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ISOMETRIC DEFORMATIONS OF FLAT TORI IN THE 3-SPHERE
WITH NONCONSTANT MEAN CURVATURE
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Abstract. For an isometric immersion f of a flat torus into the unit 3-sphere, we show
that if the mean curvature of f is not constant, then the immersion f admits a nontrivial
isometric deformation preserving the total mean curvature.

1. Introduction. Let S? be the 3-dimensional standard unit sphere in the Euclidean
space R*. For each 0 satisfying 0 < @ < 7/2, we consider the Clifford torus Mg C S> defined
by

My = {x € R* : x? + x3 = cos? 6, x3 + xJ = sin®6}.

The Clifford torus My is a flat Riemannian manifold equipped with the metric induced by the
inclusion map ig : My — $3. In [2] the author proved that every isometric deformation of
ig : My — S is trivial. Incidentally, it is easy to see that if M is a flat torus isometrically
embedded in S>3 with constant mean curvature, then there exists a Clifford torus My which is
congruent to M. So we obtain

THEOREM 1.1. If f : M — $3 is an isometric embedding of a flat torus M into §3
with constant mean curvature, then every isometric deformation of the embedding f is trivial.

On the other hand there are many flat tori isometrically immersed in $3 with nonconstant

mean curvature. In this paper we deal with isometric deformations of these surfaces. To state
' the result we recall the notion of congruence of immersions. Fori = 1,2,let f; : X; —> Y
be an immersion of a smooth manifold X; into a Riemannian manifold Y. The immersions fj
and f; are said to be congruent if there exist an isometry A : ¥ — Y and a diffeomorphism
p: X; — Xpsuchthat Ao fi = f> 0 p. We shall write fi = f, if f] and f; are congruent.
The main result of this paper is the following theorem.

THEOREM 1.2. If f : M — S3 is an isometric immersion of a flat torus M into
S3 with nonconstant mean curvature, then there exists a smooth one-parameter family of
isometric immersions f; : M — S3.t € R, such that fo = f and

(1) fi#fsforalls #1t,

(2) the total mean curvature of f; does not depend on t.
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REMARK. The total mean curvature of the immersion f; is given by |, y Hido, where
H, denotes the mean curvature function of f;, and do denotes the volume element of the flat
torus M.

The outline of this paper is as follows. In Section 2 we introduce some geometric in-
variants of a periodic regular curve y : R — S%. We denote by K (y) (resp. L(y)) the total
geodesic curvature (resp. the length) of the closed curve y [0, /], where / > 0 is the minimum
period of y. Furthermore, using the curve ¥ = y/|y| in the unit tangent bundle of S2, we
define I (y) to be the homology class represented by the closed curve 7|[0, /].

In Section 3 we explain a method for constructing all the flat tori in $3. A pair I' =
(71, y2) of periodic regular curves y; : R — $2 is said to be a periodic admissible pair if the
geodesic curvature of y; is greater than that of y; and some auxiliary conditions are satisfied
(see Definition 3.1). Each periodic admissible pair I" induces a flat torus M and an isometric
immersion fr : M — $3. Furthermore the immersion f is a primitive immersion (see
Definition 3.2). Conversely, if f : M — S is a primitive isometric immersion of a flat torus
M into S3, then there exists a periodic admissible pair I” such that f = fr (Theorem 3.1).

In Section 4 we study the intrinsic structure of the flat torus M. For each periodic
admissible pair I" = (y1, y2), we set

Ki(l'y=K(), LiIN=Ly), LI)=I1{),

and define W(I") to be a lattice of R? whose generators can be written in terms of K;(I),
L;(I") and I;(I"). Then it is shown that the flat torus R? /W (I') is isometric to the flat torus
M (Theorem 4.1).

In Section 5 we deal with the extrinsic structure of the immersion fr. For each smooth
even function 8 : R — R, we construct a functional Eg which is defined on the set of
all periodic admissible pairs, and show that Eg(I") = E,g(f') if fr = fp (Theorem 5.1).
Furthermore we show that the total mean curvature of fr can be written in terms of K;(I"),
L;(I") and I; (I") (Theorem 5.3).

In Sections 6 and 7 we give the proof of Theorem 1.2. To establish the theorem we may
assume that the immersion f : M — S is primitive. By Theorem 3.1 there exists a periodic
admissible pair I' = (yj, y») satisfying f = fr. Since the mean curvature of fr is not
constant, we see that either y; or y; is not a circle. Using this fact, we construct a smooth
even function B and a smooth one-parameter family of periodic admissible pairs I satisfying

In=r, Ki(Ily)=Ki(I'), Li(IY)=Li(I"), L) =1LTI),

and Eg(Iy) # Eg(l}) for all s # ¢. So the assertion of Theorem 1.2 follows from Theorems
4.1,5.1 and 5.3.

REMARK. InTheorem 1.1 the word “embedding* cannot be replaced by the word ”im-
mersion“. In fact, there is a flat torus M and a Riemannian covering w : M — Mj such that
the composition igom : M — $3 admits a nontrivial isometric deformation. The Riemannian
coverings as above will be classified in [4].
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2. Preliminaries. Let SU(2) be the group of all 2 x 2 unitary matrices with determi-
nant 1. Its Lie algebra su(2) consists of all 2 x 2 skew Hermitian matrices of trace 0. The
adjoint representation of SU (2) is given by

Ad(@)x = axa™!,

where a € SU(2) and x € su(2). We set

1
(x,y) = —Etrace(xy) for x,yesu2).

Then it follows that (, ) is a positive definite and Ad-invariant inner product on su(2). Fur-
thermore we consider the orthonormal basis of su(2) given by

e = R R =

Note that
[e1, e2] =2e3, [e2,e3] =2e1, [e3,e1]=2e2,

where [, ] denotes the Lie bracket on su(2). Fori = 1, 2, 3, let E; be the left invariant vector
field on SU (2) corresponding to ¢;. We endow SU (2) with the Riemannian metric (, ) such
that (E;, E;) = &;. Then SU(2) is isometric to the unit 3-sphere S, and so we identify $*
with SU (2).

Let S2 be the unit sphere in su(2) defined by $2 = {x € su2) : |x| = 1}. The unit
tangent bundle of $2, denoted by U S2, can be identified with a subset of §2 x 2 as follows:

US? = {(x,v) € §? x §%: (x,v) = 0},

where the canonical projection p; : US? — §2 is given by p1(x, v) = x. Define p; : §> —
US? by

2.1 p2(a) = (Ad(a)es, Ad(a)ey) .

The map p; is a double covering such that p2(—a) = pa(a) foralla € $3. We now consider
aregular curve y : R — §2, and define 7 : R — U S? by

(2.2) AOEIIORZOVIZONE

Then there exists a curve ¢ : R — §3 satisfying ps(c(s)) = y(s). By [3, Lemma 2.2] we
obtain

1
2.3) @7 =3IV Oler + k(®)es},
where k(s) denotes the geodesic curvature of y (s). Note that

(2.4) k(s) = (¥"(s), T/ N/ 1Y )12,

where J denotes the almost complex structure on S2 defined by

1
(2.5) J(v) = 5[x, v] for veT.S%.



286 Y. KITAGAWA

We now assume that the curve y : R — 52 is periodic with the minimum period I > 0. The
length and the total geodesic curvature of y are given by

! !
(2.6) L(y)=/0 ly'(s)lds K()/)=/0 k(s)ly'(s)lds .

Furthermore define (y) to be the element of the homology group H; (U 52) represented by
the closed curve p|[0,[]. Note that H;(U $2) = Z,. Since p is a double covering and
p2(a) = pa(—a) foralla € $3, we obtain

c(s) if I(y)=0,

2.7) C(Hl):[ —cs) ifI(y)=1.

3. Construction of flat tori in S>. In this section we explain a method for construct-
ing all the flat tori in $3, which was established in [1] and [3].

DEFINITION 3.1. Let I" = (y1, y2) be a pair of regular curves y; : R — S2,i=1,2.
The pair I is said to be an admissble pair if it satisfies the following conditions (3.1)—(3.3).

(3.1 71(0) = 72(0) = (e3, e1),
(3.2) Iy ()IV1+ki(s)2=2 for i=1,2,
(3.3) ki(s) > k;(sz) forall (s,s2) € R?,

where k; (s) denotes the geodesic curvature of y; (s).

Let I = (y1, y2) be an admissible pair. Then it follows from (3.1) that there exist curves
¢i:R— $3,i = 1,2, such that

A 1 0

(3.4 p2(ci(s)) = yi(s), ¢i(0)=e= [O 1] .
By (2.3) and (3.2) we obtain |c/(s)| = 1. Using the group structure on 53, we define Fr :
R?> - S by
(3.5) Fr(si,2) = ci(s1)ca(s2) ™" .

By [1, Lemma 3.8, Theorem 4.2] we see that the map Fr is a flat asymptotic Tchebychef
immersion (FAT for short). For the definition of FAT, we refer the reader to [1, p. 460]. So
the map Fr is an immersion which induces a flat Riemannian metric gr on RZ. Let «;(s) be
the function defined by

(3.6) cota;(s) =ki(s), O<oai(s) <m.
Then (3.3) implies &) (s1) < a2(s2). Using (3.2), we obtain

_ 1 1 )
(3.7) sina (s) = EIV,-’(S)I, cos ai(s) = ki ()Y )]
So it follows from (2.3) that

c;'(s)c; (s) = sina;(s)ep + cosaj(s)es .
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Hence the components of the Riemannian metric gr for the local coordinates (s;, s7) satisfy
(3.8) giu=g2=1, gi2=—cos(azs2) —ai(s1)).

Furthermore the components of the second fundamental form of the immersion Fr (s, s2)
satisfy

(3.9 hit =h22 =0, hyz2 =sin(ea(s2) — ai(s1)),

where the unit normal is defined by

§ = (0Fr/ds1) x (9Fr/ds2)/|1(@Fr/ds1) x (3Fr/ds2)|.
We now consider the group
G(I') = {p € DiffR*) : Fr o p = Fr},
where Diff(R%) denotes the group of all diffeomorphisms of RZ. Then we obtain the 2-
dimensional flat Riemannian manifold My = (R2, gr)/G(I") and the isometric immersion
fr : Mr — S$3 satisfying fr o m = Fr, where - denotes the canonical projection of R?

onto M. It is easy to see that the immersion fr : M — S3 is primitive in the sense of the
following definition.

DEFINITION 3.2. Animmersion f : X — Y of a smooth manifold X into a smooth
manifold Y is said to be primitive if the identity map of X is the only diffeomorphism ¢ :
X — X satifying fo¢ = f.

It follows from [1, Theorem 2.3] that the group G(I") consists of parallel translations
of R%, and so M r is orientable. Furthermore it follows from [1, Theorem 5.1] that M
is compact if and only if I is periodic, where the admissible pair I' = (y1, y2) is said to
be periodic if both y; and y, are periodic regular curves. So we see that every periodic
admissible pair I induces a flat torus M and a primitive isometric immersion fr : M —
s3. Conversely, we obtain the following theorem.

THEOREM 3.1 ([3]). Let f : M — S> be a primitive isometric immersion of a flat
torus M. Then there exists a periodic admissible pair I" such that f = fr.

We conclude this section with the following theorem.

THEOREM 3.2. Let I' = (yy1, y2) be an admissible pair, and let k; (s) denote the geo-
desic curvature of y;(s). Then the mean curvature of fr is constant if and only if both ki (s)
and ky(s) are constant.

PROOF. By (3.8) and (3.9) the mean curvature H of Fr is given by
(3.10) H = cot(aa(s2) — a1 (s1)) -
So (3.6) implies the assertion of Theorem 3.2. O
4. The intrinsic structure of M. Let I’ = (y1, y2) be a periodic admissible pair.
Using the homology class 7 (y;) defined in Section 2, we set
(") =), 1(r2),
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and define W (I") to be the lattice of R? whose generators are given by the following:

v,v2 if I(I7) =(0,0),
v, vy if I(5) =(1,0),

@1 vi,2vy if I(N)=(0,1),
vy ifI(MN)=(.1),
where
1 1
4.2) v = -Z-(K(yl), L(y1), wvn= 5(—K(Vz), —L(y2)).

We now identify the lattice W (I") with a group of parallel translations of R%. In this
section we show that the flat torus M is isometric to the flat torus (R2, g0)/ W(I"), where
go denotes the canonical flat Riemannian metric on RZ. Using the functions o1 (s) and a2 (s)
given by (3.6), we set

S1 52
x1(s1, $2) =/ cosai(s)ds —/ cosap(s)ds ,
0 0

51 s
x2(s1, 52) =/ sinaj(s)ds —/ sinay(s)ds ,
0 0
and define & : R? — R? by

4.3) Dr(s1,52) = (x1(51, 52), x2(51, 52)) .

THEOREM 4.1. Let I' = (y1, y2) be a periodic admissible pair, and let gr be the
Riemannian metric on R? induced by the immersion Fr : R> — S 3. Then the map ®r is an
isometry of (R2, gr) onto (R?, 90), and

W) ={Propo®r!:peG).

In particular, the flat torus M is isometric to the flat torus (R?, 90)/ W(I').

PROOF. By (3.8)itis easy to see that g = P} go, and so @ is an isometry of (R?, gr)
onto (R?, go). Since the group G(I") consists of parallel traslations of R? and the quotient
space R?/G(I") is compact, the group G (I") can be identified with a lattice of R2. It follows
from [3, Theorem 4.1] that the lattice G(I”) has the following generators.

(11,0), (0,1p) if I(I') =(0,0),
(213,0), (0, ) if I(r) =(1,0),
(11, 0), (0, 20) if I(I')=(0,1),
(1, ), h, =) fI(r)=(@1,1),

where I; denotes the minimum period of y;(s). For m;,m, € Z, we consider the parallel
translation p : R — R? given by

4.4)

p(s1,52) = (s1+mily, s2 +maly).
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Since «; (s + I;) = a;(s), it follows from (3.7) and (4.2) that

l l
O (o(s1, 52)) =Pr(s1, 52) + my ( / ' cos i (s)ds, / ' sinal(S)dS>
0 0

173 1)
+my (—/ cos az(s)ds, —/ sinaz(s)ds)
0 0

=@r(s1,52) + mivi +mavy.
So we obtain
®ropodr!(x1,x2) = (x1,%2) +myvi +mavy.
Hence it follows from (4.1) and (4.4) that ®r o p o <DI_-1 € W(I') if and only if p € G(I').
This completes the proof of Theorem 4.1. a

5. Extrinsic invariants of f. Lety : R — S be a periodic regular curve with the
minimum period / > 0. For each smooth function 8 : R — R, we define Eg(y) by

1 I
5.1 Eg(y) = 5/0 By ())V1+k(s)2|y' (s)lds,
where k(s) denotes the geodesic curvature of y (s), and
(5.2) 7y (s) = 2k'(s)(1 + k()) )y ()" .

Furthermore for each periodic admissible pair I" = (yy, y2), we set
Eg(I') = Eg(y1) + Eg(v2) .
The aim of this section is to prove the following theorem.

THEOREM 5.1. Let I' and I” be periodic admissible pairs such that fr = f 7+ Then
Eg(I') = Eg (I") for any smooth even function B.

It is easy to see that fr = fr implies Fr = Fr. So Theorem 5.1 follows from the
following lemma.

LEMMA 5.2. Let I' = (y1,y2) and I' = (y1, ) be periodic admissible pairs. If
Fr = Fg,then Eg(I") = Eﬁ(l:')for any smooth even function .

PROOF. Letc;(s) and ¢; (s) be the curves in S3 defined by (3.4). Then
(5.3) Fr(s1,5) = c1(s1)c2(s2)™",  Fr(s1, ) = &1(s1)é(s2) 7L

By (3.2) and (5.1) we obtain

I I
5.4) Eg(vi) =_/(; By (s))ds, Ep(yi) =/0 B(zy (s))ds ,

where /; (resp. I;) denotes the minimum period of y; (resp. ;). Let k; (s) be the curvature of
the curve ¢; (s). Since |c;| = 1, it follows from [1, Lemmas 3.7 and 3.8] that

ki = |Dgcil = lefl,
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where D denotes the Riemannian connection on S°, and «; is the function defined by (3.6).

Differentiating (3.6), we have alf(s) = —klf (s) sin? o; (s), where k;(s) denotes the geodesic
curvature of y;(s). So it follows from (3.7) and (5.2) that otlf (s) = —7y(s). Hence

(5.5) Ki(s) = |ty (s)].

Similarly we obtain

(5.6) Ki(s) = |ty (s)l,

where «; (s) denotes the curvature of the curve ¢; (s).

Let g;; (resp. g;;) and h;; (resp. h; ) denote the first and second fundamental forms of
the immersion Fr(s1, s2) (resp. F(s1, 52)). Since Fr = F, there exist an isometry A of s3
and a diffeomorphism p of R? such that Ao Fr = F 7 o p. Then we obtain

9ok ap, dpx dp1
gij = ngl(p) — hij = iX:hkl( )3 851

where p(s1, 52) = (p1(s1, $2), p2(s1, 52)). So it follows from (3.8) and (3.9) that the Jacobi
matrix of the diffeomorphism p : R*> — R? satisfies the following relation.

9 a 9
.7) 3prp) _far 0] B [0 az],
9(s1, 52) 0 a a(s1, 52) a 0
where |a;| = |az| = 1.

We now consider the first case of (5.7). Then we obtain
p(s1, 82) = (ais1 + b1, azsy + ba) .
Since A o Fr = Ff o p, it follows from (5.3) that
Aci(sD)ea(s2)™") = Eilarst + b)dr(azsy +b2) 7!
Since ¢1(0) = c2(0) = e, the relation above implies
(Ro Aei(s) =&i(ais +b1), (LoAea(s)™ =as +b2)7",

where R denotes the right translation by ¢2(b2), and L denotes the left translation by ¢ (b; )L
So there exist isometries A1 and A, of $3 such that

(5.8) ci(s) = A;ci(ais + b;) .

This shows that «;(s) = k;(a;s + b;). Since B : R — R is an even function, it follows from
(5.5) and (5.6) that

(5.9) B(zy, (5)) = B(ty(ais + b)) .
By (2.7) and (5.8) we obtain
ci(s +1;) = AiGi(ais + b +a;l;) = £A;Gi(ais + bi) = £ci(s) .
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Since pa(ci(s)) = 7i(s), we obtain ; (s +1;) = 7i(s), and 0 y; (s +1i) = yi(s). Hence L;/;
must be an integer. Similarly we see that /; /I; is an integer, and so we have /; = [;. Therefore

I I I
A B(ty(s))ds = A B(ty (ais + by))ds = A Bty (s))ds
where the first equality follows from (5.9), and the second equality follows from the fact that
13 (s) is /;-periodic. Hence (5.4) implies
Eg(y1) = Eg(y1), Eg(y2) = Eg(yr).

For the second case of (5.7), in the same way as above, we obtain

Eg(y1) = Eg(y2), Eg(y2) = Eg(y1).
This completes the proof of Lemma 5.2. O
We conclude this section with the following theorem.

THEOREM 5.3. Let I’ = (y1, y2) be a periodic admissible pair, and let H be the mean
curvature of the isometric immersion fr : M — S3. Then

1 if I(I") = (0,0),

c

Mr
where do denotes the volume element of the flat torus M.

PROOF. Letl/; > 0 be the minimum period of y;, and let £; and &, denote the generators
of the lattice G(I") given by (4.4). We consider the domain

D={xE+y&:0<x<10<y<1}CR?.

Since D is a fundamental domain of G(I"), it follows from (3.8) and (3.10) that

Hdo =/ cos(az(s2) — ay(s1))dsi1dsy
My D

173 N
= c/ dsy f cos(az(s2) — a1(s1))ds1 ,
0 0
where the second equality follows from the fact that the function «; (s) is /;-periodic. On the
other hand (3.7) implies
1
cos(ara(s2) — ai(s1)) = Z(kl(sl)kZ(SZ) + DIy DIz (s2)] -
This completes the proof. g

6. Proof of Theorem 1.2.

LEMMA 6.1. Let f : M — S be a primitive isometric immersion of a flat torus M,
and letw : M — M be a Riemannian covering. If p : M — M is a diffeomorphism satisfying
the relation fomop = fom,thenmop =m.
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PROOF. Since M is a complete connected flat surface and f o : M — S° is an
isometric immersion, it follows from [5] that there exists a covering T : R> — M such that

aT oT - (3T oT
gl —,—)=1, h|{—,—)=0 fori=1,2,
ds; 0s; ds; 0S;

where g denotes the Riemannian metric on M, and /& denotes the second fundamental form of
the immersion f o 7 : M — S3. Note that the immersion F = f o o T is a FAT.

Since T is a universal covering, there exist p € Diff(R%) such that T o p = p o T. Using
the relation f omr o p = f om, we obtain F o p = F, and so it follows from [1, Theorem
2.3] that p is a parallel translation of R?. Let ¢ be a covering transformation of 7. We take
¢ € Diff(R?) such that T o ¢ = ¢ o T. Since 7 o ¢ = m, in the same way as above, we see
that ¢ is a parallel translation of R2. Hence p o ¢ = ¢ o j, and so we obtain

(6.1) pop=¢op.
Since the covering 7 is regular, it follows from (6.1) that there exists a diffeomorphism o’ :
M — M suchthat w o p = p’ o . Then

fopom=fomop=fom.

Hence f o p’ = f. Since the immersion f is primitive, we see that o’ = 1,andsor o p = 7.
O

LEMMA 6.2. Let fi and f, be primitive isometric immersions of a flat torus M into
S3,and let 1 : M — M be a Riemannian covering. If fi o = f; o 7, then fi = f>.

PROOF. Since fjom = fso, there exist an isometry A of S3 and a diffeomorphism p
of M suchthat Ao fj o = f>0m o p. We now denote by G (r) the covering transformation
group of . Then, for each ¢ € G(rr), we obtain

fromopopop l=Ao fiomopop '=Ao fiomop = fhom.

1

So it follows from Lemma 6.1 that 7 o p o ¢ 0 p~' = 7. Hence

(6.2) popop leG(m) forall ¢ e G(r).
Since the covering 7 is regular, it follows from (6.2) that there exists a diffeomorphism p’ :
M — M satisfying the relation 7 o p = p’ o . Then
Ao fiom = fhomop=frop om.
Hence Ao fi = f0p’,and so fi = f>. (]
By Lemma 6.2 it is easy to see that Theorem 1.2 follows from the following theorem.

THEOREM 6.3. If f : M — S is a primitive isometric immersion of a flat torus M
into S° with nonconstant mean curvature, then there exists a smooth one-parameter family of
primitive isometric immersions f, - M — S3,t € R, such that fo = f and f, 2 f; for all
s # t. Furthermore the total mean curvature of the immersion f; is equal to that of fo for all
teR.
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PROOF. By Theorem 3.1 there exists a periodic admissible pair I" = (y, y2) such that
f = fr. So we may assume that f = fr and M = M. Since the mean curvature of fr
is not constant, it follows from Theorem 3.2 that either k;(s) or k2(s) is not constant, where
k; (s) denotes the geodesic curvature of y; (s). Without loss of generality, we may assume that
ki (s) is not constant.

We now use the following theorem which will be proved in Section 7.

THEOREM 6.4. Lety : R — S? be a periodic regular curve whose geodesic curvature
k(s) satisfies |y’ (s)|/1 + k(s)2 = 2. If k(s) is not constant, then there exist a smooth even
function 8 : R — R and a smooth one-parameter family of periodic regular curves y; : R —
S2, —¢ <t < &, such that yo(s) = y(s) and

(D) YOIV +k(s5)? =2,

(2) K()=K(y), L(y) =L(y), Eg(yr) = Eg(y) +1,

3 Iy =1(),
where k; (s) denotes the geodesic curvature of y;(s).

So there exist a smooth even function B and a smooth one-parameter family of periodic
regular curves y{ :R — $2,t € R, such that ylo(s) = y1(s) and

(6.3) I; = (y{ , ¥2) is a periodic admissible pair,
(6.4) Ky)=K@), Lu)=Ly), 1¢)=I1(),
(6.5) Eg(yy) # Eﬁ(yf) forall s#1t.

By (6.3) we obtain the flat torus M, and the primitive isometric immersion fr, : M, — S°.
For each I3, define @, : R? - R? in the same way as (4.3). Then it follows from Theorem
4.1 that the map @, induces the isometry ¢; : M, — (R?, 90)/ W(Iy). On the other
hand, (6.4) implies that W(I;) = W(I"). So we obtain the primitive isometric immersion
fi : M — $3 defined by
fr="fr o9 odo.
We now show that the family f;, t € R, satisfies the properties required in Theorem 6.3.

Since I'h = I', we obtain fy = fr = f. By (6.5) it follows from Theorem 5.1 that fr, # fr,
for all s # t, and so

fs#Efr forall s#t.

Let H; denote the mean curvature of the immersion f;. Since f; = fr,, it follows from (6.4)
and Theorem 5.3 that

/H,da:/ Hodo forall t€R,
M M

where do denotes the volume element of the flat torus M. To establish the property that
the map (¢, x) — f;(x) is smooth, we consider the maps Q1 : R x R2/W(1") — S3 and
02 : R x R? - R x R?/W(I') defined by

Q1(t, p) = fr (¢ (p)),  Qa2t, x1,x2) = (8, W(x1, x2)),



294 Y. KITAGAWA

where  denotes the canonical projection of R? onto Rz/ W(I"). Note that the map Q> is a
local diffeomorphism. Furthermore we define the diffeomorphism Q3 : R x R — R x R? by

03(t, 51, 52) = (¢, P, (51, 52)) -
Then it follows that
01(02(Q3(1, 51, 52))) = Fr,(s1, 52) »
and so the map Qj 0 Q20 Q3 : R X R? - §3 is smooth. Since the map Q> o Q3 is a local

diffeomorphism, we see that the map Q; is smooth. Hence the map (¢, x) — f;(x) is smooth.
This completes the proof of Theorem 6.3. O

7. Deformations of periodic regular curves in S2. The aim of this section is to
prove Theorem 6.4. We first prove the following lemma.

LEMMA 7.1. Let U be an open subset of R" which contains the origin o € R". Let
f U x R — R™ be a continuous map such that f, : R — R™ is nonconstant and periodic
forall x € U, where f,(s) = f(x,s). Suppose that there exists a continuous positive function
1: U — R* satisfying

(1) fx(s +1(x)) = fx(s) forall (x,s) € U xR,

(2) (o) is the minimum period of f,(s).
Then there exists an open neighborhood U’ of the origin o in U such that the minimum period
of fx(s) isequaltol(x) forallx € U’.

PROOF. Foreachx € U, let [, (x) > 0 be the minimum period of fy(s), and let g(x) =
I(x)/I(x). Note that g (x) is a positive integer. Now assume that the assertion of the lemma is
not true. Then there exists a sequence {x,}7° | in U such that g(x,) > 2 and lim,—, o X» = 0.
We first consider the case where the sequence g (x,) is bounded. Then we may assume that
there exists an integer p > 2 such that g(x,) = p for all n. Hence

Fin(8) = fo, (s +1(xn)) = fr, (s +1(xa)/P) -

Letting n tend to infinity, we have f,(s) = f,(s + [(0)/p). So the minimum period of f,(s)
is smaller than /(o). This is a contradiction.

Now consider the other case. Then we may assume that lim,_, s g(x,) = oo. For each
s € R, let s, be the real number such that (s, — s) /l_ (x,) is an integer and

0<s, <l_(x,,).

Then fy, (s) = fx,(sp) and 0 < s, < [(x,)/q(x,). Letting n tend to infinity, we have
fo(s) = f,(0), which shows that f,(s) is constant. This is a contradiction. O

LEMMA 7.2. Lety : R — S? be a periodic regular curve parametrized by arclength,
and let | > 0 be the minimum period of y (s). If the geodesic curvature of y (s) is not constant,
then there exist a smooth even function 8 : R — R and a smooth one-parameter family of
periodic regular curves y; : R — S2, —e <t < ¢, such that

1) y(s) =y(@),

(2) the minimum period of y,;(s) is equal to |,



ISOMETRIC DEFORMATIONS OF FLAT TORI 295

3) K() =K(y), L(y:) = L(y), Eg(yy) = Eg(y) +1t.

PROOF. Let k(s) be the geodesic curvature of y(s), and let (s) = 71,(s). Since
|¥'(s)] = 1, it follows from (5.2) that

(7.1) T(s) = 2k’ (s)(1 + k(s)») /2.
Since T = 2(k/+/1 + k2)’ and k(l) = k(0), we obtain

l
/ T(s)ds =0.
0

If 7(s) is constant, then 7(s) = 0, and so k’(s) = 0. This contradicts the assumption that the
geodesic curvature of y (s) is not constant. Hence 7(s) is not constant. So there exists a real
number sq such that

(7.2) T(s0) #0, '(s0) #0.
We now choose a smooth even function 8 : R — R such that
) 0 if0<ic<3,
(7.3) B (t(s0)) = .
nonzero ifi =6,

where B denotes the i-th derivative of the function B.

Let f1(s), f2(s) and f3(s) be /-periodic smooth functions which will be specified later.
For each x = (x1, x2, x3) € R3, define px : R — s2 by

3 3
px(s) = cos (Z f,-(s)xi) y(s) + sin (Z f,-(s)xi) v(s)., v =T,

i=1 i=1
where J denotes the almost complex structure given by (2.5). Let Bs(o) denote the §-
neighborhood of the origin o € R3. Since Po(s) = y(s) and py(s + 1) = px(s), there
exists a positive number 8 such that for each x € Bj(0) the map p, : R — 2 is a periodic
regular curve. By Lemma 7.1 we may assume that the minimum period of p,(s) is equal to /
for all x € Bs(0). So we obtain

l l
L(py) = /0 PL()lds, K(px) = fo ke(6)IPL()lds for x € By(o),

where k, (s) denotes the geodesic curvature of py(s). Furthermore
1 I
Eg(px) = 5/0 B(Tx (V1 +kx(s)?|p(s)lds for x € Bs(0),

where 1, (s) = 2k; ($)(1 + ky (s)2)_3/2|p;(s)|_1. Therefore we obtain the smooth map F :
Bs(0) — R3 defined by
F(x) = (K(px), L(px), Eg(px)) -
We now show that for a suitable choice of the functions f(s), the Jacobi matrix of F is
non-singular at the origin o. By a straightforward calculation we obtain

a
(7.4) 7, L)
Xj

1
- - fo k() f(5)ds

X=0
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P 1
(7.5) Kol = f fi(s)ds
xj X=0 0
(7.6) 2 Ep(po) —fli (5)f)" (9)d
. gjﬁpx x=o_0,~=1alsj s)as,

where f ;i)(s) denote the i-th derivatives of the functions f;(s), and the functions a;(s) are
given by

k 3kk’/ 1
7.7 a=p@t), aa=—o=B>01)—- ——5B'(r), az= ().
AN a=FO. @= b0~ g0, = Eh o)
Since the functions a; (s) and f;(s) are [-periodic, it follows from integration by parts that
P l
7.8) - Espo)| = [ us)f00ds,
dxj x=o J0

where ug(s) = Y o_, (—1)'a®(s).
We now specify the functions f;(s) as follows:

fi) =1, foa(s) =—k(s), f3(s) =up(s).

Then it follows from (7.4), (7.5) and (7.8) that the Jacobi matrix of F at the origin o is given
by

1
F'(0) = [cij1, Cij=/0 fi(s) fi(s)ds .

By using (7.7), the function ug(s) can be written as ug(s) = S8 o bi($)BD (x(s)). Since
ba(s) = t’(s)3/(1 + k(s5)?), it follows from (7.2) and (7.3) that

up(s0) =0, uplso) #0.
On the other hand, (7.1) and (7.2) imply k’(so) # 0. Hence

fiGso)  fa(s0)  f3(s0) 1 k(so) up(so)
(7.9) det | f{(s0) f3(s0) fi(s0) | =—det|O K'(s0) wp(so)|+#0.
fi'Gso)  fy(s0) f3(s0) 0 k"(s0) wug(so)

Let &1, &2, &3 be real numbers satisfying the following relation.
3
Y cijgj=0 for i=1,2,3.
Jj=1
Since Zf j=1¢ij§i&j = 0, we obtain

[

2
ds =0.

3
Y Efils)
i=1
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Hence Z?:l & fi(s) =0forall s € R, and so

3 3 3
Y Eifiso) =Y & f/(s0) =) & f(s0) =0.
i=1 i=1 i=1

Therefore it follows from (7.9) that §; = & = &3 = 0. This implies that the matrix F’(0) is
non-singular.

Using the inverse function theorem, we see that there exists a positive number ¢ such
that the map F : Bs(0) — R? carries a neighborhood of the origin o diffeomorphically onto
the e-neighborhood of F (o) € R3. Since F(0) = (K(y), L(y), E 8(y)), we obtain a smooth
curve x : (—&, &) = Bs(0) such that

F(x() = (K(y),L(y), Eg(y) +1), x(0)=o.
Then the smooth one-parameter family of the periodic regular curves y; (s) = px()(s) satisfies
the required properties (1)-(3). O

PROOF OF THEOREM 6.4. Let8 : R — R be the diffeomorphism given by
s
0(s) = /0 Iy’ (x)ldx

andlety : R — S2 be the curve defined by y(0(s)) = y(s). Then y is a regular curve
parametrized by arclength, and its geodesic curvature k satisfies k(@(s)) = k(s). Since
ly/($)|v/1 + k(s)? = 2, we obtain

1 96 -
s=§./(; V1+kx)2dx.

So it follows that y is m-periodic if and only if y is 6 (m)-periodic. Hence the minimum period
of y is equal to 6(I), where | denotes the minimum period of y. Since k is not constant,
Lemma 7.2 implies that there exist a smooth even function B and a smooth one-parameter
family of periodic regular curves 7, : R — S%, —¢ < t < &, such that
(7.10) vw=v, Ky)=K(y), L) =Ly), Eg(y)=Eply)+t,
and the minimum period of y; is equal to 6(1).

We now consider the smooth one-parameter family of the diffeomorphisms 6; : R — R,
—& < t < &, defined by the following relation:

1 0:(s) B _
(7.11) =7 fo 71+ K ()2,

where k; denotes the geodesic curvature of 7,. Furthermore we consider the smooth one-
parameter family of regular curves y, : R — S2, —¢ <t < ¢ given by

Y1(s) = y1(6:(s)) .
Since yp = 7 and |y’| = 1, we obtain 6y(s) = 6(s) and so yo(s) = y(s). We set

| o
lt = 5‘/(; |y,/(x)| 1+kt(x)2dx.
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Then it follows that 8, (/;) = 6(I) and [y = I. Since y; is 6(l)-periodic, we obtain 6;(s + ;) =
6;(s) +6(l). Hence

(7.12) Yi(s +1) = yi(s).

We now show that the family y;, —¢ < t < ¢, satisfies the properties (1)—(3) required in
Theorem 6.4. Let k;(s) denote the geodesic curvature of y,(s). Then it follows that k,(s) =
k:(6:(s)), and so (7.11) implies

YOIV +ki(s)?2 =2.
Since lp = [ and yp(s) = y(s), the minimum period of yy(s) is equal to /y. Hence, using

(7.12) and Lemma 7.1, we may assume that the minimum period of y,(s) is equal to /; for
—e <t < &. So we obtain

It It o)
L(yy) =/0 AQIEE =/0 7/ 6:(s))16; (s)ds =/0 17/ (0)ldx = L),

where the third equality follows from the relation 6;(I;) = 6 (). Similarly we obtain K (y;) =
K (y:) and Eg(y;) = Eg(y;). Hence (7.10) implies that

K(y)=KW), L) =L, Egly)=Ep(y)+t.

Since [; is continuous in ¢, the closed curves ([0, lg] and y;|[0, /;] represent the same ho-
mology class in H; (U S?). Hence

I(y) = I (o).
This completes the proof of Theorem 6.4. O
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