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Abstract. We consider Lie groups whose Lie algebra is the nilradical of a parabolic
subalgebra of a complex simple Lie algebra, endowed with left-invariant Hermitian metrics.
For such Riemannian Lie groups, we describe the Lie algebras of their maximal isotropy
groups.

1. Introduction. Let s be a semisimple complex Lie algebra and n the nilradical of
a parabolic subalgebra of s. Let N be the unique connected and simply-connected Lie group
whose Lie algebra is n. Let us consider a left-invariant Hermitian metric gonN and denote by
K the isotropy group of (N, g) at the identity element of TV. Since N is nilpotent, a theorem
of Wolf [10] ensures that the isometry group of (N, g) is isomorphic to the semidirect product
of N and the compact group K.

In general, the dimension of such isotropy group (and hence of the isometry group itself)
varies from one metric to another. The aim of this paper is to determine those isotropy groups
of N endowed with a Hermitian metric which have maximal dimension. Since N is connected
and simply-connected, we may calculate the identity connected component of such maximal
isotropy group via exponentiation of its Lie algebra. Thus, we deal with the problem of
determining the compact Lie algebra £ verifying that £ is the Lie algebra of a maximal isotropy
group K.

In this paper, when 5 is a simple Lie algebra, we study the case in which n is defined
by a subsystem S\ of the system of simple roots of 5. We obtain a complete classification,
depending of course on s and S\, of those maximal isotropy algebras obtained for a Hermitian
metric. Our results are listed in Tables III to VII below.

I want to thank Professor J. F. Torres Lopera and Professor Yu. B. Hakimjanov for intro-
ducing me to the subject of this paper and for the careful reading of the details. I am also in
debt with the referee for drawing [7] to my attention and pointing out Remark 1.

2. Preliminaries. Let 5 be a complex semisimple Lie algebra, f) a Cartan subalgebra
of 5 and R, /?+, S, respectively, the systems of roots, positive roots and simple roots of 5 with
respect to f).

It is well-known that s = f) + ΣaeR ^α» where Va is a complex vector space spanned by
a unique element eu. Moreover, the brackets in s are given by [ea, H] = a(H)ea for every
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H e f) and

Na<βea+β if oi + βeR

θ if « + / > * « ,

where Λ^β G R and Λ^β ^ 0. We will denote by δ e R+ the maximal root, this is, the only

positive root verifying that δ -f a £ R for every a e /?+. A simple root a e S is said to be

a singular root if δ — a e /^ or, equivalently, if α is linked with 8 in the extended Dynkin
diagram of 5 (see Table II).

Let S\ C S be a non-empty subsystem of S, and let us consider the sets A\ = {γ e
Λ; Y = Σαesvs, m<*a} and Δ+ = (R \ Δ\) Π /?+. The Lie algebra p = ί) + Ec^, y<* +
Σαf<Ξzi+ ^« *s a Parat>olic subalgebra of 5. In fact, every parabolic subalgebra of 5 is con-

jugate to an algebra of this kind. It is well-known that such parabolic subalgebra admits a

decomposition p = r + n, where t = ϊ) + Σαezi, V& *s ^ts reductive summand and the ideal

n = Σα<Ξz*+ ^« *s me nilpotent radical (which coincides with the nilradical of p).

DEFINITION 1 . We say that n is the standard nil- subalgebra of 5 with respect to S\ or,

for short, (s, S\)-nilalgebra if n = Σαez\+ ^α» tnat ^s> ^ n ^s tne nilradical of the parabolic
subalgebra of 5 given by

Notice that if 5o — S \ S\, then the partition 5 = 5o U 5ι defines a graded Lie algebra

5 = Σl=-vSk (see [7], Theorem 1.7). With this notation, p = X^>05£> r — 5o an(3 n =

Σ£>O 5^ ^ ̂ e βrouP N is called a standard nil-group or a (s, S\)-nilgroup if its Lie algebra
is a (5, 5Ί)-nilalgebra.

In what follows, two types of (5, Sι)-nilalgebras will have a different treatment: the

abelian ones and those isomorphic to any of the Heisenberg algebras f)£. The Heisenberg

algebra £u is the complex Lie algebra spanned by 2k + 1 elements {x\,-- , Jt£, y\ , , 3 ,̂ z}

with non-trivial brackets given by [*/ , y/] = z, 1 < / < n. The whole set of (5, 5Ί)-nilalgebras

which are abelian or Heisenberg have been described by Hakimjanov [4] and Hakimjanov and

Onischik [8]. They are listed in Table I, where we have corrected a small erratum in one of

the dimensions.

On the other hand, Wolf [10] and later Wilson [9] have proved that if TV is a nilpotent real

Lie group and g is a left-invariant Riemannian metric on TV, then the isometry group I ( N , g)

of (N, g) is isomorphic to the semidirect product of TV (acting on itself by left-translations)

and the isotropy group K at the unity of N . Further, if N is connected and simply-connected

then K is isomorphic to the group Aut(n, {., .)) of orthogonal automorphisms of (n, (., .}),

where n is the Lie algebra of N and (., .} denotes the euclidean product induced by g on n.

Hence, in this case, the identity connected component of K is completely determined by its

Lie algebra, namely the Lie algebra αut(n, (., .)) of skew- symmetric derivations of (n, (., .}).

Note that the algebra αut(n, (., .)) is always a compact Lie algebra.

Since the (5, Sι)-nilgroups admit an obvious complex structure, all the left-invariant met-

rics considered in this paper will be Hermitian, that is, the euclidean product (., .) on n verifies
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( J x , Jy) = ( c, y) for all x, y G n, where / denotes the complex structure J2 = —1. It is

important to remark that, in this case, in order to compute the Lie algebra of K it is necessary

to calculate not only the skew-symmetric complex derivations of n but the skew- symmetric

real derivations of the underlying real algebra. In this sense, we will use some of the results

given in [1], To avoid confusions, we will denote by Detc(n) the set of complex derivations

of n and by Der(n) the set of real derivations of (the underlying real algebra of) n. These

considerations justify the following:

DEFINITION 2. Let TV be a complex Lie group, n its Lie algebra and denote by J the

complex structure. We say that a compact Lie subalgebra £ of Der(n) is an isotropy algebra

ofN if there exists a /-invariant euclidean product (., .) on n such that £ = αut(n, (., .)). An

isotropy algebra £ of TV is said to be maximal if the dimension of £ is maximal among the

dimensions of all isotropy algebras of N.

In the sequel, if V is a real vector space, we will denote by Vc its complexification. In

order to avoid possible confusions, when W is a complex vector space, we will write dime W

for its complex dimensions and dim W for its real dimension (this is, the dimension of the

underlying real space).

3. Main results. We begin with the following proposition which, as far as we know,

has never been proved.

PROPOSITION 1 . Let 5 be a simple complex Lie algebra, p the parabolic subalgebra

defined by the subsystem S\ of simple roots, and let r, n be respectively the reductive summand

and the nίlradical o/p. The representation p : r —> £jί(n) obtained as the restriction of the

adjoint representation by p ( s ) ( x ) = [s, x]for every s G r, x G n is faithful.

PROOF. We first show that if β G Δ\, then there exists a G Δ^ such that β + a e R.

Suppose that β G Δ\ is a positive root such that β + a φ R for all α G Δ^. Clearly,

β is not the maximal root, since β G Δ\. Hence, there exists γ\ G /?+, γ\ £ Δ^ such that

β + γ\ € R. Therefore, β + γ\ is a positive root not belonging to Δ^ and thus β + γ\ G Δ\ .

Now, if there exists a G Δ^ verifying β + γ\ + a G Δ^, then, by the Jacobi identity, we

would have /3 + α G / ? o r y ι - | - α G Δ^, which contradicts the assumption on β. Thus, we

have that β\ = β + γ\ has the same property as /3, and we can repeat our argument infinitely.

Since the set of roots is finite, we conclude that our assumption on β leads to an absurd.

If β G Δ\ is a negative root, then (—β) G Δ\ Π R+ and, therefore, there exists ot\ G Δ^

such that a = —β + ct\ G Δ^ and hence β -f a. = a\ G R.

Now, let us consider s — H + Σβe^i aβeβ e r w^tn H £ fy and aβ G C such that

p(s) — 0. For each a G Δ^ we have

β+aeR
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where Nβί(X Φ 0 and, since {ea} U {eβ+a : β +a e R} is a linearly independent set, it follows
that a(H) = ciβNβ^ = 0 for all a e A^. Hence, aβ = 0, since otherwise β + a £ R for
every a e A J, which may not occur.

These arguments lead us to s = H e f) and α(/f) = 0 for all a e Δ^. Take an element
β e S . l f β <E Si then β(H) = 0 since Sj C zA J. On the other hand, if β e S \ S\ then, by
the first part of our proof, there exists a e ΔJ such that γ = a + β e R. Then γ e A J and
thus β(//) = y(//) — α(//) = 0. Noting that the system S of simple roots of 5 is a basis of
the dual space f)*, we conclude that s = H = 0. D

LEMMA 1. Let 5 be a simple complex Lie algebra, S\ a subsystem of simple roots of
s and n the corresponding (5, S\)-nilalgebra. Let (.,.) be an euclidean product on n invari-
ant under the complex structure J . I f n is not abelian then the algebra αut(n, (.,.}) of skew -
symmetric derivations 0/(n, (., .)) is contained in the algebra Detc(n) of complex derivations
ofn.

PROOF. For each a e Δ^, let Wa be the R-vector space spanned by ea. Then the real

algebra m = ΣaeΔ+ Wa is a real form of the nilalgebra n. Note that, from the definition of a

(s, Si)-nilalgebra, the center of m is always contained in its derived algebra [m, m] unless m
(and, hence, n) is abelian. Thus, 3(m) Π [m, m]-1 = {0} and we obtain from the theorem in [1]
that every F e αut(n, (.,.)) is skew-hermitian and hence C-linear. D

The following theorem is the main tool for the classification of the maximal isotropy
algebras of the (5, 5Ί)-nilalgebras given below. In its proof, Hakimjanov's Theorems 2 and 3

in [4] will play an important role.

THEOREM 1. Let 5 be a simple complex Lie algebra, S\ a subsystem of simple roots

of 5 and N a non-abelian connected and simply-connected (5, S\)-nilgroup. Let us denote by
f ) i the complex abelian Lie algebra spanned by elements {Ha : a e S \ S\} and by Q\ the

semίsimple algebra Q\ = ί)ι + Σα €^j Va. Ifs and S\ verify one of the following conditions:
(i) S\ contains at least one non-singular root,

(ii) 5 = Cn and S\ = [ a \ ] ,
then the maximal isotropy algebra ofNis ίsomorphic tot\®Rk, where ϊ\ is the compact real
form of%\ and k is the cardinal number ofS\.

PROOF. Let n be the Lie algebra of N, J the complex structure and let {.,.} be any
/-invariant euclidean product on n. Let us denote by αut(n, (.,.}) the Lie algebra of skew-

symmetric derivations of the pair (n, (.,.)). From the lemma above, αut(n, (.,.}) is contained
in the complex vector space c)etc(n). Therefore, JF is also a C-linear derivation of n for
every F e αut(n, (.,.)) and hence αut(n, (., .»c c Detc(n).

Clearly, αut(n, (., .))c is reductive, since αut(n, (.,.)) is compact. It is not difficult to
prove that if 971 is the nilpotent radical of Detc(n), then 9K Π αut(n, (., .))c = {0}. Thus we
have

dimcαut(n, (., .))
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and therefore if 91 is a reductive subalgebra such that Detc(n) = 91 + 971, then

dimαut(n, (.,.)) = dimcαut(n, (., .))c < dime 91.

Now, since s and S\ verify one of the assumptions (i) or (ii), Theorems 2 and 3 in [4] are
applicable and these results together with the proposition above show that 91 is isomorphic to
r. Note that r = Q\ 0 α, where α is an abelian direct summand and dime α = card(Sι) = k.
Hence, its compact real form is isomorphic toϊ\φRk and thus dim αut(n(.,.)) < dim t\®Rk.

Thus, it suffices to prove that there exists a /-invariant euclidean product (.,.) on n such
thatαut(n, (.,.)) = ti θ/f*.

As EI is compact and semisimple and the representation p in the proposition above is
faithful, the algebra p(ϊ\) is a compact and semisimple subalgebra of 0l(n). Let K\ be the
unique connected subgroup of GL(n) with Lie algebra p(£ι). It is clear that ^i is compact
and K\ = [epM', x e t\}. Now, let us consider the connected compact Lie group K given by
the direct product K = K\A\ ... A/;, where Aj = { e p ( j λ χ j ) \ λ e R} and [x\,X2, - - , Xk] is a
basis of α.

Since for every x e r and y e n we have that p(x)(Jy) = Jp(x)(y), it follows that p(x)
is C-linear and hence so is ep(x\ Clearly, this implies that K is also composed of C-linear
mappings.

Now, let (. I.) be any /-invariant euclidean product on n, Ω a bi-invariant volume element
on K and define a new euclidean product on n by

* , y ) = ί
JK

(Fx I Fy)Ω .

A classical result assures that K is a subgroup of the group Aut(n, (.,.)) of orthogonal auto-
morphisms of (n, (.,.)). Further, since (.|.) is /-invariant and every F € K is C-linear we
easily get that (. , .} is also /-invariant.

Therefore, the Lie algebra 61 0 Rk of K is a subalgebra of cmt(n, ( . , . )) . Recalling
that dimαut(n, (.,.}) < dim£ι φRk, we conclude that both algebras must be equal, which
completes the proof. Π

REMARK 1. An euclidean product (.,.) satisfying αut(n, (.,.}) = ϊ\ θ Rk can be ob-
tained explicitly as follows: Let θ be the conjugation of 5 with respect to a compact real form
u, and B the Killing form of the underlying real Lie algebra of s. Then, (jc, y) = —B(x, θy)
defines an euclidean product which satisfies our conditions (see [6], p. 253, Lemma 1.2), since
ίιφRk = SQΓ\ ιι, where 5 = Σ^=_y &k is the attached graded Lie algebra.

THEOREM 2. Let s be a complex simple Lie algebra, S\ a subsystem of simple roots
0/5 and N a connected and simply-connected (5, S\)-nilgroup. Then the maximal isotropy
algebra ofN is one of the algebras listed in Tables III, IV, V, VI and VII.

PROOF. Let n be the Lie algebra of N. We first consider the case that n is abelian
and dime n = n. It is clear that for any euclidean product {.,.} on n we have αut(n, (.,.)) =
so(2n). Thus in this case, the result follows from those obtained by Hakimjanov and Onischik
listed in Table I.
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On the other hand, if the (s, 5ι)-nilalgebra n is a Heisenberg algebra of dimension 2n -

1, then n is isomorphic to the standard nil-subalgebra associated to (Cn, {a\}) and we may

compute its maximal isotropy algebra by means of the theorem above.

We finish pointing out that if n is neither abelian nor a Heisenberg algebra, then (5, S\)

verifies the Condition (i) of Theorem 1 and E is isomorphic to ti 0 Rk. Recall that k is the

cardinal number of S\ and note that ί\ may be easily computed, since it is the compact real

form of the semisimple Lie algebra whose Dynkin diagram is obtained by elimination of the

roots of S\ in the diagram of 5. D

REMARK 2. In the Tables below we have written su(n +1), so(2n +1), sp(n), $o(2n),

*ι, f4» 02 for the compact real forms of the algebras of type An, Bn, Cn, Dn, £/, ¥4 and GI,

respectively. The numbering of the roots coincides with that given in Table II and we consider

the indices ordered, meaning that if we write S\ = {α/ j , a / 2 , . . . , α/J then i\ < 12 < — - < ik

In case that 5 is not a simple Lie algebra, we have a partial result which derives from

Theorem 1 and Proposition 2 in [2]. Since its proof is quite standard, we will omit it.

COROLLARY 1. Let $ be a complex semisimple Lie algebra, S\ a subsystem of simple

roots ofs and let N be a connected and simply-connected (s, S\)-nilgroup. Suppose that the

algebra s admits the decomposition into simple ideals 5 = $ι Θ 05^ and that S\λ, . . . , S\q

are the intersections of S\ with the respective systems of simple roots ofs\, ... , sq. For every

i < q, denote by fy the isotropy of a standard nil-group NΪ associated with (s/, S\t) with an

arbitrary Hermίtian metric <?/, and let g be the metric on N obtained as the product of the

metrics <#. Then the following hold:

(i) If none of the standard nil-subalgebras associated to (s/, S\t) is abelian, then the

isotropy algebra of(N,g)isϊ = %\ Θ θ %q.

(ii) If the standard nil-subalgebras associated to (st, S\i) are abelian for every p < i <

q and their respective dimension over C is H[, then the isotropy algebra o f ( N , g) is

£ = fy 0 0 %p-\ 0 $o(2m) where m = np -\ \-nq.

TABLE I. (s, SΊ)-nilalgebras n isomorphic to an abelian or Heisenberg algebra.

Abelian

s

An

Bn

Cn

Dn

E6

Ej

Si

Sl = {α f)

Si ={αι)

Sι=M

Sι=((*ι}

Si = {<*„_! }

$!={<*„}

Sl={<*ι}

Si = {«6}

Si = {<*7}

n

ci(n-i + \)

C2n~l

c(«2+n)/2

C2n~2

c(n2-n)/2

C(n2-n)/2

c16

c16

c27

Heisenberg

s

An

Bn

Cn

Dn

E6

El

ES

F4

G2

Si

S\ = {«!,«„}

Si = {<*2l

Si ={αι)

Si = {α2l

Si = {0(2}

Sι = l<*ι}

Si = {«8}

S l = { « l }

Si = {a2}

n

Sn-1

^2/1-3

ftn-l

&2n-4

-ftio

^16

ί»28

#7

ϊ>2
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TABLE II. Dynkin extended Diagrams and maximal roots of simple Lie algebras.

Type of

algebra

An

(n > 2)

Bn

Cn

(n>2)

Dn

G2

Dynkin extended diagram

-δ

Oί\

OC[ Oίn

-δ

a,

-δ

— δ Oί\

-δ Oί\

Maximal root

π _ι + an

<xι

+<xn-\ +an

ot\

+ 2α6 + «7

25
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TABLE IV. Maximal isotropy algebras £ of the (£5, S\ )-nilgroups.

5

£ό

Si
Sl ={«!)

Si = {<*2}

Sl = ί<*3}

Si = ί«4}
Si = {a5}

Si = ί«6}

card(Sι) = 2

card(Sι) = 3

card(SO = 4

card(Sι) = 5

card(Sι) = 6

e

50(32)

5p(10)0fl

sιι(2) Θ 5iι(5) Θ R

511(2) 0 511(3) 0 5U(3) 0 R

5iι(2) 0 5iι(5) Θ R

so(32)

( so(8)θfl2

(03-l su(pi + 1)) 0Λ 2, p/ > 0, ]Γ?-ι Pi = 4

(θf=l SU(P* + 1)) Θ/?3, p, > 0, Σ?=1 Pi = 3

(Θ2=l 5U(P/ + 1)) θ/?4, p/ > 0, Σ2=ι P/ = 2

5iι(2) e/?5

tf6

TABLE V. Maximal isotropy algebras £ of the (£"7, Semigroups.

5

^7

5ι
Sl=[<*ι]

Sl = fa}

Sl = {^3}

Si = {«4}

Sl = {"5}

Sl = {«6l

Si = {α7}

card(5ι) = 2

card(Sι) = 3

card(Sι) =4

card(Sι) = 5

card(Sι) = 6

card(Sj) = 7

€

5p(16)θ/?

5iι(7) Θ R

5iι(2) 0 5iι(6) 0 R

5u(2) e 5tι(3) e 5u(4) e R
su(3)0 5iι(5) Θ/?

50(10) θ 511(2) Θ/?

50(54)

50(10) Θ Λ 2

5θ(8)θsu(2)θtf2

(θ?=ι su(Pί + 1)) θ/?2, p/ > 0, E4

=ι Pi = 5
so(8) θ/?2

(θ?=i SU(P/ + 1)) ®^3' Pi > °' Σ?=ι P/ = 4

(θLl 5U(P/ + U) Θ/?4, Pi > 0, Σ^i p/ = 3

(θ?=ι «u(pi + 1)) θ/?4, Pi > 0, Σ?=ι Pi = 2
5U(2)0/?6

/?7
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TABLE VI. Maximal isotropy algebras £ of the (£g, S\ )-nilgroups.

5

£s

Si
Si ={otι]

Si = {a2}

Si = {«3}

Si = {0(4}

Si = {<*5}
Si = {<*6}

Si = {«7}

Si = ί«8}

card(Sι) = 2

card(Sι) = 3

l)-

card(Sι) = 5

card(Sι) = 6

card(Sι ) = 7

card(Sι) = 8

t

50(14) 0/?

5iι(8) 0 R

5U(2) 0 5li(7) 0 R

511(2) 0 5U(3) 0 5ll(5) 0 /?

su(4) 0 su(5) 0 R

50(10)0SU(3)0tf

e6 0 5iι(2) 0 /?

5p(28) 0 R

e60/?2

50(12) 0/?2

SO(10)05U(2)0/?2

so(8)0su(3)0/?2

(θ?=l su(Pi + 1)) Θ/?2, A > 0, Σ4

=1 A = 6

50(10) 0/?3

5θ(8)0sιι(2)0fl3

(θ?=ι SU(P/ + i)) 0/?3, A > o, Σ/=ι PI = 5

{ 50(8)0fl4

(04=1 5u(/7. + l)) 0/?4, Λ > 0, Σ*=l pi = 4

(θLl su(Pi + Π) θ^5, p/ > 0, Σl=ι Pi = 3

(θι\=ι SU(P/ + 1)) 0 /?6, A > o, Σ?=ι PI = 2

5iι(2) 0 R Ί

/?8

TABLE VII. Maximal isotropy algebras 6 of the (s, S\ )-nilgroups

associated to F$ and G^

5

G2

5l

5 ι = { « ι )

Si = [a 4}

Si = {α2}

Si = {c*3}

Si = {αι,«2}

Si = {α?3,α4}

Si = {αι,df 4 }

Si = {θfι,α 3 }

Sj = {o?2, c^3}

Si = (θί2, 0(4}

Si = {αi,&j,ctk}

S\ = {αι,c*2,α3,α4}

Si ={αι)

Si = ί«2)

Si = {αι,α2}

£

sp(7)0/?

50(7) 0/?

su(2) 0 5u(3) 0 /?

5U(2) 0 5li(3) 0 R

5iι(3)0 R2

su(3)0/?2

sp(2)0/?2

5iι(2)0 su(2)0/?2

5u(2)0su(2)0Λ2

511(2)0 511(2) 0/ f 2

5U(2)0/?3

5iι(2) 0 R

sp(2)0#

Λ 2
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