) o a3 oy as (073 a7
E 201 + 202 + 33 + 4ag+
+3as + 206 + a7
2%
) a3 Qg as 273 a7 g —8
Es 20y + 3az + 43 + 64+

+5as + 4a + 3a7 + 208

Fy

201 + 3y + 43 + 204

G»

301 + 2ap

25
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TABLE IV. Maximal isotropy algebras £ of the (Eg, S1)-nilgroups.

e

Ee

card(S)) =2

card(S;) =3
card(S;)) =4
card(S;) =5
card(S;) =6

50(32)

sp(10) ® R

su(2) ® su(5) ® R

su(2) ® su3) ® su3) R
su2) ® su(5) ®R

50(32)

50(8) ®R?

(@}, sulpi + D) ®R2, p; 20,53 pi =4
@ supi + 1)) OR3, p; 20,30 pi =3
(L su(pi + D) OR* p; 20,57 pi =2
su(2) O RS
R6

TABLE V. Maximal isotropy algebras € of the (E7, Sp)-nilgroups.

1 S] 3
Sy = {a1} sp(16) ®R
S1 = {ap} su(7) @R
S = {a3} su(2) ® su(6) ® R
S1 = {ag} su(2) ® su(3) d su(d4) DR
S1 = {as} su(3) ®su(S) AR
S1 = {ag} 50(10) ® su(2) ®R
Sy = {a7} s0(54)
50(10) ® R?2
Eq | card(Sy) =2 50(8) ® su(2) ® R
@ supi + 1) @R, p; 20,54 pi=5
card(S;) =3 50(? ®Rr? 3 4
@i= sulpi + D)BR, p; =0,% ;| pi=4
card($)) =4 | (B}, su(p; + 1) ®R* p; 20,33, p;i =3
card(S)) =5 | (DX, su(pi + 1) ®R*, p; 20,2, pi =2
card(S;) =6 | su2) ® R®

card(S;) =7

R7

27
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TABLE VI. Maximal isotropy algebras € of the (Eg, S})-nilgroups.
s M ¢
S1 = {og} s0(14) ® R
S ={a} su@8) ®R
S) = {a3} su(2) ® su(7) ® R
S1 = {ay} su(2) @ su(3) ® su(5) ® R
S) = {os) su(4) @ su(S) DR
S1 = {ag} 50(10) ® su(3) ®R
Sy = {a} e © su(2) O R
S1 = {og} sp(28) B R
e ® R 2
s0(12) ® R2
Eg | card(S)) =2 50(10) ® su(2) ® R 2

s0(8) @ su(3) @ R?2

@ su(p; + D) OR? p; 20,3 pi =6

s0(10) ® R
card(S)) =3 50(8) @ su(2) ® R3

@ supi + 1)) @R? pi 20,37 pi =5
card(s) =4 | { P ER )

(@i supi + 1)) ORA, p; =0, 50 pi =4
card($) =5 | (D}, su(p; + 1)) OR>, p; 20, Y3 p; =3
card($)) = 6 | (D7 su(pi + D) O RS, p; = 0,57 pi =2
card($)) =7 | su2) ®R’
card(S)) =8 RS

TABLE VII. Maximal isotropy algebras & of the (s, Sy )-nilgroups
associated to F4 and G,.

5 M ¢
St = feq} sp(7) ®R
S1 = {ay} so(7) ® R
S1 = {ap} su(2) ® su3) ®R
S1 = {a3}) su(2) ®su3) ®R
St = (a1, a2} su(3) ®R?

Fy | S| = {3, a4) su(3) ®R?
S = {ay, a4} sp(2) ®R*?
S = {o, a3} su(2) @ su(2) ® R2
S| = {oz, a3} su(2) @ su(2) ® R2
Sy = {oz, a4} su(2) @ su(2) ® R?
Sy = {aj, o, o} su(2) ®R3
S ={ay, a3, 03,4} | R?
Sy = f{e} su(2) R

Gy | §) ={} sp(2) R
S = (a1, @) R?
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