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ISOMETRIC DEFORMATIONS OF FLAT TORI IN THE 3-SPHERE
WITH NONCONSTANT MEAN CURVATURE

YOSHIHISA KlTAGAWA

(Received October 14, 1998, revised April 19, 1999)

Abstract. For an isometric immersion / of a flat torus into the unit 3-sphere, we show

that if the mean curvature of / is not constant, then the immersion / admits a nontrivial

isometric deformation preserving the total mean curvature.

1. Introduction. Let S3 be the 3-dimensional standard unit sphere in the Euclidean

space R4. For each θ satisfying 0 < θ < π/2, we consider the Clifford torus MQ C S3 defined

by

Mθ = {x e R4 : x\ + x\ = cos2 0, x] + x\ = sin2 θ].

The Clifford torus M$ is a flat Riemannian manifold equipped with the metric induced by the

inclusion map i$ : Me —> S3. In [2] the author proved that every isometric deformation of

ie : Me —• S3 is trivial. Incidentally, it is easy to see that if M is a flat torus isometrically

embedded in S3 with constant mean curvature, then there exists a Clifford torus MQ which is

congruent to M. So we obtain

THEOREM 1.1. If f : M -» S3 is an isometric embedding of a flat torus M into S3

with constant mean curvature, then every isometric deformation of the embedding f is trivial.

On the other hand there are many flat tori isometrically immersed in S3 with nonconstant

mean curvature. In this paper we deal with isometric deformations of these surfaces. To state

the result we recall the notion of congruence of immersions. For i = 1,2, let // : Xι\ —> Y

be an immersion of a smooth manifold X, into a Riemannian manifold Y. The immersions f\

and /2 are said to be congruent if there exist an isometry A : Y -> Y and a diffeomorphism

p : Xi -• X2 such that Ao f\ = f2o p. We shall write f\ = fι if f\ and fa are congruent.

The main result of this paper is the following theorem.

THEOREM 1.2. If f : M -> S3 is an isometric immersion of a flat torus M into

S3 with nonconstant mean curvature, then there exists a smooth one-parameter family of

isometric immersions ft:M-^S3,teR, such that /o = / and

(1) /, φ fs for alls φu

(2) the total mean curvature of ft does not depend on t.
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REMARK. The total mean curvature of the immersion ft is given by fM Htdσ, where

Ht denotes the mean curvature function of fu and dσ denotes the volume element of the flat

torus M.

The outline of this paper is as follows. In Section 2 we introduce some geometric in-

variants of a periodic regular curve γ : R -» S2. We denote by K(γ) (resp. L(γ)) the total

geodesic curvature (resp. the length) of the closed curve γ |[0, /], where / > 0 is the minimum

period of γ. Furthermore, using the curve γ = γ/\γ\ in the unit tangent bundle of S2, we

define I(γ) to be the homology class represented by the closed curve y|[0, /].

In Section 3 we explain a method for constructing all the flat tori in S3. A pair Γ =

(Y\, yί) of periodic regular curves y/ : R -> S2 is said to be a periodic admissible pair if the

geodesic curvature of γ\ is greater than that of Y2 and some auxiliary conditions are satisfied

(see Definition 3.1). Each periodic admissible pair Γ induces a flat torus Mp and an isometric

immersion fp : Mp -+ S3. Furthermore the immersion fp is a primitive immersion (see

Definition 3.2). Conversely, if / : M -> S3 is a primitive isometric immersion of a flat torus

M into S3, then there exists a periodic admissible pair Γ such that f = fp (Theorem 3.1).

In Section 4 we study the intrinsic structure of the flat torus Mp. For each periodic

admissible pair Γ = (γ\, Y2), we set

Ki(Γ) = KM, Li(Γ) = L(Yi), Ii(Γ) = I(yi),

and define W(Γ) to be a lattice of R2 whose generators can be written in terms of Ki(Γ),

Li{Γ) and /, (Γ). Then it is shown that the flat torus R2/ W(Γ) is isometric to the flat torus

Mp (Theorem 4.1).

In Section 5 we deal with the extrinsic structure of the immersion fp. For each smooth

even function β : R -> R, we construct a functional Eβ which is defined on the set of

all periodic admissible pairs, and show that Eβ(Γ) = Eβ(Γ) if fp == ff. (Theorem 5.1).

Furthermore we show that the total mean curvature of fp can be written in terms of Ki(Γ),

Li(Γ) and /;(Γ) (Theorem 5.3).

In Sections 6 and 7 we give the proof of Theorem 1.2. To establish the theorem we may

assume that the immersion / : M -> S3 is primitive. By Theorem 3.1 there exists a periodic

admissible pair Γ = (γ\, γi) satisfying / = fp. Since the mean curvature of fp is not

constant, we see that either γ\ or γ2 is not a circle. Using this fact, we construct a smooth

even function β and a smooth one-parameter family of periodic admissible pairs Γt satisfying

Γ0 = Γ , Ki(Γt) = Ki(Γ), Li(Γt) = Li(Γ), Ii(Γt) = /.-(Γ),

and Eβ(Γs) φ Eβ(Γt) for all s φ t. So the assertion of Theorem 1.2 follows from Theorems

4.1, 5.1 and 5.3.

REMARK. In Theorem 1.1 the word "embedding" cannot be replaced by the word "im-

mersion". In fact, there is a flat torus M and a Riemannian covering π : M -> Me such that

the composition ΪQ O π : M ->• S3 admits a nontrivial isometric deformation. The Riemannian

coverings as above will be classified in [4].
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2. Preliminaries. Let SU(2) be the group of all 2 x 2 unitary matrices with determi-

nant 1. Its Lie algebra su(2) consists of all 2 x 2 skew Hermitian matrices of trace 0. The

adjoint representation of SU(2) is given by

Aά(a)x = axa~x,

where a e SU(2) and x e su(2). We set

{JC, y) = --trace(jcv) for x, y e su(2).

Then it follows that (, > is a positive definite and Ad-invariant inner product on su(2). Fur-

thermore we consider the orthonormal basis of su(2) given by

o v ^ η ro -in ΓV^T o
o J - e2 = [ι o j e' = [ o - V ^Note that

[e\, ej\ = lei, [e2, e3] = 2e\, [ei,e\] = 2e2 ,

where [, ] denotes the Lie bracket on su(2). For / = 1, 2, 3, let £; be the left invariant vector

field on SU(2) corresponding to e, . We endow SU(2) with the Riemannian metric (,) such

that (Ei, Ej) = δij. Then SU{2) is isometric to the unit 3-sphere S3, and so we identify S3

with SU(2).

Let S2 be the unit sphere in su(2) defined by S2 = {x e su(2) : |JC| = 1}. The unit

tangent bundle of S2, denoted by US2, can be identified with a subset of S2 x S2 as follows:

US2 = {(JC, υ) e S2 x S2 : (JC, υ> = 0},

where the canonical projection /?i : US2 -> 5 2 is given by pi(jc, υ) = JC. Define pi : 5 3 ->

(2.1)

The map /?2 is a double covering such that pi{—ά) = /?2(β) for all a e S3. We now consider

a regular curve γ : R -> S2, and define γ : R -+ US2 by

(2.2) yω = (yω,/ω/iy'ωi)

Then there exists a curve c : R -+ S3 satisfying P2(c(s)) = γ(s). By [3, Lemma 2.2] we

obtain

(2.3) Φ Γ V ( s ) = ^\

where k(s) denotes the geodesic curvature of γ(s). Note that

(2.4) k(s) = (y/;(j), 7 ( / ( J ) ) ) / | / ( J ) | 3 ,

where 7 denotes the almost complex structure on S2 defined by

(2.5) J(υ) = ^[x,υ] for veTxS
2.
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We now assume that the curve γ : R -> S2 is periodic with the minimum period / > 0. The

length and the total geodesic curvature of γ are given by

(2.6) L(y)= f \γf(s)\ds, K(y)= ί k(s)\γ\s)\ds.
Jo Jo

Furthermore define I(y) to be the element of the homology group H\ (US2) represented by

the closed curve p|[0,/]. Note that H\(US2) = Z2. Since p2 is a double covering and

p2(ά) = p2(—a) for all a e S3, we obtain

c(s) i f / ( y ) = 0 ,
(2.7) C(J + / ) = .

I -c(s) if /()/) = 1.

3. Construction of flat tori in S3. In this section we explain a method for construct-

ing all the flat tori in S3, which was established in [1] and [3].

DEFINITION 3.1. Let Γ = (γ{, γ2) be a pair of regular curves y, : R -> S2, i = 1, 2.

The pair Γ is said to be an admissble pair if it satisfies the following conditions (3.1)—(3.3).

(3.1)

(3.2) \γf

i(s)\yn+ki(s)2 = 2 for 1 = 1,2,

(3.3) ki(sι) > k2(s2) for all (sus2) e R2 ,

where £/ (51) denotes the geodesic curvature of y; (5).

Let Γ = (γ\, 72) be an admissible pair. Then it follows from (3.1) that there exist curves

d : R -• S3,1 = 1,2, such that

(3.4) /?2(Q(5)) = Yi (s), c, (0) = e = \Q j

By (2.3) and (3.2) we obtain \c'i(s)\ = 1. Using the group structure on S3, we define Fp :

Λ2 -> 5 3 by

(3.5) Fr(s\,S2) = c\(sι)c2(s2)~ι .

By [1, Lemma 3.8, Theorem 4.2] we see that the map Fp is a flat asymptotic Tchebychef

immersion (FAT for short). For the definition of FAT, we refer the reader to [1, p. 460]. So

the map Fp is an immersion which induces a flat Riemannian metric gp on R2. Let aι\(s) be

the function defined by

(3.6) cotoίi (s) = ki(s), 0 < (Xi(s) < π .

Then (3.3) implies a\(s\) < a2(s2). Using (3.2), we obtain

(3.7) sina/(j) = l-\γ[(s)\, cosαf (j) = ̂ ki

So it follows from (2.3) that

^ C s ) = sinα, (5)^2 + cos α,
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Hence the components of the Riemannian metric gp for the local coordinates (s\, s2) satisfy

(3.8) #11 = g22 = 1, gn = -cos(a2(s2)-a\(si)).

Furthermore the components of the second fundamental form of the immersion Fp(s\,s2)

satisfy

(3.9) h\\ =h22 = 0, h\2 = sin(a2(s2) - a\(s\)),

where the unit normal is defined by

ξ = (dFr/dsi) x (dFr/ds2)/\{dFrldsx) x (dFΓ/ds2)\.

We now consider the group

G(Γ) = {pe Diff(fl2) : FΓ o p = FΓ},

where Diff(/?2) denotes the group of all diffeomorphisms of R2. Then we obtain the 2-

dimensional flat Riemannian manifold Mp = (R2, gr)/G(Γ) and the isometric immersion

fp : Mp -• S3 satisfying fp oπp = Fp, where πp denotes the canonical projection of/?2

onto Mp. It is easy to see that the immersion fp : Mp -+ S3 is primitive in the sense of the

following definition.

DEFINITION 3.2. An immersion / : X —• Y of a smooth manifold X into a smooth

manifold Y is said to be primitive if the identity map of X is the only diffeomorphism φ :

X -• X satifying foφ = f.

It follows from [1, Theorem 2.3] that the group G(Γ) consists of parallel translations

of R2, and so Mp is orientable. Furthermore it follows from [1, Theorem 5.1] that Mp

is compact if and only if Γ is periodic, where the admissible pair Γ = (γ\, γ2) is said to

be periodic if both γ\ and γ2 are periodic regular curves. So we see that every periodic

admissible pair Γ induces a flat torus Mp and a primitive isometric immersion fp : Mp —>

S3. Conversely, we obtain the following theorem.

THEOREM 3.1 ([3]). Let f : M ->• S3 be a primitive isometric immersion of a flat

torus M. Then there exists a periodic admissible pair Γ such that f = fp.

We conclude this section with the following theorem.

THEOREM 3.2. Let Γ = (yi, γ2) be an admissible pair, and let ki(s) denote the geo-

desic curvature ofγi(s). Then the mean curvature of fp is constant if and only if both k\(s)

and k2{s) are constant.

PROOF. By (3.8) and (3.9) the mean curvature H of Fp is given by

(3.10) J/ = cot(α 2 (J2)-αi(* i)) .

So (3.6) implies the assertion of Theorem 3.2. D

4. The intrinsic structure of Mp. Let Γ = (yi, γ2) be a periodic admissible pair.

Using the homology class /(y, ) defined in Section 2, we set
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and define W(Γ) to be the lattice of/?2 whose generators are given by the following:

(4.1)

where

(4.2)

v\,2v2

V\ ± V2

if 7(Γ) = (0,0),

if /(Γ) = ( l ,0) ,

if 7(Γ) = (0, 1),

if 7(Γ) = d l ) ,

= -(/r(n),L(Kl))1

We now identify the lattice W(Γ) with a group of parallel translations of R2. In this

section we show that the flat torus Mp is isometric to the flat torus (R2, go)/W(Γ), where

#0 denotes the canonical flat Riemannian metric on R2. Using the functions a\ (s) and α^C?)

given by (3.6), we set

cos a i (s)d s — I cos cί2(s)ds ,
Jo

= I
Jo

r*\ rs2
= I sina\(s)ds — I si

Jo Jo

R2 byand define ΦΓ R2

(4.3)

THEOREM 4.1. Let Γ = (γ\, γι) be a periodic admissible pair, and let gr be the

Riemannian metric on R2 induced by the immersion Fp : R2 -> S^. Then the map Φp is an

isometry of(R2, gp) onto (R2, go), and

W(Γ) = {ΦΓ o p o Φ~λ : p e G(Γ)}.

In particular, the flat torus Mp is isometric to the flat torus (R2, go)/W(Γ).

PROOF. By (3.8) it is easy to see that gp = Φpgo, and so Φp is an isometry of (R2, gp)

onto (/?2, go) Since the group G(Γ) consists of parallel traslations of R2 and the quotient

space R2/G(Γ) is compact, the group G(Γ) can be identified with a lattice of/?2. It follows

from [3, Theorem 4.1] that the lattice G(Γ) has the following generators.

(/i,0), (0,2/2)

(lul2)Λh,-h)

if

if

if

if

where U denotes the minimum period of γi(s). For m\,

translation p : R2 —• R2 given by
e Z, we consider the parallel

= (s\
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Since α, (s + Z, ) = oti(s), it follows from (3.7) and (4.2) that

rh rha h rh \

cosa\(s)ds, I sina\(s)ds
Jo )

( ίh ίh \
+ rn2\— I cosd2(s)ds, — I sina2(s)ds I

\ Jo Jo )
2) +m\V\

So we obtain

Φ f o p o Φpl{x\,X2) = (x\,X2) +m\V\ +1Π2V2.

Hence it follows from (4.1) and (4.4) that Φ f o p o Φ " 1 e W(Γ) if and only if p e G(Γ).

This completes the proof of Theorem 4.1. D

5. Extrinsic invariants of />. Let γ : R -> S2 be a periodic regular curve with the

minimum period / > 0. For each smooth function β : R -> R, we define Eβ(γ) by

i

(5.1) Eβ{γ) = -

where k(s) denotes the geodesic curvature of γ(s), and

(5.2) τy(s) = 2k\s)(l+k(s)2r^2\y\s)\-1.

Furthermore for each periodic admissible pair Γ = {γ\, 72), we set

The aim of this section is to prove the following theorem.

THEOREM 5.1. Let Γ and Γ be periodic admissible pairs such that fp = ff. Then

Eβ(Γ) = E β(Γ) for any smooth even function β.

It is easy to see that fp = fp implies Fp = Fp. So Theorem 5.1 follows from the

following lemma.

LEMMA 5.2. Let Γ = (γ\, γ2) and Γ = (γ\, γ2) be periodic admissible pairs. If

Fp = Fp, then Eβ(Γ) = Eβ(Γ) for any smooth even function β.

PROOF. Let c, (s) and c, (s) be the curves in S3 defined by (3.4). Then

(5.3) Fr(s\,S2) = c\(s\)c2(s2)~ι, Fp(s\,s2) = c\(s\)c2(s2)~l.

By (3.2) and (5.1) we obtain

rh fIt
(5.4) Eβ(γi)= β(τYi(s))ds, Eβ(γϊ) = β(τΫi(s))ds,

Jo Jo
where // (resp. /)) denotes the minimum period of y; (resp. )/,). Let Ki(s) be the curvature of

the curve c, (s). Since |c | = 1, it follows from [1, Lemmas 3.7 and 3.8] that
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where D denotes the Riemannian connection on S3, and α, is the function defined by (3.6).

Differentiating (3.6), we have α (s) = — k^s) sin2ai(s), where kj(s) denotes the geodesic

curvature of γi(s). So it follows from (3.7) and (5.2) that a^(s) = -τYi (s). Hence

(5.5) κi(s) = \τγι(s)\.

Similarly we obtain

(5.6) ici(s) = \τΫi(s)\,

where £, (s) denotes the curvature of the curve c; (s).

Let gij (resp. gtj) and h[j (resp. hij) denote the first and second fundamental forms of

the immersion Fp(s\, $2) (resp. Ff.(s\,S2)). Since Fp = Ff, there exist an isometry A of S3

and a diffeomorphism p of/?2 such that Ao Fp = Ff, o p. Then we obtain

9 7 3 7 a i a 7
kl ι J kl ι J

where p(s\, S2) = (p\(s\, S2), P2(s\,S2))- So it follows from (3.8) and (3.9) that the Jacobi

matrix of the diffeomorphism p : R2 —• R2 satisfies the following relation.

_ \a\ Ol 3(pl,P2) _ Γθ a2~]

~L° "2] °r d(sus2) ~[aι Oj '

where \a\\ = 1̂ 21 = l

We now consider the first case of (5.7). Then we obtain

p(s\, s2) = (a\s\ + b\, a2S2 + b2).

Since AoFr = Fj=,op,it follows from (5.3) that

A(c\(sι)c2(s2)~l) = c\(a\s\ + b\)c2(a2

Since ci (0) = C2(0) = e, the relation above implies

(R o A)a(s) = c\{axs + b\), (L o A)c2(s)~λ = c2(a2s + Z72)""1 ,

where R denotes the right translation by C2Φ2), and L denotes the left translation by c\ (b\)~ι.

So there exist isometries A\ and A2 of S3 such that

(5.8) ci(s) = AiCi(ais + bi).

This shows that Ki(s) = /c,(α/̂ y + Z?/). Since β : /? -^ /? is an even function, it follows from

(5.5) and (5.6) that

(5.9) β(yi γi

By (2.7) and (5.8) we obtain

Ci(s + U) = AiCi(ciiS + bi + aJi) = ±AjCi(aiS + &;) =
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Since/?2(±c/(^)) = i>i(s), we obtain γi(s+U) = Yi(s), and so γi(s+ϊi) = χ/(s). Hence /)///

must be an integer. Similarly we see that ///// is an integer, and so we have // = //. Therefore

rli rh r'U
I β(τYi(s))ds = β(τΫi(ais + bi))ds= β{τΫi(s))ds,

Jo Jo Jo

where the first equality follows from (5.9), and the second equality follows from the fact that

τγ. (s) is //-periodic. Hence (5.4) implies

Eβ(γι) = Eβ(γι), Eβ(γ2) = Eβ(γ2).

For the second case of (5.7), in the same way as above, we obtain

Eβ(γ\) = Eβ(γ2), Eβ(γ2) = Eβ(γι).

This completes the proof of Lemma 5.2. D

We conclude this section with the following theorem.

THEOREM 5.3. Let Γ = (γ\, γ2) be a periodic admissible pair, and let H be the mean

curvature of the isometric immersion fr '- Mr -> S3. Then

where dσ denotes the volume element of the flat torus Mr-

PROOF. Let /,- > 0 be the minimum period of y;, and let ξ\ and ξ2 denote the generators

of the lattice G(Γ) given by (4.4). We consider the domain

D = {xξi + yξ2 : 0 < x < 1, 0 < y < 1} C R2 .

Since D is a fundamental domain of G(Γ), it follows from (3.8) and (3.10) that

cos(a2(s2) - a\(s\))ds\ds2f Hdσ = f (
JMΓ JD

= C Γ ds2 f
Jo Jo

cos(a2(s2) -a\(s\))ds\ ,

where the second equality follows from the fact that the function <Xi(s) is //-periodic. On the

other hand (3.7) implies

cos(a2(s2) - α i ( s i ) ) = -(kχ{sχ)k2{s2) + \)\γ[{s\)\\γ2{s2)\.

This completes the proof. D

6. Proof of Theorem 1.2.

LEMMA 6.1. Let f : M -> S3 be a primitive isometric immersion of a flat torus M,

and let π : M -+ M be a Riemannian covering. Ifp:M^> M is a diffeomorphism satisfying

the relation foπop = foπ, then π o p = π.
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PROOF. Since M is a complete connected flat surface and / o π : M -> S3 is an

isometric immersion, it follows from [5] that there exists a covering T : R2 -+ M such that

dT dT\ τ(dT dT\
- F-) = 1 ' M ^ ' r = 0 for ί = 1,2,3J, 3J// \dsi dsij

where # denotes the Riemannian metric on M, and h denotes the second fundamental form of

the immersion / o π : M —> S3. Note that the immersion F = / o 7 Γ o Γ i s a FAT.

Since Γ is a universal covering, there exist p e Diff(/?2) such that T o β = poT. Using

the relation f o π o p = f oπ, we obtain F o p = F, and so it follows from [1, Theorem

2.3] that p is a parallel translation of/?2. Let 0 be a covering transformation of π. We take

φ e Diff(/?2) such that T o φ = φ o T. Since 7Γ o φ = π, in the same way as above, we see

that φ is a parallel translation of/?2. Hence p o φ — φ o p, and so we obtain

(6.1) p o φ = φ o p .

Since the covering π is regular, it follows from (6.1) that there exists a diffeomorphism p! :

M -^ M such that π o p = pf o π. Then

fop oπ = foπop = foπ.

Hence f o pf = f. Since the immersion / is primitive, we see that p r = 1, and so π o p = π.

D

LEMMA 6.2. Lei /i <znd /2 Z?e primitive isometric immersions of a flat torus M into

S3, and letπ : M —• M be a Riemannian covering. Iff\oπ = f2oπ, then f\ Ξ / 2 .

PROOF. Since f\ oπ = fi on, there exist an isometry A of S3 and a diffeomorphism p

of M such that Ao/ jo i r = fi^π o p. We now denote by G(π) the covering transformation

group of π. Then, for each φ e G(7r), we obtain

f2oπopoφo p~ =Aof\oττoφo p~ = A o f\ o π o p~ = / 2 o 7Γ .

So it follows from Lemma 6.1 that π o p o φ o ρ~ι = π. Hence

(6.2) poφop~ιeG(π) for all φ e G(π).

Since the covering π is regular, it follows from (6.2) that there exists a diffeomorphism p r :

M -• M satisfying the relation π o p = p' oπ. Then

Aθ/lO7Γ = /2θ7Γθp = /2θp/θ7Γ.

Hence A o /i' = / 2 o p r, and so /i = / 2 . D

By Lemma 6.2 it is easy to see that Theorem 1.2 follows from the following theorem.

THEOREM 6.3. If f : M —> S3 is a primitive isometric immersion of a flat torus M

into S3 with nonconstant mean curvature, then there exists a smooth one-parameter family of

primitive isometric immersions ft:M-±S3,teR, such that fo = f and ft φ fs for all

s φt. Furthermore the total mean curvature of the immersion ft is equal to that offofor all

teR.
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PROOF. By Theorem 3.1 there exists a periodic admissible pair Γ = (γ\, γi) such that

/ = fΓ. So we may assume that f — fΓ and M = Mp. Since the mean curvature, of fp

is not constant, it follows from Theorem 3.2 that either k\(s) or kι{s) is not constant, where

ki (s) denotes the geodesic curvature of y,- (s). Without loss of generality, we may assume that

k\ (s) is not constant.

We now use the following theorem which will be proved in Section 7.

THEOREM 6.4. Let γ : R -• S2 be aperiodic regular curve whose geodesic curvature

k(s) satisfies \γ'(s)\y/l + k(s)2 = 2. Ifk(s) is not constant, then there exist a smooth even

function β : R -> R and a smooth one-parameter family of periodic regular curves γt : R ->-

S2, —ε<t<ε, such that γo(s) = γ(s) and

(1) |

(2) K(γt) = K(γ), L(γt) = L(γ), Eβ(γt) = Eβ(γ) +1,

(3) I(γt) = I(γ),

where kt(s) denotes the geodesic curvature ofγt(s).

So there exist a smooth even function β and a smooth one-parameter family of periodic

regular curves γ[ : R -> S2, ί G /?, such that γ®(s) = γ\(s) and

(6.3) Γt = (y[, 72) is a periodic admissible pair,

(6.4) K{γ{) = K{γx), L{y[) =

(6.5) Eβ(γ[)φEβ{y[) for all j ^ ί .

By (6.3) we obtain the flat torus Mpt and the primitive isometric immersion fpt : Mpt —• 5 3 .

For each Γt, define Φrr : R2 ^ R2 in the same way as (4.3). Then it follows from Theorem

4.1 that the map Φpt induces the isometry φt : Mpt -> (R2, go)/ W(Γt). On the other

hand, (6.4) implies that W(Γt) = W(Γ). So we obtain the primitive isometric immersion

ft : M -> S3 defined by

ft = /r f O0Γ1 °Ψo

We now show that the family /,, t e R, satisfies the properties required in Theorem 6.3.

Since Γo = Γ, we obtain f0 = fp = / . By (6.5) it follows from Theorem 5.1 that fps ψ fpt

for all s φt, and so

fsψft forall s φ t .

Let Ht denote the mean curvature of the immersion ft. Since ft = fpt, it follows from (6.4)

and Theorem 5.3 that

f Htdσ = f
JM JM

Hodσ for all t e R,

where dσ denotes the volume element of the flat torus M. To establish the property that

the map (ί,jc) \-+ ft(x) is smooth, we consider the maps Q\ : R x R2/W(Γ) ->• 5 3 and

Q2:RxR2 -+ Rx R2/W(Γ) defined by

Q\(t,p) = frt(ΦΓl(P))> Q2(f,xux2) = (t,π(xux2)),
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where π denotes the canonical projection of R2 onto R2/W(Γ). Note that the map Qι is a

local diffeomorphism. Furthermore we define the diffeomorphism Q3 : R x R2 —> R x R2 by

Then it follows that

and so the map Qi ° (?2 ° <23 : R * R2 -> S3 is smooth. Since the map 02 o Q3 is a local

diffeomorphism, we see that the map Q\ is smooth. Hence the map (ί, x) \-> ft(x)\s smooth.

This completes the proof of Theorem 6.3. D

7. Deformations of periodic regular curves in S2. The aim of this section is to

prove Theorem 6.4. We first prove the following lemma.

LEMMA 7.1. Let U be an open subset ofRn which contains the origin o e Rn. Let

f : U x R —> Rm be a continuous map such that fx : R —> Rm is nonconstant and periodic

for all x e U, where fx(s) = f(x,s). Suppose that there exists a continuous positive function

I : U —> /?+ satisfying

(1) fx(s + l(x)) = fx(s)forall (x, s) e U x R,

(2) / (o) is the minimum period of fo(s).

Then there exists an open neighborhood Ur of the origin o in U such that the minimum period

offχ(s) is equal to I(x) for all x e U'.

PROOF. For each x e U, let ϊ(x) > 0 be the minimum period of fx(s), and let q(x) =

l{x)/ϊ(x). Note that q(x) is a positive integer. Now assume that the assertion of the lemma is

not true. Then there exists a sequence {xn}^Lι in U such that q(xn) > 2 and lim^^oo xn = o.

We first consider the case where the sequence q(xn) is bounded. Then we may assume that

there exists an integer p > 2 such that q(xn) = p for all n. Hence

fxH (*) = fxn is + /(*„)) = fXn (s + I(xn)/P)

Letting n tend to infinity, we have fo(s) = fo(s + l{o)/p). So the minimum period of fo(s)

is smaller than l(o). This is a contradiction.

Now consider the other case. Then we may assume that l im^oo q(xn) = 00. For each

s e R, let sn be the real number such that (sn — s)/I(xn) is an integer and

0 < sn < ϊ(xn).

Then fXn(s) = fXn(sn) and 0 < sn < l(xn)/q(xn). Letting n tend to infinity, we have

fo(s) = fo(0), which shows that fo(s) is constant. This is a contradiction. D

LEMMA 7.2. Let γ : R —• S2 be aperiodic regular curve parametrized by arclength,

and let I > 0 be the minimum period ofγ(s). If the geodesic curvature ofy(s) is not constant,

then there exist a smooth even function β : R —> R and a smooth one-parameter family of

periodic regular curves γt : R -> S2, —ε < t < ε, such that

(1) Yθ(s) = γ(s),

(2) the minimum period of γt (s) is equal to /,
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(3) K{γt) = K(γ), L{γt) = L(γ), Eβ(γt) = Eβ(γ) +1.

PROOF. Let k(s) be the geodesic curvature of γ(s), and let τ(s) = τy(s). Since

| / ( s )| = 1, it follows from (5.2) that

(7.1) τ(s) = 2k\s){\+k{s)2)-V2.

Since τ = 2{k/y/\ +k2)' and k(l) = A (O), we obtain

/„' τ(s)ds = 0.

If τ(s) is constant, then τ(s) = 0, and so k'(s) = 0. This contradicts the assumption that the

geodesic curvature of y(s) is not constant. Hence τ(s) is not constant. So there exists a real

number so such that

(7.2) r ( s o ) ^ O ,

We now choose a smooth even function β : R —>• /? such that

0 if 0 < / < 5 ,

nonzero if i = 6,

where β ( z ) denotes the i-th derivative of the function β.

Let f\(s), f2(s) and f$(s) be /-periodic smooth functions which will be specified later.

For each x = (x\, JC2> *3) € ̂ 3> define px : R -+ S2 by

px(s) = cos I Y^ fi{s)xi I y(ί) + sin I V^ fi{s)xi I v(ί), v(s") = J(yr(s)),

\i =i / \i=i /

where 7 denotes the almost complex structure given by (2.5). Let Bδ(o) denote the 8-

neighborhood of the origin o e R3. Since po(β) = γ(s) and px(s + /) = px(s), there

exists a positive number 8 such that for each x e Bs(o) the map px : R -> S2 is a periodic

regular curve. By Lemma 7.1 we may assume that the minimum period of px(s) is equal to /

for all x e B$(o). So we obtain

L(px)= ί \p'x(s)\ds, K(px)= f kx(s)\px(s)\ds for x e Bδ(o),
Jo Jo

where kx(s) denotes the geodesic curvature of px(s). Furthermore

I pi
Eβ(px) = - β(τx(s)W\+kx(s)2\Pχ(s)\ds for x e Bδ(o),

* Jo

where τx(s) = 2k'x(s)(l + kx(s)2)~3/2\px(s)\~ι. Therefore we obtain the smooth map F :

Bδ(o) -> R3 defined by

F(x) = (K(px),L(px),Eβ(px)).

We now show that for a suitable choice of the functions fj(s), the Jacobi matrix of F is

non-singular at the origin o. By a straightforward calculation we obtain

(7.4)
d -ί

Jo

k(s)fj(s)ds,
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dxi
= / fj(s)ds,

i 3
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(7.5)

(7.6)

where Π(s) denote the i-th derivatives of the functions fj(s), and the functions α, (j) are

given by

(7.7) ax = β\τ), a2 = *

Since the functions α, (̂ ) and / ; (s) are /-periodic, it follows from integration by parts that

a
(7.8) = ί uβ(s)fj

,=0 Jo
(s)ds,

where uβ(s) = ELί-lVβfV).
We now specify the functions fj(s) as follows:

Ms) = 1, fi{s) = -k(s), Ms) = uβ{s).

Then it follows from (7.4), (7.5) and (7.8) that the Jacobi matrix of F at the origin o is given

by

F\o) = [Cij], cu = ί fi(s)fj(s)ds .
./o

By using (7.7), the function Uβ(s) can be written as Uβ(s) = Y^=Qbi(s)β^(τ(s)). Since

b4(s) = τr{sγ/(\ + k(s)2), it follows from (7.2) and (7.3) that

II^JO) = 0 , « ^

On the other hand, (7.1) and (7.2) imply A/Cso) φ 0. Hence

(7.9) det
/3(θ)

/{(JO) = -det

"1 k(so) Uβ

0 k'(s0) uf

β(s0)

0 f' ^

Let f i, §2» £3 be real numbers satisfying the following relation.

3

—ξy = 0 for 1 = 1,2, 3.

Since Ei\y=i cij%i%j = 0» w e obtain

^ 0
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Hence £ ? = 1 £ // 0) = 0 for all s e R, and so

3 3 3

Σ>/;(*o) = Σξif!(so) = Σ>/Γ(*o) = 0.
i = l ι = l i = l

Therefore it follows from (7.9) that ξ\ = §2 = £3 = 0. This implies that the matrix F\o) is

non-singular.

Using the inverse function theorem, we see that there exists a positive number ε such

that the map F : Bs(o) -> R3 carries a neighborhood of the origin o diffeomorphically onto

the ε-neighborhood of F(o) e R3. Since F(p) = (K(γ), L(y), Eβ(γ)), we obtain a smooth

curve x : (—ε, ε) -> B&(o) such that

F(JC(O) = (K(γ), L(γ), ^ ( y ) + ί ) , x(0) = 0.

Then the smooth one-parameter family of the periodic regular curves γt(s) = pX(t) (s) satisfies

the required properties (l)-(3). D

PROOF OF THEOREM 6.4. Let θ : R -> R be the diffeomorphism given by

0(s)= Γ\y'(x)\dx,
Jo

and let γ : R ->• 5 2 be the curve defined by γ(θ(s)) = γ(s). Then y is a regular curve

parametrized by arclength, and its geodesic curvature k satisfies ϊc(θ(s)) = k(s). Since

\γ'(s)\τjl +k(s)2 = 2, we obtain

s = - I y/l + k(x)2dx .

So it follows that y is m-periodic if and only if y is θ (m)-periodic. Hence the minimum period

of γ is equal to θ(l), where / denotes the minimum period of y. Since k is not constant,

Lemma 7.2 implies that there exist a smooth even function β and a smooth one-parameter

family of periodic regular curves γt : R —> S2, — ε < t < ε, such that

(7.10) y0 = γ , K(γt) = K(γ), L(γt) = L(γ), Eβ(γt) = Eβ(γ) + t,

and the minimum period of γt is equal to θ(l).

We now consider the smooth one-parameter family of the diffeomorphisms θt : R -> R,

—ε<t<ε, defined by the following relation:

(7.11) s = }- ί * \Yl(x)\Jl+k,{x)2dx,
2 Jo v

where kt denotes the geodesic curvature of γt. Furthermore we consider the smooth one-

parameter family of regular curves γt : R -* S2, — ε < t < ε given by

Yt(s) = γt(βt(s)).

Since yo = y and \γf\ = 1, we obtain #o(s) = 0(s) and so yo(5 ) = γ(s). We set
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Then it follows that θt(lt) = 0(0 and k = /. Since γt is 0(/)-periodic, we obtain Θt(s + /,) =

θt(s) + 0(0- Hence

(7.12) Yt(s+lt) = γt(s).

We now show that the family γt, —ε<t<ε, satisfies the properties (l)-(3) required in

Theorem 6.4. Let kt(s) denote the geodesic curvature of γt(s). Then it follows that kt(s) =

kt(θt(s)), and so (7.11) implies

Since /o = / and γo(s) = y(s), the minimum period of γo(s) is equal to /o. Hence, using

(7.12) and Lemma 7.1, we may assume that the minimum period of γt(s) is equal to lt for

—ε < t < ε. So we obtain
pit pit rθ(l)

L(Yt) = / \Y't{s)\ds = / \?l{θt{s))\θ't{s)ds = / \γ't{x)\dx = L(γt),
Jo Jo Jo

where the third equality follows from the relation θt(lt) = θ(l). Similarly we obtain K(γt) =

K(yt) and Eβ(γt) = Eβ(γt). Hence (7.10) implies that

K(γt) = K(γo), L(γt) = L(γ0), Eβ(γt) = Eβ(γ0) + t.

Since lt is continuous in ί, the closed curves yo|[O, h] and γt\[0, lt] represent the same ho-

mology class in H\(US2). Hence

This completes the proof of Theorem 6.4. D
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