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Abstract. There exists a Riemannian metric on the real projective space such that the
first eigenvalue coincides with that of its Riemannian universal cover, if the dimension is bigger
than 2. For the proof, we deform the canonical metric on the real projective space. A similar
result is obtained for lens spaces, as well as for closed Riemannian manifolds with Riemannian
double covers. As a result, on a non-orientable closed manifold other than the real projective
plane, there exists a Riemannian metric such that the first eigenvalue coincides with that of its
Riemannian double cover.

Introduction. Throughout this paper, we assume (Λf, g) to be a connected closed Rie-

mannian manifold and fix one of its connected closed Riemannian covers, which is denoted

by (M, g). We study the spectrum

Spec(M, g) = {0 = λ0 < λi < λ2 < λ3 < }

of the Laplacian acting on the space of functions on (M, g). We investigate especially the

relation between the first eigenvalues λi (M, g) and λi (M, g). In general, we have the relation

and our aim is to study when the equality holds.

First, we consider the case M = RPn, an n-dimensional real projective space, and

M = Sn. For the canonical metric go on RPn with constant sectional curvature 1, we have

λ\(RPn, go) = 2(rc + 1) and λ\(Sn, g0) = n. We ask if there exists a Riemannian metric for

which the equality holds, the answer is negative in the 2-dimensional case.

PROPOSITION ([11]). The real projective plane RP2 does not admit any Riemannian

metric g such that

In this paper we study the higher dimensional case and obtain the following result.

PROPOSITION A. The real projective space RPn (n > 3) admits a Riemannian metric

g such that

Now, let (S2n~ι, go) be the (2n — 1)-dimensional standard sphere of constant curvature 1.

We regard it as the unit sphere {(zu .. , zn) e Cn\Σϋ=ι l^l2 = ι) embedded in Cn = R2n.
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Let γ be an element of SO(2n) which acts on S2n~x by

γ : (z\,... , Zn) ̂  (exp ( I z\,... , exp I — I zn

\ \ P I \ P I I
and Γp the cyclic group of order p generated by γ. Then Γp acts without fixed points on

(S2n~x, go) and we have the lens space L2

p

n~x = S2n~x/Γp, which has a homogeneous Rie-

mannian metric of constant curvature 1 denoted also by the same symbol g (see Wolf [10]).

We deform the Riemannian metric on L2

p~
x and consider the relation between the pos-

itive first eigenvalues of L2

p

n~x and that of its universal cover (Sn, g). Sakai [6] and Ikeda

[5] computed the spectrum of the Laplacian on the lens space. For the canonical metric

#o, we have λ\(L2

p

n~x, go) = An and λ\(S2n~x, g0) = 2n - 1. As to when the equality

λ\(L2

p~
x, g) = λ\(S2n~x, g) holds for any Riemannian metric g on L2

p~
x, we obtain the

following result.

PROPOSITION B. The lens space L2

p~
x (n > 2) admits a Riemannian metric g such

that

In Section 4, we extend the argument to the case where (Λf, g) is an ^-dimensional closed

Riemannian manifold with the connected Riemannian double cover

m:(M,~g)^ (M,g)

for n > 3. Then we have the following:

PROPOSITION C. Let (Λf, g) be a closed Riemannian manifold whose dimension is

bigger than 2 and with the connected Riemannian double cover (Λf, g)*. Then (Λf, g) admits

a Riemannian metric go such that

Moreover, the Riemannian metric go is obtained by the deformation of the Riemannian metric

gon (M,g).

In the two-dimensional case, every non-orientable surface except RP2 admits such a

Riemannian metric by virtue of the following proposition.

PROPOSITION ([11]). IfM is homeomorphic to ΨRP2 (n > 2), then there exists a

Riemannian metric g on M such that

where ̂ RP2 means the connected sum ofn-copies ofRP2.

As a conclusion, we have the following:

MAIN THEOREM. Every non-orientable closed manifold except real projective plane

RP2 admits a Riemannian metric for which the first eigenvalue coincides with that of its

Riemannian double cover.
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In general, when the covering m : (M, g) -> (M, g) satisfies the condition

π\(M)/τπ*π\(M) =Zp

and if dim Λf > 3, we have the same conclusion as in Proposition C, that is, Λf admits a

Riemannian metric g such that

λx(M,g)=λx(M,g).

However, this equality does not hold in general in the case that the number of the generators

of π\(M)/m*π\(M) is different from one. In Section 6 we illustrate an example for which

this equality does not hold.

The author would like to express his gratitude to Professor Reiko Miyaoka and the referee

for valuable advice.

1. Preliminaries. Let (Λf, g) be a closed Riemannian manifold and (M,g) be one

of its connected closed Riemannian covers. Since (Λf, g) and (M, g) are both compact, the

fiber of each point p in (M, g) is a finite set of points {β\ ,pi,... , Pk}

We recall the necessary properties of the eigenfunctions on (M, g). For each / =

1,... , k, we define an isometry 7/ : (M, g) -• (M, g) such as

MPi) = °l(Pi),

where each σ/ is an element of π\ (Λf) acting on M as a deck transformation.

REMARK. The set {J\,... , Jk} is determined uniquely up to permutation.

Let C°°(M, g) the set of smooth functions on (Λf, g). We define an inner product on

C°°(M, g) by (/i, /i) = JM fxfidv, where dυ is the volume element on (Λf, g). We define

L2(M, g) to be the completion of C°°(M, g) with respect to the inner product (, ). If we lift

the metric g on Λf to g on M, then we have an inner product on L2(M, g) in the same manner

as in L2(M, g). Let E(λ) be the eigenspace of smooth functions on Λf corresponding to the

eigenvalue λ, and set

E+(λ) = {/ e E(λ)\f o7/ = /,/ = l t ) .

Since all the eigenfunctions on (Λf, g) are lifted to those on (M, g) canonically, we have an

inclusion Spec(Λf, g) C Spec(M, g). The eigenfunctions on (Λf, g) which come from those

on (Λf, g) are invariant under the deck transformations J\,... , Jk.

Conversely, every / e E+(λ) is reduced to an eigenfunction on (Λf, g). Thus the eigen-

values of (Λf, g) coincide with those of (Λf, g) satisfying £ + ( λ ) ψ {0}.

PROPOSITION 1 (cf. [3, p. 143]). The space C°°(M, g) has a complete orthonormal

basis consisting of the eigenfunctions of the Laplacian on (Λf, g), and can be decomposed as

follows:

λ>0

Let E~{λ) be the orthogonal complement of £ + ( λ ) in E(λ). The eigenfunctions on

(M, g) which do not come from those on (Λf, g) have non-zero components of E~(λ). Thus
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we concentrate our attention on the non-zero smallest eigenvalue v such that E~(v) φ {0}.

All we have to do is to compare λ\(M, g) with v.

2. Proof of Proposition A. We construct a deformation of the Riemannian metric

on Sn (n > 3). We regard Sn as a manifold obtained from two n-dimensional closed

balls B i and Bn

2 pasted along their boundaries. For convenience, we take the coordinates

(xi , . . . , j t«)and( j i , . . . , yn)inRn such that B\ = {(JCI, — , xn)\x\ + + xl < 1} and

B2 = {(vi,... , yn)\y\ H \-y% < 1} We decompose these balls into three parts (A), (B)

and (c): For Bn

χ we set

(A) = UΛI, . . . , xn) t D , U ^ Λ ,

ί 1
(B) =

(C) =

We decompose B 2 in the same way.

We paste these two balls by the equivalence relation ~ defined onBn

χ Ufi^ as follows.

For two points x e Bn

χ and v € B2, x = (*i, , xn) ~ y = (yi» » J«) means that
(x i , . . . ,ΛΠ) € 35^, (y i , . . . ,yn) e dBn

2 and(x i , . . . ,xn) = ( - y i , y 2 , . . . , yn). Then we
regard Sn as the quotient space (B^UB^)/ ^ so that Sn is decomposed into three parts (A),
(B) and (C).

Next, we regard RPn as the quotient space of Sn with respect to the antipodal involution
of Sn. In other words, we obtain RPn from Bn

χ by identifying two points (JCI, . . . , xn) and

(—JCI, . . . , — xn) on the boundary oiBn

χ. Then we also decomposeRPn into three parts (A),

(B) and (C). As for the topology of these parts (A), (B) and (C), we have the following:

LEMMA 1. Let I = [0, 1] be the closed interval Then the following hold.

(1) The parts (A), (B) and (C) ofBn are homeomorphic toBn~ι x /, Sn~2 xlxland

Sn~2 x / x /, respectively.

(2) The p a r t s ( A ) , ( B ) a n d ( C ) of S n a r e h o m e o m o r p h i c t o B n l x S 1 , S n ~ 2 x / x S ι

a n d S n ~ 2 x / x /, r e s p e c t i v e l y .

( 3 ) The parts (A), (B) and (C) ofRPn are homeomorphic to (Bn~l x Sι)/Z2, (Sn~2 x

/ x Sι)/Z2 and (Sn~2 x / x /)/Z 2 , respectively.

REMARK. The parts (A), (B) and (C) of Bn, Sn and RPn, respectively, are all con-

nected n-dimensional manifolds in the cases (1), (2) and (3) Lemma 1.

Now we construct a deformation gε of a Riemannian metric on RPn and the correspond-

ing gε on Sn. In [4] Cheeger constructed a deformation gε of a Riemannian metric on S2

such that λi (5 2 , gε) converges to 0 as ε -> 0. We apply Cheeger's method to our situation as

follows.
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Step 1. We take gε on the part (B) of RPn as

9ε = dS2 + dt2 + ε2du2 ,

where dS2 is the canonical metric on Sn~2, dt2 is the canonical metric on / such that the

length of / is 1 and du2 is the canonical metric on Sι such that the length of Sι is 1.

Step 2. We take a suitable Riemannian metric g on the parts (A) and (C) of RPn such

that the volumes of (A) and (C) are equal.

Step 3. Then we take the deformation gε on (A) and (C) with a slight modification on

the connected parts with (B), keeping invariant on the remaining part.

We denote it by (RPn, gε). If ε goes to 0, then the part (B) of (RPn, gε) collapses onto

the (n - l)-dimensional manifold, that is, (Sn~2 x J)/Z2

On the other hand, we lift the above deformation gε of a metric on RPn to metric gε

on Sn. If ε goes to 0, then the part (B) of (Sn, gε) collapses onto the (n — 1)-dimensional

manifold Sn~2 x I.

LEMMA 2.

limλι(RPn,gε) = 0.

PROOF. The first eigenvalue λi is characterized by the Rayleigh quotient, that is,

where / runs over all non-vanishing functions orthogonal to the constant functions in

L2(M, g).

We consider a test function fε on (RPn, gε), which is equal to 1 on (A) and —1 on

(C), and decreases from 1 to —1 linearly across (B). We may take fε to be orthogonal to the

constant functions in L2(RPn, gε) and |V/ε | < d, where d is a constant depending only on

n. If ε goes to 0, then the volume of the part (B) decreases to 0. This means that fM | V/e \2dv

converges to 0 as ε —> 0. It follows from the Rayleigh quotient that limε-+oλ\ (RPn, gε) = 0.

D

Next we consider the double cover (Sn, gε) of (RPn, gε). Then λ\(RPn, gε) belongs

to Spec(5n, gε). We denote it simply by λ(ε). We frequently use the following result due to

Anne. In the following proposition, Sι (ε) means the circle of radius ε.

PROPOSITION 2 (Anne [1]). Let (Mi, #i) and (M2, #2) be two connected, closed Rie-

mannian manifolds of the same dimension n. Let D\ and D2 be submanifolds of (Mi, <?i)

and (M2, #2), which are both dίffeomorphic to Sn~2 x Sx(ε), and remove D\ and D2from

(Mi, #1) and (M2, #2), respectively. Then we attach Sn~2 x I x Sι(ε) to (Mi, #i) and

(M2, #2) along the boundaries, and make it smooth at the connected part and denote it by

We,9e).
We express Spec(Mε, gε) as Spec(Mε,gε) = {λo(ε) < λ\(ε) < λ2(ε) < }, and

denote by

{μo < μi < M2 < M3 < }
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the union of Spec(M\, g\), Spec(M2, gi) andSpeco{Sn~2 x/, g) {the subscriptD means the

Dirichlet condition) counted with multiplicity. Then for any n we have

limλn(ε) = μn .
ε->0

REMARK 1. The Dirichlet spectrum Spec^CS72"2 x /, g) has no zero-eigenvalue. So

μ 0 = μi = 0 and μ2 > 0.

REMARK 2. Anne [1] treats the case of one body with one handle, but the connect-

edness of the body is not necessary in the proof. As for the case of many bodies with many

tubes, see [2].

Now we are in a position to prove Proposition A. We apply Proposition 2 to (Sn, gε).

By Lemma 2, we have limε_*o λ(ε) = 0 and v(ε) converges to some positive value which is

greater than or equal to μ,2 This positive value depends on the original metric on RPn before

the deformation. By the continuous dependence of the eigenvalue on the parameter ε, there

exists £o such that

λ{ε) < v(ε)

for 0 < ε < £o Therefore we have

for all ε with 0 < ε < £o

3. Proof of Proposition B. We take a {In — 1)-dimensional ball

B2n~l = {{XU , X2n-\)\x\ + * + X2n-\2 < 1} .

We define an isometry R(p) : B2n~{ -> B2n~ι by

2,. . . ,X2n-3,X2n-2,X2n-\)

where θ = 2π/p. We also define an equivalence relation ~ on B2n~x such that x =

(jci,... ,Λ:2Π-I) ^ y = {y\,... , J2Λ-I) means that x e dB2n~\y e dB2n~x and R{p)x =

y or R{p)y = x. Then the lens space L2

p

n~{ can be regarded topologically as B2n~ι/ ~.

We decompose J? 2 "" 1 into three parts (A), (B) and (c) in the same way as in Section

2. Hence the lens space L2

p

n~ι is decomposed into three parts (A), (B), and (C). It is easily

checked that the parts (A), (B) and (C) of L2

p~
x are homeomorphic to

{B2n~3 x S ι ) / Z p , {S2n~3 x / x S ι ) / Z p a n d {S2n~3 x l x I ) / Z p ,

respectively. Note that (A) and (C) are connected n-dimensional manifolds.

We define the deformation gε of a Riemannian metric on L 2 "" 1 in the same manner as

in Section 2. Then we have
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Step 4. We follow [9] and [8] to define gt as

9t = t~lg+{t2 -ΓX)η®η, 0 < t < oo.

The spectrum Spec(S3, gt) was computed by Urakawa [9] and Tanno [8] as follows.

PROPOSITION ([9] and [8]). The positive first eigenvalue of (S3, gt) is given by

ί 2t + Γ2 t>

It is easy to see that

V\ = E(2t + t~2) = span{jc, y, z, w]

and

V2 = E(St) = span{jc2 + y2 — z2 — w2, xz + yw, xw — yz].

Each eigenfunction φ e V\ satisfies φ(—JC, —y, —z, —w) = — φ(x, y, z, w) and φ e V2

satisfies φ(—x, —y, —z , —w) = φ(x, y, z, w).

Thus φ e V2 is reduced to an eigenfunction on (RP3, gt) with the eigenvalue 8ί, while

φ e V\ is not reduced to one on (RP3, gt). Therefore we have

λι(RP3,gt)>λι(S3,gt) for t > -±= ,

λχ(RP3, gt) = λ i(5 3 , gt) for t < — .

v 6

The above deformation gt is a kind of collapsing which we used for the part (B). Actually,

the deformation makes S3 into collapsing along the direction of each fiber.

REMARK. For t < 1/^6, the multiplicity of λ\(RP3, gt) = St is 3. So the deforma-

tion gt is not the one used in the proof of Proposition A.

6. Counterexample. Finally, we give an example which shows that Proposition C

cannot be generalized to a non-double finite Riemannian cover.

Let T be a 2-dimensional torus. We regard it as the quotient space oϊR2 by identifying

(x, y) with (JC H- 0, y) and (x, y) with (JC, y + b). We take the finite covering

τπ : T - > T ,

where f is the quotient space of R2 by identifying (JC, y) with (x + 2a, y) and (JC, y) with

(JC, y -f- 2b). The covering transformation group is

πi(T)/πτ*πi(T)=Z 2 x Z 2 .

The projection τπ splits as

where f is the quotient space of R2 by identifying (JC, y) with (JC + 2a, y) and (JC, y) with
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For the covering f -—̂> f -^> T and any Riemannian metric g on T, let g and g be the

induced Riemannian metrics on T and T, respectively.

PROPOSITION D. For the four-fold cover T onto T and any Riemannian metric g on

T, we have

PROOF. Suppose that the first eigenfunction φ on (T, g) lifts to the first eigenfunction

φ on (f, g). Then we see that (1) the number of the nodal domain of φ is two, and (2) that of

φ is two. We fix the sign of φ, and denote its positive nodal domain by D+ and its negative

nodal domain by D_.

We regard the torus T as the quotient space of R2 by identifying (JC, y) with (JC + a, y)

and (JC, y) with (JC, y + b). We have the double cover T by identifying (*, y) with (JC + 2<z, y)

and (JC, y) with (JC, y + £), and the four-fold cover T by identifying (x, y) with (JC + 2a, y)

and (JC, y) with (JC, y + 2b). Let ca and Q> be the fundamental cycles of H\(T; Z) = Z 2 such

that Qj and Q> are represented by the closed curves on T satisfying ca{t) = (t, 0) (0 < t < a)

and Cb(t) = (0, t) (0 < t < b), respectively. We notice that the cycle [ca] does not come from

Since the number of the connected components of φ~ι (£>+) is one, D+ contains a closed

curve which is represented by the homology cycle pca +qcb, where p and q are given by one

of the following three cases:

(1) p = 0and^ = l,

(2) p = 1 and q = 0 and

(3) p φ 0, q φ 0 and /?, q are relatively prime integers.

We denote the homology cycle pca +qcb simply by c.

Let ca and Q, be the fundamental cycles of H\(ϊ\ Z) = Z2 such that (m*)(ca) = ca

and (πr*)(cb) = Cb, respectively. They are the homology bases on (T, g). We consider the

cycle c = pca + qcb- We regard these homology cycles of #i(T; Z) and //i(T; Z) as the

closed curves on T and T, respectively. Also we denote the length of the closed curve c by

/(c). Regarding the construction of the covering m : f -• T, we have:

l ( c a ) : l ( c a ) = 2 : 1 a n d l ( c b ) : l ( c b ) = 2 : 1 .

Then we have /(c) : /(c) = 2 : 1 .

D- also contains a closed curve which is represented by the same homology cycle c.

Thus D+ and D_ make two stripes on (Γ, g). We consider the nodal lines of φ on (Γ, g)

which are the closed curves on (Γ, #) dividing it into D+ and D_. There are two nodal lines

and they are both represented by the homology cycle c.

To see the connectedness of m~ι (D+) and τπ~x (Zλ_), we only used to count the number

of connected components of the inverse image of the closed curve represented by the cycle.

We only have to compare l(c) with l(m~ι (c)).



270 K. YOSHIJI

Regarding the construction of the covering, we have l(m~ι(c)) = 4/(c). But c is a

connected component of τπ~x(c) and l(c) = 2/(c). Every deck transformation σ e πi(T)/

m^π\(Ύ) = Z2 x Z2 is an isometry on (f, #) without fixed points. Therefore the connected

components of m~ι(c) is two and both of them are represented by the cycle c.

Consequently, the number of the nodal lines on φ is twice of that of φ. Hence there are

four nodal lines of φ. But this contradicts our assumption, completing the proof of Proposition

D. D
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