# EXOTIC INVOLUTIONS OF LOW-DIMENSIONAL SPHERES AND THE ETA-INVARIANT 

WIESLAW J. OLEDZKI

(Received May 27, 1998, revised October 22, 1999)


#### Abstract

We give a transparent description of the one-fold smooth suspension of Fintushel-Stern's exotic involution on the 4 -sphere. Moreover we prove that any two involutions of the 4 -sphere are stably (i.e., after one-fold suspension) smoothly conjugated if and only if the corresponding quotient spaces (real homotopy projective spaces) are stably diffeomorphic. We use the Atiyah-Patodi-Singer eta-invariant to detect smooth structures on homotopy projective spaces and prove that any homotopy projective space is detected in this way in dimensions 5 and 6.


1. Introduction. In this paper, following an idea of Gilkey [13], we study exotic homotopy projective spaces in dimensions 4,5 and 6 by means of the eta-invariant. In particular we prove that the eta-invariant of certain Dirac-type operators completely detects homotopy projective spaces (or, equivalently, smooth fixed point free involutions on homotopy spheres) in dimensions 5 and 6 . Moreover we give a very explicit geometric construction of these involutions. This gives more insight in exotic involutions than standard methods of surgery and homotopy topology (compare [20]), which provides information about the set of homotopy projective spaces as a whole but rarely about a given member of the set. In particular, we are able to identify one of our involutions as a smooth suspension of the Fintushel-Stern and the Cappell-Shaneson exotic involutions on $S^{4}$. Thus we get a transparent description of the onefold smooth suspension of both the Fintushel-Stern and the Cappell-Shaneson involutions, and prove that, after forming the one-fold smooth suspension of both of these involutions, we get equivalent involutions of $S^{5}$. Moreover those suspended involutions are equivalent to an involution obtained by gluing $Z_{2}$-equivariantly $S^{2} \times D^{3}$ and $D^{3} \times S^{2}$ (both equipped with the ordinary "antipodal" $Z_{2}$ action $\left.(x, y) \leftrightarrow(-x,-y)\right)$ along their common boundary, with the help of a $Z_{2}$-equivariant autodiffeomorphism $h_{3}$ of $S^{2} \times S^{2}$. We give a simple and transparent description of the diffeomorphism $h_{3}$ (being a composition of three copies of some other diffeomorphism $h$ of $S^{2} \times S^{2}$ ), and prove that any involution of $S^{5}$ can be obtained (up to equivalence) by the same construction with $h_{3}$ replaced by the $n$-th power of $h, n=0,1,2,3$. As a byproduct we also get a similar (although more complicated) description of all (up to smooth conjugation) smooth involutions of $S^{6}$. An explicit form of our involutions enables us to compute the Atiyah-Patodi-Singer eta-invariant of certain Dirac-type operators on corresponding homotopy projective spaces.
[^0]This paper is organised as follows. In Section 2 we formulate main theorems of the paper and give, for readers convenience, some basic material concerning involutions on manifolds and exotic involutions on $S^{4}$. This section is concluded by a sketch of the proof of main theorems. In Section 3 we gather some basic facts about $\mathrm{Pin}^{+}$and $\mathrm{Pin}^{c}$ operators and their eta-invariant. In Section 4 we study involutions on $S^{5}$ and $S^{6}$. We give here an explicit and simple description of all (up to smooth conjugation) smooth involutions on these spheres, and prove that all these involutions can be detected by the eta-invariant. This will prove Theorem A of Section 2. We also include here some auxiliary technical lemmas which explain how the eta-invariant is affected by doing surgery on a given manifold. Section 5 , being the core of the whole paper, is devoted to a more profound study of Fintushel-Stern's exotic involution. We describe here a "stratified" surgery, which is the key tool for the proof of main theorems, and prepare some auxiliary topological propositions. This surgery provides an alternative method for constructing exotic involutions on $S^{4}$ and, possibly, for describing them by a transparent formula (see Remark 2 in Section 5). In the final section we apply the methods described in the preceding Sections, to prove main theorems.

Let us note that some results of this paper have far-reaching generalisations. In particular, any number of the form $\pm(2 k+1) / 2^{n+1} \bmod Z$ can be realised as the value of the eta-invariant of the Pin $^{c}$ operator on certain homotopy projective space of dimension $2 n$ for all $n \geq 3$, and analogous results are valid for $\operatorname{Spin}^{c}$ operators and odd-dimensional projective spaces (compare [25]).
2. Main theorems. In this section we formulate our main theorems of the paper. We precede these theorems by some background material concerning smooth free involutions on manifolds and exotic involutions on $S^{4}$ of Cappell-Shaneson and Fintushel-Stern.

First let us establish notation which will be used throughout this paper. $A \sqcup B$ is the disjoint union of spaces $A$ and $B$, and $k A$ is the disjoint union of $k$ copies of $A . A \# B$ is the connected sum of manifolds $A$ and $B$, and $k_{\#} A$ is the connected sum of $k$ copies of $A$. Given a manifold $M^{n}$, let $M_{i}^{n}, i=0,1, \ldots$, be copies of $M^{n}$ and apply a similar convention to other objects (maps, subsets etc.). If $\tilde{M}^{n}$ is a manifold with a free involution $T^{n}$, then $M^{n}=\tilde{M}^{n} / T^{n} . R^{n}, D^{n}$ and $S^{n-1}$ denote the Euclidean space, the unit disc and the unit sphere, respectively. We denote by ant the usual antipodal map on $R^{n}$ as well as on its subspaces. Thus $R P^{n}=S^{n} /$ ant and $R P^{k} \tilde{\times} D^{m}=S^{k} \times D^{m} /$ ant , and $D^{m} \tilde{\times} R P^{k}$ has an analogous meaning. $I=[0,1]$ and $\overline{a n t}: S^{n} \times I \rightarrow S^{n} \times I$ is given by $(x, t) \rightarrow(-x, t)$. $S^{n} \times I$ will be viewed as an invariant collar neighbourhood of $S^{n}$ in $D^{n+1}$. Fix $(T)$ is the set of fixed points of a map $T: X \rightarrow X$.

Given an imbedding $\phi: S^{k} \times D^{m} \rightarrow M^{n}, k+m=n$, we denote by $M_{\partial \phi}^{n}$ the manifold obtained from $M^{n}$ by doing surgery on $\phi$. If additionally $M^{n} \subset \partial M^{n+1}$, then $M_{\phi}^{n+1}$ is the trace of the surgery on $\phi$, i.e., $M^{n+1} \cup_{\phi} D^{n+1}$, and $M_{\phi}^{n+1^{\prime}}$ is the manifold $M^{n+1} \cup_{\phi}$ $S^{n} \times I$; thus $M_{\phi}^{n+1^{\prime}} \subset M_{\phi}^{n+1}$ in a natural way, and $\partial M_{\phi}^{n+1^{\prime}}=\partial M_{\phi}^{n+1} \cup S^{n}$. Given $Z_{2-}$ manifolds $\left(\tilde{M}^{n}, T^{n}\right) \subset \partial\left(\tilde{M}^{n+1}, T^{n+1}\right)$ (i.e., $\tilde{M}^{n}$ is an invariant submanifold of $\partial\left(\tilde{M}^{n+1}\right)$ and
$T^{n+1} \mid \tilde{M}^{n}=T^{n}$, and given an equivariant imbedding $\Phi: S^{k} \times D^{m} \rightarrow \tilde{M}^{n}$ with the quotient imbedding $\phi: R P^{k} \tilde{\times} D^{m} \rightarrow M^{n}, \tilde{M}_{\partial \phi}^{n}, \tilde{M}_{\Phi}^{n+1}$ and $\tilde{M}_{\Phi}^{n+1^{\prime}}$ will have an obvious "equivariant" meaning. Thus $\tilde{M}_{\partial \Phi}^{n}$ (resp. $\tilde{M}_{\Phi}^{n+1^{\prime}}$ ) comes with a naturally defined involution denoted by $T_{\partial \Phi}^{n}$ (resp. $T_{\Phi}^{n+1}$ ), which is free if $T^{n+1}$ is free, and we write $M_{\partial \phi}^{n}$ (resp. $M_{\phi}^{n+1}$ ) to denote the corresponding quotient manifold. Let us also note that $\partial M_{\phi}^{n+1}=\left(\partial M^{n+1} \backslash M^{n}\right) \cup M_{\partial \phi}^{n} \cup R P^{n}$, where $M_{\partial \phi}^{n}$ is obtained from $M^{n}$ by deleting the interior of $\phi\left(R P^{k} \tilde{\times} D^{m}\right)$ and then attaching $D^{k+1} \tilde{\times} R P^{m-1}$ with the help of the quotient map $\phi: R P^{k} \tilde{\times} D^{m} \rightarrow M^{n}$. Moreover $M_{\phi}^{n+1}$ is obtained by attaching $R P^{n} \times I$ to $M^{n+1}$ with the help of the map $\phi$.

As this paper deals only with smooth manifolds and fixed point-free smooth involutions, we agree that "manifold" will mean smooth manifold and "involution" will mean fixed pointfree smooth involution unless otherwise stated.

Let $T^{n}$ be an involution on a manifold $\tilde{M}^{n}$ (possibly with non-vacuous boundary). A $T^{n}$ invariant submanifold $\tilde{M}^{n-1} \subset \tilde{M}^{n}$ is called a characteristic submanifold provided that it cuts $\tilde{M}^{n}$ into two connected components, say $A$ and $A^{\prime}$, permuted by $T^{n}$; thus $\tilde{M}=A \cup A^{\prime}$, where $A^{\prime}=T^{n}(A)$, and $A \cap A^{\prime}=\tilde{M}^{n-1}$. Such a characteristic submanifold always exists and one can find a connected characteristic submanifold for $n \geq 3$ ([20]). Let $T^{n}$ be an involution of a homotopy sphere $\Sigma^{n}$. It is said to desuspend if it admits a characteristic submanifold which is a homotopy sphere. There is a "surgery type" obstruction (Browder-Livesay invariant) $\alpha\left(T^{n}, \Sigma^{n}\right)$ which, for involutions of spheres of dimension $n>5$, vanishes if and only if the involution $T^{n}$ desuspends ([20]). Later in this paper we generalize this theorem to all dimensions $\geq 5$. Then the quotient manifold $\Sigma^{n} / T^{n}$ is a homotopy real projective space, and any homotopy projective space $F R P^{n}$ is of this form. Therefore classifying free involutions on homotopy spheres is equivalent to classifying homotopy projective spaces. Two involutions $\left(T_{i}^{n}, \Sigma_{i}^{n}\right), i=1,2$, are called equivalent if there is an equivariant diffeomorphism $g: \Sigma_{1}^{n} \rightarrow$ $\Sigma_{2}^{n}$; or, equivalently, if the quotient manifolds $F R P_{i}^{n}$ are diffeomorphic.

We will also need the notion of the smooth suspension of smooth free involutions of spheres. Assume $\Sigma^{n}$ to be diffeomorphic to the ordinary sphere $S^{n}$. Then form a smooth manifold $\Sigma^{n+1}$ as follows: Fix a diffeomorphism $g: \Sigma^{n} \rightarrow S^{n}$ and glue two copies of the standard $n$-disc $D^{n+1}$, say $D_{a}^{n+1}$ and $D_{z}^{n+1}$, with the help of the involution $g T^{n} g^{-1}$ : $\partial D_{a}^{n+1} \rightarrow \partial D_{z}^{n+1}$. Then we define a (free smooth) involution $\Sigma T^{n}$ of $\Sigma^{n+1}$ by the formula $D_{a}^{n+1} \ni x \mapsto x \in D_{z}^{n+1}$.

The $Z_{2}$ manifold (depending on $\left.g\right)\left(\Sigma^{n+1}, \Sigma T^{n}\right)$ is called a smooth suspension of the involution ( $\Sigma^{n}, T^{n}$ ), and it is clear that ( $\Sigma^{n}, T^{n}$ ) is a characteristic submanifold of ( $\Sigma^{n+1}, \Sigma T^{n}$ ). If $\Sigma^{n+1}$ is diffeomorphic to the ordinary sphere $S^{n+1}$, we can repeat this procedure and form the double suspension $\left(\Sigma^{n+2}, \Sigma^{2} T^{n}\right)$ of the involution $T^{n}$. The double smooth suspension depends strongly on the identifications $\Sigma^{k} \simeq S^{k}$ used in its construction, and $\Sigma^{n+2}$ needs not to be the ordinary sphere $S^{n+2}$. However, in this article, we shall not deal with this problem, since we confine ourselves to involutions of low dimensional spheres. Namely, we have the following simple proposition (this justifies our notation ( $\Sigma^{n+1}, \Sigma T^{n}$ ) which does not take care of the diffeomorphism $g$ ):

Proposition 2.1. Let $T^{n}$ be a smooth involution of a homotopy sphere $\Sigma^{n}$. There exists precisely one (up to smooth conjugation) smooth suspension $\left(\Sigma^{n+1} \simeq S^{n+1}, \Sigma T^{n}\right)$ provided that $n \leq 5$. Moreover there exists precisely one double suspension ( $\Sigma^{n+2} \simeq$ $\left.S^{n+2}, \Sigma^{2} T^{n}\right)$ provided that $n \leq 4$.

This follows immediately from the well-known fact that any autodiffeomorphism of the sphere $S^{n}$ extends to an autodiffeomorphism of $D^{n+1}$ for $n \leq 5$ ([17], [9]).

Now let us recall some basic facts concerning exotic involutions on $S^{4}$. Let us start with the Fintushel-Stern involution ([10]). In [10] it has been proved that the Brieskorn sphere $\Sigma(3,5,19)$ bounds a contractible 4-manifold $U$ whose double is $S^{4}$. Moreover the involution $t^{3}$ "contained" in the natural $S^{1}$ action on $\Sigma(3,5,19)$ extends to a smooth fixed point-free involution on $S^{4}=U^{4} \cup_{\Sigma} U^{4}$, which permutes the two copies of $U^{4}$. This is the FintushelStern exotic involution $T_{F S}$, and $S^{4} / T_{F S}=F R P_{F S}^{4}$ is the Fintushel-Stern exotic projective space. Thus $\left(\Sigma(3,5,19), t^{3}\right)$ is a characteristic submanifold for $T_{F S}$.

Now let us turn to the Cappell-Shaneson involution on $S^{4}$ ([8]). Let us fix a matrix $A \in G L(3, Z)$ (a CS-matrix) subject to the relations $\operatorname{det} A=-1, \operatorname{det}(1-A)=1$ and $\operatorname{det}(1-$ $\left.A^{2}\right)= \pm 1$, and consider $A$ as an (orientation-reversing) diffeomorphism of the torus $T^{3}=$ $S^{1} \times S^{1} \times S^{1}=R^{3} / Z^{3}$ which leaves the "origin" $[0] \in T^{3}$ fixed. Let $M_{A}^{4}=T^{3} \times I /((x, 0) \simeq$ $(A x, 1)$ ). Thus $M_{A}^{4}$ is a smooth non-orientable manifold (the mapping torus of $A$ ). Note that the normal neighbourhood $N_{\alpha}$ in $M_{A}^{4}$ of the image $\alpha$ of the segment [0] $\times I \subset T^{3} \times I$ is diffeomorphic to the normal neighbourhood $N$ of $R P^{1}$ in $R P^{4}$. Fix a diffeomorphism $N_{\alpha} \rightarrow N$, and let $h_{C S}$ be its restriction to the boundary of $N_{\alpha}$. Then form a (smooth, closed) manifold $F R P_{C S}^{4}(A)$ by gluing $R P^{4} \backslash \operatorname{int} N$ and $M_{A}^{4} \backslash \operatorname{int} N_{\alpha}$ with the help of $h_{C S}$. In [8] it has been proved that $F R P_{C S}^{4}(A)$ is a 4-dimensional homotopy real projective space which is never diffeomorphic to the ordinary projective space $R P^{4}$. It is not known if the universal covering space of $F R P_{C S}^{4}(A)$ is always diffeomorphic to the ordinary sphere $S^{4}$.

Now let us confine ourselves to the case of the matrix

$$
A_{0}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

$A_{0}$ is a $C S$-matrix and we denote by $F R P_{C S}^{4}$ the Cappell-Shaneson exotic projective space associated to this matrix. In [14] Gompf proved that the universal covering space of $F R P_{C S}^{4}$ is diffeomorphic to $S^{4}$, and therefore $F R P_{C S}^{4}$ can be viewed as the quotient manifold of the form $S^{4} / T_{C S}$, where $T_{C S}$ is a (smooth fixed point-free) involution on $S^{4}$. The author does not know if the Cappell-Shaneson exotic involution $T_{C S}$ is equivalent to the Fintushel-Stern involution $T_{F S}$. However, we shall prove that the smooth suspensions of these two involutions are equivalent and that both of them are given by a simple formula.

In order to formulate main theorems of this paper we shall need also some knowledge of 5 and 6 -dimensional homotopy projective spaces. For any non-zero vector $x \in R^{n+1}$, let $R_{x} \in O(n+1)$ be the reflection through the hyperplane perpendicular to $x$. Let $e_{1}, \ldots, e_{n+1}$ be the standard orthonormal basis of $R^{n+1}$ and $c_{n}: S^{n} \rightarrow S O(n+1)$ be given by $c_{n}(x)=$
$R_{x} R_{e_{1}}$. Then $c_{n}$ is the clutching map for the tangent bundle to $S^{n+1}$ ([16]); hence $c_{n}$ is nullhomotopic for $n=2,6$. Observe that $c_{n}(-x)=c_{n}(x)$, and let $\bar{c}_{2}: S^{3} \rightarrow S O(3)$ be an extension of $c_{2}$ such that $\bar{c}_{2}(-x)=\bar{c}_{2}(x)$.

Now let us define some auxiliary maps which will play an important role in this paper. Let $G: S^{2} \times D^{3} \rightarrow S^{2} \times D^{3}$ be the autodiffeomorphism given by $G(x, y)=\left(x, c_{2}(x) y\right)$. Then $\bar{G}: S^{3} \times D^{3} \rightarrow S^{3} \times D^{3}$ defined by $\bar{G}(x, y)=\left(x, \bar{c}_{2}(x) y\right)$ is an extension of $G$. Let $\Gamma: D^{3} \times S^{2} \rightarrow D^{3} \times S^{2}$ be the composition $t G t$, where $t$ is the permutation $(x, y) \leftrightarrow(y, x)$. Then $\bar{\Gamma}: D^{4} \times S^{2} \rightarrow D^{4} \times S^{2}$ defined by $\bar{\Gamma}\left(\left(y_{1}, y_{2}, y_{3}, y_{4}\right), x\right)=\left(\left(c_{2}(x)\left(y_{1}, y_{2}, y_{3}\right), y_{4}\right), x\right)$ is an extension of $\Gamma$. Let $\partial G: S^{2} \times S^{2} \rightarrow S^{2} \times S^{2}$ be the restriction of $G$, and apply similar notation to the other maps. All the diffeomorphisms $G, \Gamma, \bar{G}$ and $\bar{\Gamma}$ are $Z_{2}$-equivariant with respect to the usual "antipodal" $Z_{2}$-action $(x, y) \leftrightarrow(-x,-y)$ so that they descend to maps $g: R P^{2} \tilde{\times} D^{3} \rightarrow R P^{2} \tilde{\times} D^{3}, \gamma: D^{3} \tilde{\times} R P^{2} \rightarrow D^{3} \tilde{\times} R P^{2}, \bar{g}: R P^{3} \tilde{\times} D^{3} \rightarrow R P^{3} \tilde{\times} D^{3}$, and $\tilde{\gamma}: D^{4} \tilde{\times} R P^{2} \rightarrow D^{4} \tilde{\times} R P^{2}$, respectively. Let us also note that the maps $G, \Gamma$ and $\bar{\Gamma}$ (but not $\bar{G}$ ) are all isotopic to identity, since $c_{2}: S^{2} \rightarrow S O(3)$ is null-homotopic, but they are not $Z_{2}$-equivariantly isotopic to identity. This property of these maps enables us to construct $Z_{2}$-manifolds diffeomorphic to the ordinary spheres, but the quotient manifolds of which are not diffeomorphic to the ordinary projective spaces.

Let $h=\partial \Gamma \circ \partial G: S^{2} \times S^{2} \rightarrow S^{2} \times S^{2}$ and $\bar{h}=\partial \bar{\Gamma} \circ \partial \bar{G}: S^{3} \times S^{2} \rightarrow S^{3} \times S^{2}$. Let $h_{i}$ be the $i$-th power of $h$ and similarly for $\bar{h}$; in particular $h_{0}=i d$. Let $\Sigma_{i}^{5}=S^{2} \times D^{3} \cup_{h_{i}} D^{3} \times S^{2}$ and $\Sigma_{i}^{6}=S^{3} \times D^{3} \cup_{\bar{h}_{i}} D^{4} \times S^{2}$. Let $T_{i}^{5}$ be a (smooth, fixed point-free) involution on $\Sigma_{i}^{5}$ defined uniquely by the requirement that $T_{i}^{5} \mid S^{2} \times D^{3}: S^{2} \times D^{3} \rightarrow S^{2} \times D^{3}$ and $T_{i}^{5} \mid D^{3} \times S^{2}$ : $D^{3} \times S^{2} \rightarrow D^{3} \times S^{2}$, and these restrictions are both given by $(x, y) \rightarrow(-x,-y)$. Let $T_{i}^{6}$ be an involution of $\Sigma_{i}^{6}$ given by an analogous construction. It is clear now that $T_{0}^{5}$ (resp. $T_{0}^{6}$ ) is just the ordinary antipodal map on $\Sigma_{0}^{5}=S^{5}$ (resp. on $\Sigma_{0}^{6}=S^{6}$ ). Let us denote $F R P_{i}^{5}=\Sigma_{i}^{5} / T_{i}^{5}$ and $F R P_{i}^{6}=\Sigma_{i}^{6} / T_{i}^{6}$. Natural imbeddings $F R P_{i}^{5} \subset F R P_{i}^{6}$ are now apparent, and it is clear that $\left(\Sigma_{i}^{5}, T_{i}^{5}\right)$ is a characteristic submanifold of $\left(\Sigma_{i}^{6}, T_{i}^{6}\right)$.

Now we have gathered all topological facts that we shall need to formulate our main theorems. However, as we mentioned above, we are going to apply the analytical eta-invariant to detect homotopy projective spaces. So let us introduce the following notation (for more detailed information concerning the eta-invariant and generalized Dirac-type operators, see [3], [13] and also Section 3 of this paper). Let $M^{2 k}$ be a smooth closed Riemannian Pin $^{\text {c }}$ (resp. Pin $^{+}$)-manifold, and let $\phi$ (resp. $\psi$ ) be a Pin ${ }^{c}$ (resp. Pin $^{+}$)-structure on $M^{2 k}$. Then there exists a Dirac-type, first-order elliptic differential operator $D^{c}$ (resp. $D^{+}$) on $M^{2 k}$ determined by the Riemannian metric and the Pin $^{c}$ (resp. Pin ${ }^{+}$-structure on $M^{2 k}$. Note that $D\left(=D^{c}\right.$ or $D^{+}$) is self-adjoint and the Atiyah-Patodi-Singer eta-invariant of $D$ is well-defined. The mod $Z($ resp. $\bmod 2 Z)$ reduction of the eta-invariant of $D^{c}\left(\right.$ resp. $D^{+}$, provided that $\left.k \equiv 2 \bmod 4\right)$ is a Pin $^{c}\left(\right.$ resp. Pin $\left.^{+}\right)$-bordism invariant, and we denote it simply by $\eta\left(M^{2 k}, \phi\right) \bmod Z($ resp. $\left.\eta\left(M^{2 k}, \psi\right) \bmod 2 Z\right)$.

Now we can formulate main theorems of this paper. We are forced to start with involutions of 5 and 6-dimensional spheres. Recall that, up to diffeomorphisms, there exist precisely 4 homotopy projective spaces in dimensions 4 and 5 ([20]).

Theorem A. (a1) $\Sigma_{i}^{5}$ is a homotopy 5 -sphere for any $i=0,1, \ldots$, and hence $F R P_{i}^{5}=\Sigma_{i}^{5} / T_{i}^{5}$ is a homotopy projective space.
(a2) Any involution of a 5-dimensional homotopy sphere is equivalent (i.e., smoothly conjugated) to precisely one of the involutions $T_{0}^{5}=$ ant, $T_{1}^{5}, T_{2}^{5}, T_{3}^{5}$.
(b1) $\Sigma_{i}^{6}$ is a homotopy 6-sphere for any $i=0,1, \ldots$, and hence $F R P_{i}^{6}=\Sigma_{i}^{6} / T_{i}^{6}$ is a homotopy projective space.
(b2) Any involution of a 6-dimensional homotopy sphere is equivalent to precisely one of the involutions $T_{0}^{6}=$ ant, $T_{1}^{6}, T_{2}^{6}, T_{3}^{6}$. Moreover, $\eta\left(F R P_{i}^{6}, \phi\right)= \pm(2 i+1) / 16(\bmod Z)$ for any Pin ${ }^{c}$-structure $\phi$ on $F R P_{i}^{6}$. (In fact, $\left[F R P_{i}^{6}\right]= \pm(2 i+1)\left[R P^{6}\right]$ in the cobordism group $\Omega_{6}^{\text {Pin }^{c}}$ ). Thus the eta-invariant of the Pin ${ }^{c}$-operator completely detects homotopy projective spaces in dimension 6.

This theorem gives a complete and particularly simple classification of involutions of homotopy 5 and 6 -spheres.

Theorem B. The one-fold smooth suspension $\Sigma T_{F S}^{4}$ of the exotic Fintushel-Stern's involution is equivalent (smoothly conjugated) to the involution $T_{3}^{5}$ constructed above.

Thus the one-fold suspension of the Fintushel-Stern involution is given by a simple construction and can be described by a transparent formula.

Commentary 2.1. We could have used the eta-invariant $(\bmod Z)$ of the tangential operator of the $S$ pin ${ }^{c}$-complex with coefficients in the virtual representation $\rho_{0}-\rho_{1}$ (where $\rho_{0}$ (resp. $\rho_{1}$ ) is the trivial (resp. non-trivial) 1-dimensional representation of $Z_{2}$ ) to detect some odd-dimensional homotopy projective spaces in dimension 5 (compare [5, Lemma 2.3]). However, the range of the eta-invariant of this operator (being $Z[1 / 8] / Z$ ) is too small to detect all homotopy projective spaces in dimension 5 . Namely, suspending an involution on $S^{5}$ one sees easily that any 5-dimensional homotopy projective space $F R P^{5}$ is the image under the Smith homomorphism of a 6-dimensional homotopy projective space $F R P^{6}$. Therefore $\eta\left(F R P^{5}\right)=2 \eta\left(F R P^{6}\right)$ by [5, Lemma 3.3]. But any such $F R P^{6}$ is $P n^{c}$-bordant to an odd number of copies of the ordinary $R P^{6}$ (see the proof of Theorem A below, but this follows also by a simple argument using characteristic numbers and $\Omega_{6}^{P^{c}{ }^{c}}=Z_{16} \oplus Z_{4}$ generated by $R P^{6}$ and $\left.R P^{2} \times C P^{2}\right)$. Thus $\eta\left(F R P^{5}\right)=(2 i+1) / 8 \bmod Z$ for some integer $i$. Consequently, there are only four possible values for the eta-invariant of 5-dimensional homotopy projective spaces. However, to any homotopy projective space there correspond precisely two mutually inverse values of the eta-invariant corresponding to mutually inverse Spin $^{c}$-structures. Therefore one can detect at most two 5-dimensional homotopy projective spaces using the eta-invariant. Topologically, the image of $F R P_{i}^{6}=(2 i+1) R P^{6}$ in $\Omega_{P i i^{c}}^{6}$ under the Smith homomorphism lies in the subgroup of $\Omega_{P i n}^{5}\left(B Z_{2}\right)$ generated by $R P^{5}$, which is isomorphic
to $Z_{8}$, and is too small to detect 4 exotic projective spaces of dimension 5 by an argument similar to that given above.

Thus, instead of applying the eta-invariant of the $S p i n^{c}$-operator, we define, for a homotopy projective space $M^{5}$, another invariant ( $\eta^{c}$-invariant) derived from a 6-dimensional projective space which contains $M^{5}$ (see Definition 3.1 below). This also makes the paper a bit more concise. Similar remarks apply to the suspension of an involution of $S^{4}$. We cannot apply directly the above-mentioned results of [5], concerning the Smith homomorphism and the eta-invariant, to establish a satisfactory relation between $T_{F S}^{4}, \Sigma T_{F S}^{4}$ and $\Sigma^{2} T_{F S}^{4}$, since the eta-invariant of the $\mathrm{Pin}^{\mathrm{c}}$-operator does not detect homotopy projective spaces of dimension 4. The method of proving Theorem B in this paper is based on constructing explicitly some "stratified" cobordisms, and provides a detailed picture of the involution $T_{F S}^{4}$, as well as of its suspension. In fact, this method enables us to establish a connection between the eta-invariant $(\bmod Z)$ of certain Pin $^{c}$-manifolds of dimension 6 and the eta-invariant (mod $2 Z$ ) of their image under the Smith homomorphism in $\Omega_{\text {Pin }}{ }^{4}$, but this is done only for a very special kind of manifolds (compare also [26]).

In order to formulate the next theorem, let us recall that two smooth closed 4-manifolds, say $M^{4}$ and $M^{4^{\prime}}$, are called stably diffeomorphic if they become diffeomorphic after forming the connected sum with sufficiently many copies of $S^{2} \times S^{2}$.

Theorem C. Let $T_{1}^{4}$ and $T_{2}^{4}$ be any two involutions on the standard 4 -sphere $S^{4}$. Then the projective spaces $S^{4} / T_{1}^{4}$ and $S^{4} / T_{2}^{4}$ are stably diffeomorphic if and only if the suspended involutions $\Sigma T_{1}^{4}$ and $\Sigma T_{2}^{4}$ are equivalent.

As an immediate corollary of Theorems B and C we get the following
Theorem D. The one-fold suspension $\Sigma T_{C S}^{4}$ of the Cappell-Shaneson exotic involution is equivalent to the one-fold suspension $\Sigma T_{F S}^{4}$ of the Fintushel-Stern involution, and these suspended involutions are both equivalent to the involution $T_{3}^{5}$ described above.

Proof. It has been proved in [23] that the Cappell-Shaneson exotic projective space $F R P_{C S}^{4}$ is stably diffeomorphic to the Fintushel-Stern projective space $F R P_{F S}^{4}$. Now we use Theorems B and C to complete the proof.

It is well-known that a smooth involution $T^{n}$ of a homotopy sphere $\Sigma^{n}$ desuspends if and only if the Browder-Livesay invariant $\alpha\left(T^{n}, \Sigma^{n}\right)=0$, provided that $n>5$ ([20]). As an immediate consequence of our theorems we get an extension of this theorem to all dimensions $\geq 5$.

ThEOREM E. A smooth involution $T^{n}$ of a homotopy sphere $\Sigma^{n}$, where $n \geq 5$, desuspends if and only if the Browder-Livesay invariant $\alpha\left(T^{n}, \Sigma^{n}\right)$ vanishes. In fact, the smooth suspension $\Sigma T^{4}$ of any smooth involution $T^{4}$ of $S^{4}$ is equivalent to precisely one of the involutions $T_{0}^{5}$ and $T_{3}^{5}$.

Proof. It is well-known [20] that the Browder-Livesay invariant vanishes for precisely two (up to equivalence) involutions on $S^{5}$, and hence at most two of them desuspend. But two
of our involutions $T_{0}^{5}, T_{1}^{5}, T_{2}^{5}, T_{3}^{5}$ certainly desuspended, namely $T_{0}^{5}=$ ant and $T_{3}^{5}$ which desuspends to Fintushel-Stern's involution on $S^{4}$. This proves Theorem E.

Here is a brief outline of the proof of main theorems of this paper. First we use the eta-invariant of the Pin $^{c}$-operator to classify involutions on $S^{5}$ and $S^{6}$. This is the first step of the proof of Theorem B. Then we form the double suspension $\Sigma^{2} T_{F S}^{4}$ of $T_{F S}^{4}$ and regard it as an involution of the quadruple $\left(\Sigma(3,5,19), S^{4}, S^{5}, S^{6}\right)$. Next we perform a few series of stratified and equivariant surgeries on this quadruple of $Z_{2}$-manifolds. The first series of surgeries is intended to simplify $\Sigma(3,5,19)$, but at the cost of making the 4 -dimensional member of the quadruple topologically more complicated. More precisely, the first series of surgeries provides us with a stratified cobordism from $\left(\Sigma(3,5,19), S^{4}, S^{5}, S^{6}\right)$ equipped with the involution ( $t^{3}, T_{F S}^{4}, \Sigma T_{F S}^{4}, \Sigma^{2} T_{F S}^{4}$ ) to eight copies of ( $S^{3}, S^{4}, S^{5}, S^{6}$ ), each of which is equipped with the standard antipodal $Z_{2}$-action, and a quadruple of manifolds of the form $\left(S^{3}, 8_{\#}\left(S^{2} \times S^{2}\right), S^{5}, S^{6}\right)$ equipped with an involution of the form (ant, $\left.I_{a}^{4}, I_{a}^{5}, I_{a}^{6}\right)$. Next we perform another sequence of surgeries which provides us with an equivariant cobordism from ( $S^{3}, 8_{\#}\left(S^{2} \times S^{2}\right), S^{5}, S^{6}$ ) to a quadruple of the form ( $S^{3}, S^{4}, S^{5}, S^{6}$ ) equipped with the standard antipodal involution. We use the eta-invariant to detect the position of the quotient manifolds $F R P^{n}=S^{n}$ /involution in the cobordism group $\Omega_{P i n^{c}}^{n}$. This enables us to identify the suspended involution $\Sigma T_{F S}^{4}$ as the involution $T_{3}^{5}$.

Remark. We could apply a different method for proving Theorem B. Namely we could compute the Browder-Livesay invariant of our involutions $T_{i}^{5}$ and then apply Theorem C (using the fact that $F R P_{F S}^{4}$ is not stably diffeomorphic to $R P^{4}$ ) to identify $\Sigma T_{F S}^{4}$ as $T_{3}^{5}$. However, we prefer to apply the method of building explicitely appropriate cobordisms, since this provides a much more detailed picture of the exotic involution on $S^{4}$ and its suspension.
3. Pin-structures, Dirac-type operators and the eta-invariant. For convenience of the reader we collect in this section some basic facts concerning Pin-structures on manifolds, Dirac-type operators and the eta-invariant. Since the material presented here is now standard and can be found in many papers (see [3], [5], [13]), we will omit proofs.

Let $\alpha$ denote one of the symbols,+- or $c$ and $\varepsilon= \pm 1$. Then a Lie group Pin ${ }^{\alpha}$ is welldefined (see [16], [3], [5]). Let $\xi$ be a $n$-dimensional vector bundle over a paracompact space $X . \xi$ is said to admit a Pin $^{\alpha}$-structure if and only if the classifying map $\xi$ of this bundle (we identify here the vector bundle with its classifying map) fits into the following commutative diagram:


A $\operatorname{Pin}^{\alpha}$-structure on the vector bundle $\xi$ is a fibre-homotopy class of a map $\xi^{\alpha}: X \rightarrow$ $B \operatorname{Pin}^{\alpha}(n)$ as in the diagram above. A manifold $M$ is called a Pin $^{\alpha}$-manifold if and only if
its tangent bundle $T M$ admits a Pin $^{\alpha}$-structure, and a Pin $^{\alpha}$-structure on $T M$ is called simply a Pin $^{\alpha}$-structure on $M$. The following proposition gives a useful characterization of $\operatorname{Pin}^{\alpha}$ bundles and Pin ${ }^{\alpha}$-manifolds.

Proposition 3.1 ([5], [13], [28]). Let $\xi$ be an n-dimensional vector bundle over a paracompact space $X$, and $w_{n}(\xi)$ be the $n$-th Whitney-Stiefel class of $\xi$.
(a) $\xi$ has a Pin ${ }^{+}\left(\right.$resp. Pin $\left.^{-}\right)$-structure if and only if $w_{2}(\xi)=0\left(\right.$ resp. $w_{2}(\xi)+w_{1}^{2}(\xi)=$ $0)$. $\xi$ has a Pin $^{c}$-structure if and only if $w_{2}(\xi)$ is the modulo 2 reduction of an integral cohomology class.
(b) If $\xi$ has a Pin $^{\varepsilon}$-structure (resp. Pin ${ }^{c}$-structure), then Pin ${ }^{\varepsilon}$ (resp. Pin $^{c}$ )-structures on $\xi$ are in a one-to-one correspondence with cohomology classes in $H^{1}\left(X, Z_{2}\right)$ (resp. $H^{2}(X, Z)$ ).

For example, even-dimensional projective space $R P^{2 n}$ is a in $^{c}$-manifold which admits precisely two mutually inverse $\mathrm{Pin}^{c}$-structures, and it is a $\mathrm{Pin}^{+}$-manifold (with two mutually inverse $\mathrm{Pin}^{+}$-structures) for dimensions $2 n=8 k+4$. As an immediate consequence of homotopy invariance of Whitney-Stiefel classes of closed manifolds, it follows that any closed manifold homotopy equivalent to a closed Pin $^{\alpha}$-manifold is also a Pin $^{\alpha}$-manifold.

Now let us turn to Dirac-type Pin ${ }^{+}$and Pin $^{c}$-operators (see [3], [13], [28]). Let $M^{2 n}$ be a Riemannian Pin $^{\alpha}$-manifold, and $\Phi$ be a fixed Pin $^{\alpha}$-structure on $M . \Phi$ determines a Pin $^{\alpha}{ }^{-}$vector bundle $\Phi\left(\Delta^{\alpha}(n)\right)$ over $M$ whose fibre is a suitably chosen irreducible $C^{\alpha}\left(R^{2 n+1}\right)$ module $\Delta^{\alpha}(n)$ (where $C^{\alpha}\left(R^{2 n+1}\right)$ is a suitable Clifford algebra). There is a Dirac-type operator $D_{\Phi}: C^{\infty}\left(\Phi\left(\Delta^{\alpha}\right)\right) \rightarrow C^{\infty}\left(\Phi\left(\Delta^{\alpha}\right)\right)$ determined by the Riemannian structure on $M$ and the Pin $^{\alpha}$-structure $\Phi$; we call this the Pin $^{\alpha}$-operator on $M$ (corresponding to the Pin $^{\alpha}$-structure $\Phi)$. This is a first-order elliptic self-adjoint differential operator given in a local orthonormal frame ( $e_{1}, e_{2}, \ldots, e_{2 n+1}$ ) on $M^{2 n} \times[0,1)$ (equipped with an obvious product Riemannian metric) by the formula

$$
D_{\Phi} s=\sum_{i=1}^{n} e_{2 n+1}^{-1} \cdot e_{i} \cdot \nabla_{e_{i}} s
$$

The dot in this formula denotes the Clifford multiplication, and $\nabla$ is the covariant derivative on $\Phi\left(\Delta^{\alpha}(n)\right)$ determined by the Levi-Civita connection on $M$. Thus the Atiyah-Patodi-Singer eta-invariant of $D_{\Phi}$ is well-defined; we denote this invariant by $\eta\left(M^{2 n}, \Phi^{\alpha}\right)$. The following proposition justifies this notation.

Proposition 3.2 ([13], [28]). (a) $\eta\left(M^{2 n}, \Phi^{c}\right)$ mod $Z$ is a Pin ${ }^{c}$-bordism invariant. It takes values in $Z\left[1 / 2^{n+1}\right]$ for non-orientable $M$ and in $Z[1 / 2]$ for orientable $M$. Similarly, $\eta\left(M^{8 k+4}, \Phi^{+}\right) \bmod 2 Z$ is a Pin ${ }^{+}$-bordism invariant.
(b) $\eta\left(R P^{2 n}, \Phi^{c}\right)= \pm 2^{-(n+1)} \bmod Z$ for any Pin $^{c}$-structure $\Phi^{c}$. Similarly, $\eta\left(R P^{8 k+4}\right.$, $\left.\Phi^{+}\right)= \pm 2^{-(4 k+3)} \bmod 2 Z$ for any Pin ${ }^{+}$-structure $\Phi^{+}$.

We shall also need the following result concerning exotic 4-dimensional projective spaces ([23], [28]):

PROPOSITION 3.3. (a) $\eta\left(F R P_{C S}^{4}, \Phi^{+}\right)= \pm 7 / 8$ mod $2 Z$ for any Pin $^{+}$-structure $\Phi^{+}$on $F R P_{C S}^{4}$. Similarly, $\eta\left(F R P_{F S}^{4}, \Phi^{+}\right)= \pm 7 / 8 \bmod 2 Z$ for any Pin $^{+}$-structure $\Phi^{+}$on $F R P_{F S}^{4}$.
(b) $F R P_{C S}^{4}$ is stably diffeomorphic to $F R P_{F S}^{4}$, but not to the ordinary projective space $R P^{4}$.

The eta-invariant $(\bmod Z)$ of the Pin $^{\text {c }}$-operator proves to be a useful tool for detecting exotic projective spaces (or, equivalently, exotic involutions of spheres) in dimension 6. However, it is completely useless in the case of odd-dimensional (orientable) projective spaces due to its limited range (see also Commentary 2.1). The following definition introduces an invariant, which will extricate us from this unpleasant situation.

Let $F R P^{5}=S^{5} / T^{5}$ be a homotopy projective space. Let $\Sigma T^{5}: \Sigma^{6} \rightarrow \Sigma^{6}$ be the smooth suspension of $T^{5}$, and let $\tilde{\Sigma} F R P^{5}=\Sigma^{6} / \Sigma T^{5} . \tilde{\Sigma} F R P^{5}$ is a homotopy projective space which contains $F R P^{5}$ and has precisely two mutually inverse Pin $^{c}$-structures, say $\Phi_{1}^{c}$ and $\Phi_{2}^{c}$. Therefore $\eta\left(\tilde{\Sigma} F R P^{5}, \Phi_{1}^{c}\right)=-\eta\left(\tilde{\Sigma} F R P^{5}, \Phi_{2}^{c}\right) \bmod Z$ by Proposition 2a.

Definition 3.1. With the notation above, define an invariant (the eta ${ }^{c}$-invariant) $\eta^{c}\left(F R P^{5}\right)$ to be the (unordered) pair of numbers $\eta^{c}\left(F R P^{5}\right)=\left\{\eta\left(\tilde{\Sigma} F R P^{5}, \Phi_{1}^{c}\right) \bmod Z\right.$, $\left.\eta\left(\tilde{\Sigma} F R P^{5}, \Phi_{2}^{c}\right) \bmod Z\right\}$.

We will prove that the $\eta^{c}$-invariant completely detects homotopy projective spaces of dimension 5.
4. Homotopy projective spaces of dimensions 5 and 6 versus the eta-invariant. In this section we apply the eta-invariant of the Pin $^{c}$-operator to classify 5 and 6-dimensional smooth projective spaces. In particular, we prove Theorem A of Section 1. We also prove some auxiliary propositions which explain how doing surgery affects the eta-invariant.

Let us start with a version of $Z_{2}$-equivariant plumbing and surgery, which are the main tools in this paper.

Equivariant plumbing. For $i$ even (resp. $i$ odd) let $\xi_{i}$ be an oriented $k$ (resp. $n$ )-dimensional $Z_{2}$-vector bundle over $S^{n}$ (resp. $S^{k}$ ) with a $Z_{2}$-action covered by the $Z_{2}$-action on $\xi_{i}$, where $i=0,1, \ldots, l$. Let $D \xi_{i}$ be the unit disc bundle of $\xi_{i}$ with respect to a $Z_{2}$-invariant fibre metric. Then $D \xi_{i}$ is a $Z_{2}$-manifold in a natural way. Let $I_{i}$ be the involution of $D \xi_{i}$ given by the action of the non-trivial element of $Z_{2}$. Identify $S^{m}$, where $m=k$ or $n$ depending on the parity of $i$, with the zero section of $D \xi_{i}$ as its invariant submanifold. Let $p_{i}, q_{i} \in S^{m} \subset D \xi_{i}$ be two distinct isolated fixed points of $I_{i}$. For $i$ even (resp. $i$ odd), fix orientation-preserving equivariant imbeddings with disjoint images $k_{p_{i}}, k_{q_{i}}: D^{n} \times D^{k}\left(\right.$ resp. $\left.\left(D^{k} \times D^{n}\right)\right) \rightarrow D \xi_{i}$ (where $Z_{2}$ acts on $D^{n} \times D^{k}$ by $(x, y) \mapsto(-x,-y)$ ) such that $k_{p_{i}}(0)=p_{i}, k_{q_{i}}(0)=q_{i}$, and for any $x \in D^{n}$ (resp. $x \in D^{k}$ ), $k_{p_{i}}\left(x \times D^{k}\right)$ (resp. $k_{p_{i}}\left(x \times D^{n}\right)$ ) is precisely a fibre of the bundle $D \xi_{i} \rightarrow S^{n}$ (resp. $S^{k}$ ), and similarly for $k_{q_{i}}$. For $i$ even, let $D_{p_{i}}^{n} \times D_{p_{i}}^{k}\left(\right.$ resp. $\left.D_{q_{i}}^{n} \times D_{q_{i}}^{k}\right)$ be the image of $k_{p_{i}}$ (resp. $k_{q_{i}}$ ), and similarly for $i$ odd.

Then we define the $Z_{2}$-equivariant plumbing of $D \xi_{0}, \ldots, D \xi_{l}$ to be a manifold $D \xi_{0} \square \ldots$ $\square D \xi_{l}$ obtained by identifying $D_{q_{i}}^{n} \times D_{q_{i}}^{k} \ni(x, y) \simeq(y, x) \in D_{p_{i+1}}^{k} \times D_{p_{i+1}}^{n}$. It is clear that
$D \xi_{0} \square \cdots \square D \xi_{l}$ comes with a naturally defined involution $I_{0} \square \cdots \square I_{l}$ extending all the involutions $I_{i}$ and $\operatorname{Fix}\left(I_{0} \square \cdots \square I_{l}\right) \supset\left\{p_{0}, q_{0}=p_{1}, \ldots, q_{l-1}=p_{l}, q_{l}\right\} . D \xi_{0} \square \cdots \square D \xi_{l}$ is not a smooth $Z_{2}$-manifold, but this can be easily fixed by applying a $Z_{2}$-equivariant smoothing corners process.

Let $\alpha_{i}: S^{n-1} \rightarrow S O(k)$ (resp. $\alpha_{i}: S^{k-1} \rightarrow S O(n)$ ) be the clutching map for the bundle $\xi_{i}$ for $i$ even (resp. $i$ odd). Let $\beta_{i}(x, y)=\left(x, \alpha_{i}(x) y\right)$ for $(x, y) \in S^{n-1} \times D^{k}$ (or $S^{k-1} \times D^{n}$ depending on the parity of $i$, and $T: D^{n} \times D^{k} \rightarrow D^{k} \times D^{n}$ be the permutation $(x, y) \rightarrow(y, x)$. It is not hard to see that $\partial\left(D \xi_{0} \square \cdots \square D \xi_{l}\right)=\left(\partial D \xi_{0}\right)_{\partial_{x}}$, where $\chi=$ $k_{q_{0}} T k_{p_{1}}^{-1} \beta_{1} k_{q_{1}} \ldots k_{q_{l-1}} T k_{p_{l}}^{-1} \beta_{l} k_{q_{l}}: S^{n-1} \times D^{k} \rightarrow \partial D \xi_{0}$ or $: S^{k-1} \times D^{n} \rightarrow \partial D \xi_{0}$ (depending on the parity of $l$ ).

Now we can give two alternative descriptions of the involutions $T_{i}^{5}$ of $\Sigma_{i}^{5}$ and $T_{i}^{6}$ of $\Sigma_{i}^{6}$ described in Section 1. An advantage of both of these constructions over the one given in Section 2 is that they provide us with a suitable stratified equivariant cobordism from $\left(\left(\Sigma_{i}^{5}, T_{i}^{5}\right),\left(\Sigma_{i}^{6}, T_{i}^{6}\right)\right)$ to $2 i+1$ copies of $\left(\left(S^{5}, a n t\right),\left(S^{6}, a n t\right)\right)$. This cobordism will play an essential role in our computation of the eta-invariant and determination of $\Sigma T_{F S}^{4}$.

Let us fix concordant decompositions $S^{3}=S^{1} \times D^{2} \cup D^{2} \times S^{1}, S^{4}=S^{1} \times D^{3} \cup$ $D^{2} \times S^{2}, S^{5}=S^{2} \times D^{3} \cup D^{3} \times S^{2}$ and $S^{6}=S^{3} \times D^{3} \cup D^{4} \times S^{2}$, which are all invariant with respect to the usual "antipodal" $Z_{2}$-action. Let $D S^{n}$ be the disc bundle of the tangent bundle $T S^{n}$, and let $Z_{2}$ act on $D S^{n}$ by the differential of the map $R^{n+1} \ni$ $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mapsto\left(x_{1},-x_{2}, \ldots,-x_{n+1}\right)$. Denote by $D T^{n}$ the involution on $D S^{n}$ given by the action of the non-trivial element of $Z_{2}$. Then $D T^{n}$ has precisely two fixed points $p=((1,0, \ldots, 0),(0, \ldots, 0))$ and $q=((-1,0, \ldots, 0),(0, \ldots, 0))$. Let $\bar{D} S^{n}$ be the disc bundle of the stable tangent bundle $T S^{n} \oplus 1$, and $\bar{D} T^{n}$ be an involution on $\bar{D} S^{n}$ given by $\bar{D} T^{n}(x, t)=(D T(x),-t)$. A natural equivariant imbedding $D S^{n} \subset \bar{D} S^{n}$ is now apparent, and $\operatorname{Fix}\left(\bar{D} T^{n}\right)=\operatorname{Fix}\left(D T^{n}\right)=\{p, q\}$. We will need also another 3-dimensional disc bundle over $S^{4}$, namely $\Delta S^{3}=D^{4} \times D^{3} \cup_{\bar{G}} D^{4} \times D^{3}$ (see Section 2 for the definition of $\bar{G}$ ). Then $\Delta S^{3}$ comes with a naturally defined involution $\Delta T^{3}$ which, when restricted to any copy of $D^{4} \times D^{3} \subset \Delta S^{3}$, is just the antipodal map $(x, y) \mapsto(-x,-y)$. A natural equivariant imbedding $\left(D S^{3}, D T^{3}\right) \hookrightarrow\left(\Delta S^{3}, \Delta T^{3}\right)$ is now apparent and $\operatorname{Fix}\left(\Delta T^{3}\right)=\operatorname{Fix}\left(D T^{3}\right)=\{p, q\}$.
A. This construction uses the equivariant plumbing as described above.

For $i=1,2, \ldots$, we define

$$
\tilde{W}_{i}^{6}=D S_{1}^{3} \square \cdots \square D S_{i}^{3}, \quad J_{i}^{6}=D T_{1}^{3} \square \cdots \square D T_{i}^{3} .
$$

For $i$ odd, define

$$
\tilde{W}_{i}^{7}=\Delta S_{1}^{3} \square \bar{D} S_{2}^{3} \square \cdots \square \Delta S_{i}^{3}, \quad J_{i}^{7}=\Delta T_{1}^{3} \square \bar{D} T_{2}^{3} \square \cdots \square \Delta T_{i}^{3} .
$$

For $i$ even, define

$$
\tilde{W}_{i}^{7}=\Delta S_{1}^{3} \square \bar{D} S_{2}^{3} \square \cdots \square \bar{D} S_{i}^{3}, \quad J_{i}^{7}=\Delta T_{1}^{3} \square \bar{D} T_{2}^{3} \square \cdots \square \bar{D} T_{i}^{3} .
$$

Observe that $\left(\tilde{W}_{i}^{6}, J_{i}^{6}\right)$ is a characteristic submanifold of $\left(\tilde{W}_{i}^{7}, J_{i}^{7}\right)$ in a natural way, and both of these $Z_{2}$-manifolds can be assumed to be smooth. Note that $\operatorname{Fix}\left(J_{k}^{6}\right)=\operatorname{Fix}\left(J_{k}^{7}\right)$
consists of precisely $k+1$ isolated points, namely $p_{1}, q_{1}=p_{2}, \ldots, q_{k-1}=p_{k}, q_{k}$. Let

$$
\left(\tilde{V}_{k}^{5}, I_{k}^{5}\right)=\partial\left(\tilde{W}_{k}^{6}, J_{k}^{6}\right), \quad\left(\tilde{V}_{k}^{6}, I_{k}^{6}\right)=\partial\left(\tilde{W}_{k}^{7}, J_{k}^{7}\right) .
$$

It is not hard to see (compare Proposition 1 below) that for even $k \tilde{V}_{k}^{5}$ (resp. $\tilde{V}_{k}^{6}$ ) is a homotopy sphere. We will prove that the involution $I_{2 i}^{5}$ of $\tilde{V}_{2 i}^{5}$ is equivalent to the involution $T_{i}^{5}$ constructed in Section 2. An analogous statement is valid for $\tilde{V}_{2 i}^{6}$ and $I_{2 i}^{6}$.

Now we turn to yet another construction of the involutions $T_{i}^{5}$ and $T_{i}^{6}$.
B. This construction uses surgery in place of the plumbing.

Let $G_{i+1}: S^{2} \times D_{i+1}^{3} \subset S_{i+1}^{5} \rightarrow S^{2} \times D_{i}^{3} \subset S_{i}^{5}$ be a copy of the map $G$, and let $\Gamma_{i+1}: D^{3} \times S_{i+1}^{2} \rightarrow D^{3} \times S_{i}^{2}$ have an analogous meaning. Then

$$
\left(\tilde{X}_{0}^{6}, P_{0}^{6}\right)=\left(D_{0}^{6}, a n t_{0}\right),
$$

and for even $i>0$

$$
\left(\tilde{X}_{i+1}^{6}, P_{i+1}^{6}\right)=\left(\tilde{X}_{i G}^{6}, P_{i G}^{6}\right)
$$

while for odd $i$

$$
\left(\tilde{X}_{i+1}^{6}, P_{i+1}^{6}\right)=\left(\tilde{X}_{i \Gamma}^{6}, P_{i \Gamma}^{6}\right)
$$

where $G$ (resp. $\Gamma$ ) stands for $G_{i+1}\left(\right.$ resp. $\left.\Gamma_{i+1}\right)$.
Similarly, let us put

$$
\left(\tilde{X}_{0}^{6^{\prime}}, P_{0}^{6^{\prime}}\right)=\left(S^{5} \times I_{0}, \overline{a n t}_{0}\right)
$$

and define

$$
\left(\tilde{X}_{i+1}^{6^{\prime}}, P_{i+1}^{6^{\prime}}\right)=\left(\tilde{X}_{i G}^{6^{\prime}}, P_{i G}^{6^{\prime}}\right) \quad \text { or } \quad\left(\tilde{X}_{i \Gamma}^{6^{\prime}}, P_{i \Gamma}^{6^{\prime}}\right)
$$

depending on the parity of $i$.
$Z_{2}$-manifolds ( $\tilde{X}_{i}^{7}, P_{i}^{7}$ ) and ( $\tilde{X}_{i+1}^{7^{\prime}}, P_{i+1}^{7^{\prime}}$ ) are defined analogously with $G$ (resp. $\Gamma$ ) replaced by $\bar{G}$ (resp. $\bar{\Gamma}$ ). Natural imbeddings $\left(\tilde{X}_{i+1}^{n^{\prime}}, P_{i+1}^{7^{\prime}}\right) \subset\left(\tilde{X}_{i+1}^{n}, P_{i+1}^{n}\right), n=6,7$ are apparent, and it is clear that $\tilde{X}_{i}^{n^{\prime}}$ is obtained from $\tilde{X}_{i}^{n}$ by deleting small invariant discs around all fixed points of the involution $P$. Note that $\left(\tilde{X}_{i+1}^{6^{\prime}}, P_{i+1}^{6^{\prime}}\right)\left(\right.$ resp. $\left.\left(\tilde{X}_{i+1}^{6}, P_{i+1}^{6}\right)\right)$ is a characteristic submanifold of $\left(\tilde{X}_{i+1}^{7^{\prime}}, P_{i+1}^{7^{\prime}}\right)\left(\right.$ resp. $\left.\left(\tilde{X}_{i+1}^{7}, P_{i+1}^{7}\right)\right)$ and

$$
\partial\left(\tilde{X}_{i}^{k^{\prime}}, P_{i}^{k^{\prime}}\right)=\partial\left(\tilde{X}_{i}^{k}, P_{i}^{k}\right) \sqcup(i+1)\left(S^{k-1}, \text { ant }\right) .
$$

Denote $\left(\tilde{Y}_{i}^{k-1}, Q_{i}^{k-1}\right)=\partial\left(\tilde{X}_{i}^{k^{\prime}}, P_{i}^{k^{\prime}}\right), k=6,7$. Using the notation in Section 2, one sees that $Y_{i+1}^{5}=Y_{i \partial g}^{5}$ or $Y_{i \partial \gamma}^{5}$, and $Y_{i+1}^{6}=Y_{i \partial \bar{g}}^{6}$ or $Y_{i \partial \bar{\gamma}}^{6}$, depending on the parity of $i$.

The following Proposition is elementary and its statements (a) and (b) are essentially well-known (compare [6]).

Proposition 4.1. (a) $\left(\tilde{W}_{k}^{n}, J_{k}^{n}\right)$ is diffeomorphic to $\left(\tilde{X}_{k}^{n}, P_{k}^{n}\right), k=0,1, \ldots, n=$ 6, 7. Therefore, $\left(\tilde{V}_{k}^{n-1}, I_{k}^{n-1}\right)$ is diffeomorphic to $\left(\tilde{Y}_{k}^{n-1}, Q_{k}^{n-1}\right)$.
(b) $\quad \tilde{W}_{2 k}^{6} \simeq \tilde{X}_{2 k}^{6}$ is a stably framed 2 -connected manifold, and $\tilde{V}_{2 k}^{5}$ is a homotopy sphere.
(c) $\tilde{W}_{2 k}^{7} \simeq \tilde{X}_{2 k}^{7}$ is 2 -connected, and $\tilde{V}_{2 k}^{6}$ is a homotopy sphere.
(d) The involution $I_{2 k}^{5}$ of $\tilde{V}_{2 k}^{5}$ is equivalent to the involution $T_{k}^{5}$ of $\Sigma_{k}^{5}$.
(e) The involution $I_{2 k}^{6}$ of $\tilde{V}_{2 k}^{6}$ is equivalent to the involution $T_{k}^{6}$ of $\Sigma_{k}^{6}$.

Proof. Observe that $D S^{3}$ is obtained by gluing two discs, say $D^{3} \times D_{1}^{3}$ and $D^{3} \times D_{2}^{3}$, with the help of the map $G: S^{2} \times D_{1}^{3} \rightarrow S^{2} \times D_{2}^{3}$. Both the disc bundles $\bar{D} S^{3}$ and $\Delta S^{3}$ are obtained by a similar construction-we use the maps $\bar{G}$ and $\bar{\Gamma}$, respectively. This observation immediately yields the assertion (a).

It follows from the very construction of $\tilde{X}_{2 k}^{6}$ that $\tilde{Y}_{2 k}^{5}=\partial \tilde{X}_{2 k}^{6}$ is obtained by gluing $D^{3} \times S_{0}^{2}$ and $S^{2} \times D_{2 k}^{3}$ with the help of the map $\Gamma_{2 k} \circ G_{2 k-1} \circ \cdots \circ \Gamma_{1} \circ G_{1} \mid S^{2} \times S^{2}$, which is nothing but the map $h_{k}$ defined in Section 2. It is also clear that $\tilde{Y}_{2 k}^{6}=\partial \tilde{X}_{2 k}^{7}$ is obtained by gluing $D^{4} \times S_{0}^{2}$ and $S^{3} \times D_{2 k}^{3}$ with the help of the map $\bar{\Gamma}_{2 k} \circ \bar{G}_{2 k-1} \circ \cdots \circ \bar{\Gamma}_{1} \circ \bar{G}_{1} \mid S^{3} \times S^{2}=\bar{h}_{k}$. Moreover, $Z_{2}$ acts on the above-indicated two components of $\tilde{Y}_{2 k}^{5}$ (resp. $\tilde{Y}_{2 k}^{6}$ ) by the ordinary "antipodal" action. Now the assertions (d) and (e) follow (with the exception of the statement concerning the homotopy type of the manifolds $\tilde{V}$ ).

It is a standard fact that $\tilde{V}_{2 k}^{5}$ is a homotopy sphere ([6]). In order to prove that $\tilde{V}_{2 k}^{6}$ is a homotopy sphere, let us note that $\tilde{H}_{l}\left(\tilde{W}_{2 k}^{7} ; Z\right)=0$ for $l \neq 3,4$, while $\tilde{H}_{3}\left(\tilde{W}_{2 k}^{7} ; Z\right)$ (resp. $\tilde{H}_{4}\left(\tilde{W}_{2 k}^{7} ; Z\right)$ ) is free abelian of rank $k$ generated by elements $v_{1}, v_{2}, \ldots, v_{k}$ (resp. $w_{1}, w_{2}, \ldots, w_{k}$ ), where $v_{i}$ (resp. $w_{i}$ ) is represented by the zero-section $S_{i}^{3}$ (resp. $S_{i}^{4}$ ) of the bundle $\bar{D} S_{i}^{3} \rightarrow S_{i}^{3}$ (resp. $\Delta S_{i}^{3} \rightarrow S_{i}^{4}$ ) contained in $\tilde{W}_{2 k}^{7}$. Moreover, $v_{i} \cdot w_{i}= \pm 1$ and $v_{i} \cdot w_{j}=0$ for $|i-j|>0$. Therefore any homology class $v_{i}$ is primitive and can be killed by surgery. Therefore $\partial \tilde{W}_{2 k}^{7}=\tilde{V}_{2 k}^{6}$ is a homotopy sphere, as claimed. This concludes the proof of Proposition 1 as well as of that of the statements (a1) and (b1) of Theorem A in Section 2.

Thus $\left(\left(\tilde{X}_{2 k}^{6^{\prime}}, P_{2 k}^{6^{\prime}}\right),\left(\tilde{X}_{2 k}^{7^{\prime}}, P_{2 k}^{7^{\prime}}\right)\right)$ is an equivariant cobordism from $\left(\left(\Sigma_{k}^{5}, T_{k}^{5}\right),\left(\Sigma_{k}^{6}, T_{k}^{6}\right)\right)$ to $2 k+1$ copies of $\left(\left(S^{5}, a n t\right),\left(S^{6}, a n t\right)\right)$. Hence $\left(X_{2 k}^{6^{\prime}}, X_{2 k}^{7^{\prime}}\right)$ is a cobordism from $\left(F R P_{k}^{5}, F R P_{k}^{6}\right)$ to $2 k+1$ copies of $\left(R P^{5}, R P^{6}\right)$. We are going to use this cobordism to compute the etainvariant of the Pin $^{c}$-operator, so we shall need the following

Proposition 4.2. $\quad X_{2 k}^{7^{\prime}}$ is a Pin $^{c}$-cobordism.
Proof of this proposition is a simple calculation in cohomology and hence is omitted.
Thus $X_{2 k}^{7^{\prime}}$ is a Pin $^{c}$-cobordism from $F R P_{k}^{6}$ to $2 k+1$ copies of $R P^{6}$. In order to compute the eta-invariant of $F R P_{k}^{6}$, we have to detect the $\operatorname{Pin}{ }^{c}$-structure inherited by any copy of $R P^{6} \subset \partial X_{2 k}^{7^{\prime}}$ from a given Pin $^{c}$-structure on $X_{2 k}^{7^{\prime}}$. The next proposition provides us with an appropriate tool for doing this.

Let us from two auxiliary manifolds which are elementary pieces of the manifold $X_{2 k}^{7^{\prime}}$, namely $A^{7}=\left(R P^{6} \times I\right)_{\bar{g}}^{\prime}$ and $B^{7}=\left(R P^{6} \times I\right)_{\bar{\gamma}}^{\prime}$. To be more precise, $A^{7}$ (resp. $B^{7}$ ) is obtained by gluing two copies of $R P^{6} \times I$ with the help of the map $\bar{g}: R P^{3} \tilde{\times} D^{3} \times 0_{2} \subset$ $R P^{6} \times I_{2} \rightarrow R P^{3} \tilde{\times} D^{3} \times 0_{1} \subset R P^{6} \times I_{1}$ (resp. $\bar{\gamma}: D^{4} \tilde{\times} R P^{2} \times 0_{2} \subset R P^{6} \times I_{2} \rightarrow$ $D^{4} \tilde{\times} R P^{2} \times 0_{1} \subset R P^{6} \times I_{1}$ ). Note that both the manifolds $A^{7}$ and $B^{7}$ are $P i^{c}$-manifolds by Proposition 2 above. Let us also note that $\partial A^{7}$ (resp. $\partial B^{7}$ ) contains two copies of $R P^{6}$, namely $R P^{6} \times 1_{1}$ and $R P^{6} \times 1_{2}$, and denote these two copies of $R P^{6}$ by $R P_{1}^{6}$ and $R P_{2}^{6}$, respectively.

Proposition 4.3. Let $\Phi_{A}\left(\right.$ resp. $\left.\Phi_{B}\right)$ be a Pin ${ }^{c}$-structure on $A^{7}\left(\right.$ resp. $\left.B^{7}\right)$. Let $\Phi_{A i}$ (resp. $\Phi_{B i}$ ), $i=1,2$, be the Pin ${ }^{C}$-structure on $R P_{i}^{6} \subset \partial A^{7}\left(\right.$ resp. $R P_{i}^{6} \subset \partial B^{7}$ ) induced by $\Phi_{A}\left(\right.$ resp. $\left.\Phi_{B}\right)$. Then the Pin ${ }^{c}$-structures $\Phi_{A 1}$ and $\Phi_{A 2}\left(\right.$ resp. $\Phi_{B 1}$ and $\left.\Phi_{B 2}\right)$ coincide.

Proof. We prove the proposition for the manifold $B^{7}$ and the $\operatorname{Pin}^{c}$-structures $\Phi_{B 1}$ and $\Phi_{B 2}$ on $R P^{6}$. The proof for $A^{7}$ is completely analogous. So let us assume, on the contrary, that the Pin $^{c}$-structures $\Phi_{B 1}$ and $\Phi_{B 2}$ on $R P^{6}$ are mutually inverse. Then they extend simultaneously to a Pin $^{c}$-structure $\Phi$ on the "tube" $R P^{6} \times[0,1]$. Consequently, the manifold $\bar{B}^{7}$ obtained by attaching to $B^{7}$ the "tube" $R P^{6} \times[0,1]$ by a map which identifies in an obvious way the "ends" $R P^{6} \times 0$ and $R P^{6} \times 1$ with the two copies of $R P^{6} \subset \partial B^{7}$ is a Pin $^{c}$-manifold. We will show that $\bar{B}^{7}$ is not a Pin $^{c}$-manifold, thus arriving at a contradiction and proving the proposition.

The following simplified description of $\bar{B}^{7}$ will be useful. Take the "tube" $R P^{6} \times[0,1]$ and glue $R P^{6} \times 0$ and $R P^{6} \times 1$ with the help of the map $\bar{\gamma}: D^{4} \tilde{\times} R P^{2} \times 0 \subset R P^{6} \times 0 \rightarrow$ $D^{4} \tilde{\times} R P^{2} \times 1 \subset R P^{6} \times 1$. This manifold is easily seen to be diffeomorphic to $\bar{B}^{7}$ and we denote it by the same symbol. In order to prove that $\bar{B}^{7}$ is not a Pin $^{c}$-manifold it sufficies to indicate a 7 -dimensional submanifold of $\bar{B}^{7}$ which is not Pin ${ }^{c}$. Let $E^{7}=D^{4} \tilde{\times} R P^{2} \times$ $[0,1] /(x, 0) \simeq(\bar{\gamma}(x), 1)$. Thus $E^{7}$ is the mapping torus of the map $\bar{\gamma}$ and the natural inclusion $E^{7} \subset \bar{B}^{7}$ is apparent. We will prove that $E^{7}$ is not a Pin $^{c}$-manifold.

Recall that $\bar{\gamma}$ is the quotient of the map $\bar{\Gamma}: D^{4} \times S^{2} \rightarrow D^{4} \times S^{2}$ given by $\left(\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right.$; $x) \mapsto\left(\left(c_{2}(x)\left(y_{1}, y_{2}, y_{3}\right), y_{4}\right) ; x\right)$. Therefore, $\bar{\gamma}: D^{4} \tilde{\times} R P^{2} \rightarrow D^{4} \tilde{\times} R P^{2}$ is given by $\left(\left[\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right] ;[x]\right) \mapsto\left(d_{2}([x])\left[\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right] ;[x]\right)$, where $d_{2}: R P^{2} \rightarrow S O(4)$ is the composition of the quotient map of $c_{2}$ and the natural imbedding $S O(3) \hookrightarrow S O(4)$. In particular, $\bar{\gamma}$ is an authomorphism of the bundle $D^{4} \tilde{\times} R P^{2} \rightarrow R P^{2}$, and hence $E^{7}$ is a disc bundle of a 4-dimensional vector bundle $\xi^{4}=R P^{2} \times[0,1] \times R^{4} /(x, 0, v) \simeq\left(x, 1, d_{2}(x) v\right)$ over $R P^{2} \times S^{1}$. Let $\nu_{i}$ (resp. $\mu_{2}$ ) be the canonical generator of $H^{i}\left(R P^{2} ; Z_{2}\right)=Z_{2}$ for $i=1,2$ (resp. of $H^{2}\left(R P^{2} ; Z\right)=Z_{2}$ ), and $\bar{\nu}_{1}$ (resp. $\left.\bar{\mu}_{1}\right)$ be the canonical generator of $H^{1}\left(S^{1} ; Z_{2}\right)=Z_{2}\left(\right.$ resp. of $\left.H^{1}\left(S^{1} ; Z\right)=Z\right)$. Note that $H^{2}\left(E^{7} ; Z_{2}\right)=H^{2}\left(R P^{2} \times S^{1} ; Z_{2}\right)=$ $H^{2}\left(R P^{2} ; Z_{2}\right) \oplus H^{1}\left(R P^{2} ; Z_{2}\right) \otimes H^{1}\left(S^{1} ; Z_{2}\right)=Z_{2} \oplus Z_{2}$ generated by $\nu_{2}$ and $\nu_{1} \otimes \bar{\nu}_{1}$, and $H^{2}\left(E^{7} ; Z\right)=H^{2}\left(R P^{2} \times S^{1} ; Z\right)=Z_{2}$ generated by $\mu_{2}$. It is clear that $\nu_{2}$ is the mod 2-reduction of $\mu_{2}$, while $\nu_{1} \otimes \bar{\nu}_{1}$ is not in the range of the mod 2-reduction operation.

We will show that $w_{2}\left(E^{7}\right)=\nu_{2}+\nu_{1} \otimes \bar{\nu}_{1}$, thus proving that $E^{7}$ is not a Pin $^{c}$-manifold. It sufficies to compute $w_{2}\left(T\left(R P^{2} \times S^{1}\right) \oplus \xi\right)=\nu_{2}+w_{1}\left(T\left(R P^{2} \times S^{1}\right)\right) w_{1}(\xi)+w_{2}(\xi)=$ $\nu_{2}+w_{2}(\xi)$, since $w_{1}(\xi)=0$ because $d_{2}$ takes values in $S O(4)$. Let us put $w_{2}(\xi)=a \nu_{2}+$ $b \nu_{1} \otimes \bar{\nu}_{1}$. It is clear that $a=0$, since $\xi \mid R P^{2} \times t$ is trivial; thus $w_{2}(\xi)=b \nu_{1} \otimes \bar{\nu}_{1}$ and we must show that $b=1$. Let $\zeta=\xi \mid R P^{1} \times S^{1}$. Observe that for $[x] \in R P^{1}, d_{2}([x])$ is the rotation in the plane $\left\{e_{1}, x\right\}$ by the angle $\alpha$ between the vectors $e_{1}$ and $x$. Identify $R P^{1}$ with $S^{1}=[0,2 \pi]$ with identified ends. It is clear now that $\zeta=\zeta_{1} \oplus 2$, where 2 stands for the trivial 2-dimensional bundle and $\zeta_{1}=S^{1} \times[0,1] \times R^{2} /\left(\alpha, 0,\left(v_{1}, v_{2}\right)\right) \simeq$ $\left(\alpha, 1,\left(v_{1} \cos \alpha-v_{2} \sin \alpha, v_{1} \sin \alpha+v_{2} \cos \alpha\right)\right)$. Thus the Euler class of $\zeta_{1}$ is the generator of $H^{2}\left(R P^{1} \times S^{1} ; Z\right) \simeq Z$, and $w_{2}\left(\zeta_{1}\right)=w_{2}(\zeta)=w_{2}\left(\xi \mid R P^{1} \times S^{1}\right)$ is the non-zero element of
$H^{2}\left(R P^{1} \times S^{1} ; Z_{2}\right) \simeq Z_{2}$. Consequently, $w_{2}(\xi)=\nu_{1} \otimes \bar{\nu}_{1}$ and $w_{2}\left(D^{7}\right)=\nu_{2}+\nu_{1} \otimes \bar{\nu}_{1}$. This concludes the proof of Proposition 3 for the manifold $B^{7}$.

As mentioned above, the proof of the corresponding statement for the manifold $A^{7}$ is similar and hence is omitted.

As an immediate consequence of this proposition we get the following
Corollary 4.1. (a) Let $\Phi^{c}$ be a Pin ${ }^{c}$-structure on $X_{2 k}^{7^{\prime}}$, and $\Phi_{i}^{c}, i=1,2, \ldots, 2 k+$ 1, be the Pinct-structure induced by $\Phi^{c}$ on the $i$-th copy of $R P^{6}$ contained in $\partial X_{2 k}^{7^{\prime}}$. Let $\Phi_{0}^{c}$ be the Pin ${ }^{c}$-structure induced by $\Phi^{c}$ on $F R P_{k}^{6} \subset \partial X_{2 k}^{7^{\prime}}$. Then all the Pin ${ }^{c}$-structures $\Phi_{i}^{c}, i=1,2, \ldots, 2 k+1$, coincide. Therefore, $\left[\left(F R P_{k}^{6}, \Phi_{0}^{c}\right)\right]=(2 k+1)\left[\left(R P^{6}, \Phi_{1}^{c}\right)\right]$ in the cobordism group $\Omega_{P i n^{c}}^{6}$. Consequently, $\eta\left(F R P_{k}^{6}, \Phi_{0}^{c}\right)= \pm(2 k+1) / 16 \bmod Z$ and $\eta^{c}\left(F R P_{k}^{5}\right)= \pm(2 k+1) / 16 \bmod Z$.
(b) The $\eta^{c}$-invariant (resp. the eta-invariant of the Pin ${ }^{c}$-operator) completely detects homotopy projective spaces in dimension 5 (resp. 6).

In order to prove this corollary and to finish the proof of Theorem A of Section 2, it sufficies now to recall that there exist, up to equivalence, 4 involutions of homotopy spheres in dimensions 5 and 6 ([20]). Therefore they must be our involutions $T_{i}^{5}$ (resp. $T_{i}^{6}$ ), $i=$ $0,1,2,3$. This concludes our study of 5 and 6 -dimensional homotopy projective spaces.
5. Fintushel-Stern's exotic involution on $S^{4}$. In this section we give a detailed study of the Fintushel-Stern exotic involution on $S^{4}$. In particular, we prove a fundamental technical proposition (Proposition 4 below), which gives a link between the Fintushel-Stern exotic involution on $S^{4}$ and involutions on higher-dimensional spheres. Roughly speaking, this proposition states that there exists an equivariant cobordism from $\left(S^{4}, T_{F S}^{4}\right)$ to eight copies of ( $S^{4}, a n t$ ) and some explicitely described $Z_{2}$-manifold ( $\tilde{M}_{8}^{4} \simeq 8_{\#} S^{2} \times S^{2}, T_{8}^{4}$ ), which imbeds appropriately into an equivariant cobordism from ( $S^{5}, \Sigma T_{F S}^{4}$ ) to eight copies of ( $S^{5}$, ant) and some $Z_{2}$-manifold of the form $\left(\Sigma^{5}, I_{9}^{5}\right)$. In a further section of this paper, we identify $\left(\Sigma^{5}, I_{9}^{5}\right)$ as $\left(S^{5}\right.$, ant), and this, together with an explicit form of the cobordism, enables us to identify ( $S^{5}, \Sigma T_{F S}^{4}$ ) as our involution ( $S^{5}, T_{3}^{5}$ ). Some of the results given in this section can be found in [23], [25].

Let us introduce the following conventions and notation which are more convenient for our present purposes. Let $\beta: S^{l} \times S^{m} \rightarrow S^{m} \times S^{l}$ be the permutation $(x, y) \mapsto(y, x)$. Using $\beta$ we fix concordant and $Z_{2}$-equivariant decompositions $S^{n}=D^{l+1} \times S^{m} \cup_{\beta} D^{m+1} \times S^{l}$ (abbreviated to $S^{3}=T_{1} \cup_{\beta} T_{2}$ for $n=3$ and $l=m=1$ ). Let us note that all the "surgery" constructions performed in Sections 2 and 3, with the help of the maps $G, \bar{G}, \Gamma$ and $\bar{\Gamma}$, can be translated into the language of these new decompositions by replacing these maps by suitable compositions $\bar{\beta}^{-1} F \bar{\beta}$, where $\bar{\beta}: D^{l+1} \times S^{m} \rightarrow S^{m} \times D^{l+1}$ is an obvious extension of $\beta$ and $F$ stands for one of the maps $G, \bar{G}, \Gamma$ or $\bar{\Gamma}$. In particular, we use the same symbol $F$ instead of $\bar{\beta}^{-1} F \bar{\beta}$, and again we talk about the surgery on $F$ and keep the same notation $M_{\partial F}, M_{F}$ and so on. Let $N^{n}$ be a smooth submanifold of a manifold $V^{v}$, and let $\phi: D^{l+1} \times S^{m} \rightarrow N^{n}$
and $\psi: D^{t+1} \times S^{s} \rightarrow V^{v}$ be smooth imbeddings, where $m+l+1=n, s+t+1=v$ and $s \geq m, t \geq l$.

DEFINITION 5.1. With the notation above, we say that $\psi$ essentially extends $\phi$ (and write $\psi \sim \phi$ ) provided that there exists, for the first, an autodiffeomorphism $\bar{g}$ of the disc $D^{s+t+2} \supset S^{s+t+1}=D^{t+1} \times S^{s} \cup_{\beta} D^{s+1} \times S^{t}$ such that the restriction $g: S^{s+t+1} \rightarrow S^{s+t+1}$ of $\bar{g}$ maps $D^{t+1} \times S^{s}$ onto itself; and, for the second, an autodiffeotopy $h_{t}$ of $V^{v}$ from $h_{0}=$ id to $h_{1}$, such that $h_{1} \circ \psi \circ g: D^{t+1} \times S^{s} \rightarrow V^{v}$ conicides with $\phi$ on $D^{l+1} \times S^{m}$, and $h_{1} \circ \psi \circ g\left(D^{t+1} \times S^{s}\right) \cap N^{n}=\phi\left(D^{l+1} \times S^{m}\right)$.

Let us note that if $\Phi: D^{w+1} \times S^{u} \rightarrow U^{u+w+1} \supset V^{v}$ essentially extends $\psi$, then $\Phi$ essentially extends $\phi$. We will also use an obvious equivariant version of this notion (and write $\psi \sim_{Z_{2}} \phi$ ) in the case of $Z_{2}$-manifolds $N^{n}$ and $V^{v}$ and equivariant maps (as usual, we take the ordinary "antipodal" $Z_{2}$-action on $S^{n}$ and $D^{l+1} \times S^{m}$, and use equivariant maps $g$ and $h_{t}$ ). In this case we say also that the surgery on $\psi$ essentially extends the surgery on $\phi$. The following proposition is a simple consequence of the definition above.

Proposition 5.1. With the notation above, if an imbedding $\psi$ essentially extends an imbedding $\phi$, then there exists a manifold $n V_{\partial \psi}^{v}$ diffeomorphic to the manifold $V_{\partial \psi}^{v}$, which contains $N_{\partial \phi}^{n}$ as a smooth submanifold. Moreover, if $N^{n} \subset \partial K^{n+1}$ and $V^{v} \subset \partial W^{n+1}$, where $K^{n+1}$ is a proper submanifold of a manifold $W^{v+1}$, there exists a manifold $n W_{\psi}^{v+1}$ diffeomorphic to $W_{\psi}^{v+1}$, which contains $K_{\phi}^{n+1}$ as a smooth submanifold. In fact, it sufficies to take $n V_{\partial \psi}^{v}=V_{\partial \Phi}^{v}$ and $n W_{\psi}^{v+1}=W_{\Phi}^{v+1}$ for $\Phi=h_{1} \circ \psi \circ g$. An analogous statement is clearly true for the "punctured" bordism $W_{\psi}^{\prime}$. Moreover, all these statements have obvious $Z_{2}$-equivariant analogues.

REMARK 5.1. The following notational and terminological convention will be applied in forthcoming sections of this paper. An imbedding $\Phi=h_{1} \circ \psi \circ g$ as described above will be said to be $\phi$-good and equivalent to $\psi$. Assume we are given two increasing $n$ tuples $\left(M_{1}, \ldots, M_{n}\right) \subset\left(\partial N_{1}, \ldots, \partial N_{n}\right)$ of smooth manifolds and a sequence $\phi=\left\{\phi_{i}\right.$ : $\left.D^{l_{i}+1} \times S^{m_{i}} \rightarrow M_{i}\right\}$ of smooth imbeddings such that $\phi_{i+1}$ essentially extends $\phi_{i}$. Form a sequence $\Phi=\left\{\Phi_{i}: D^{l_{i}+1} \times S^{m_{i}} \rightarrow M_{i}\right\}$ of smooth imbeddings such that $\Phi_{1}=\phi_{1}$ and $\Phi_{i+1}$ is $\Phi_{i}$-good and equivalent to $\phi_{i+1}$, and form the manifolds $M_{i \partial \Phi_{i}}$ and $N_{i \Phi_{i}}$ (denoted shortly by $M_{i \partial \Phi}$ and $N_{i \Phi}$ respectively). Then $M_{i \partial \Phi} \subset M_{i+1, \partial \Phi}$ and $N_{i \Phi} \subset N_{i+1, \Phi}$ in a natural way.

We will usually neglect the replacement of $\phi$ by $\Phi$ and write $\left(M_{1}, \ldots, M_{n}\right)_{\partial \phi}$ to denote the $n$-tuple of manifolds ( $M_{1 \partial \Phi}, \ldots, M_{n \partial \Phi}$ ), and analogously $\left(N_{1}, \ldots, N_{n}\right)_{\phi}$ to denote ( $N_{1 \Phi}, \ldots, N_{n \Phi}$ ). Thus $N_{i \phi}$ is obtained from $N_{i}$ by attaching a handle of index $m_{i}$, and we will say that $\left(N_{1}, \ldots, N_{N}\right)_{\phi}$ is the trace of a surgery on ( $N_{1}, \ldots, N_{n}$ ) of the type ( $m_{1}, \ldots, m_{n}$ ). An analogous notation will be used in the case of $Z_{2}$-manifolds and their quotient manifolds and punctured manifolds $N_{i \phi}^{\prime}$. Of course the manifold $N_{i \phi}$ itself depends on the choice of $\Phi$, but its diffeomorphism type does not. In fact, any two such manifolds are diffeomorphic in a natural way, and we can find a diffeomorphism between them, which is diffeotopic to identity while restricted to $N_{i} \subset N_{i \Phi}$.

If $\chi^{3}: D^{2} \times S^{1} \rightarrow S^{3}$ is an orientation-preserving imbedding such that $\chi^{3}\left(0 \times S^{1}\right)$ is a trivial knot, then the isotopy class of $\chi^{3}$ is determined by the linking number of $\chi^{3}\left(0 \times S^{1}\right)$ and $\chi^{3}\left(x \times S^{1}\right)$ for any $D^{2} \ni x \neq 0$. We denote by $\chi(k)$ such an imbedding with the corresponding linking number $k$. The surgery on $\chi^{3}$ will be called Dehn's surgery.

Now let us formulate two simple technical lemmas, which will be needed later.
LEMMA 5.1. (a) Let $\chi^{3}( \pm 2): D^{2} \times S^{1} \rightarrow D^{2} \times S^{1} \subset S^{3}$ be equivariant. Let an equivariant orientation-preserving imbedding $\chi^{4}: D^{3} \times S^{1} \rightarrow S^{4}$ satisfy $\chi^{4} \sim_{Z_{2}} \chi^{3}( \pm 2)$. Then $\chi^{4}$ is (non-equivariantly) isotopic to the standard imbedding $D^{3} \times S^{1} \rightarrow D^{3} \times S^{1} \cup_{\beta}$ $D^{2} \times S^{2}=S^{4}$, and both of the maps $G$ and $\Gamma: D^{3} \times S^{2} \rightarrow S^{5}$ essentially extend $\chi^{4}$. Therefore the surgery on $G$ (resp. $\Gamma$ ) essentially extends the surgery on $\chi^{4}$ and hence the surgery on $\chi^{3}$.
(b) Let $\phi^{3}: D^{2} \times S^{1} \rightarrow D^{2} \times S^{1} \subset S^{3}=D^{2} \times S^{1} \cup_{\beta} D^{2} \times S^{1}$ be the natural imbedding. Let $\phi^{4}: D^{3} \times S^{1} \rightarrow D^{2} \times S^{2} \subset S^{4}=D^{2} \times S^{2} \cup_{\beta} D^{3} \times S^{1}$ satisfy $\phi^{4} \sim_{Z_{2}} \phi^{3}$. Let $\phi^{5}: D^{3} \times S^{2} \rightarrow D^{3} \times S^{2} \subset S^{5}=D^{3} \times S^{2} \cup_{\beta} D^{3} \times S^{2}$ be the natural imbedding. Then $\phi^{5} \sim_{Z_{2}} \phi^{4}$.

The assertion (a) follows from the fact that $G: D^{3} \times S^{2} \rightarrow D^{3} \times S^{2}$ is a bundlemorphism and $G \mid D^{2} \times S^{1}: D^{2} \times S^{1} \rightarrow D^{2} \times S^{1}$ is given by $(v, x) \rightarrow\left(c_{1}(x) v, x\right)$, which is easily seen to be of the form $\chi^{3}(2)$. Similar observations apply to prove this assertion for $\Gamma$. (b) follows by an easy "isotopy" argument.

Let $\tilde{\chi}^{3}(2 k): D^{2} \times S^{1} \rightarrow D^{2} \times S^{1} \subset S^{3}$ be equivariant. Let $\tilde{\chi}^{4}: D^{3} \times S^{1} \rightarrow D^{3} \times S^{1} \subset$ $S^{4}$ satisfy $\tilde{\chi}^{4} \sim_{Z_{2}} \tilde{\chi}^{3}$. Let $\left(\tilde{M}^{5}, T^{5}\right)=\left(S^{4} \times I_{1}, \overline{a n t}\right) \cup_{\tilde{\chi}^{4}}\left(S^{4} \times I_{2}, \overline{a n t}\right)$, where $\tilde{\chi}^{4}$ is understood as a map: $\left(D^{3} \times S^{1} \times 1\right)_{2} \rightarrow\left(D^{3} \times S^{1} \times 1\right)_{1}$. Then $\partial M^{5}$ contains two copies of $R P^{4}$, namely $R P_{1}^{4}=S^{4} \times 0_{1} /$ ant and $R P_{2}^{4}=S^{4} \times 0_{2} /$ ant. Moreover, $M^{5}$ is obtained by gluing two copies of $R P^{4} \times[0,1]$ by the quotient imbedding $\chi^{4}: D^{3} \tilde{\times} R P^{1} \times 1_{2} \subset$ $R P^{4} \times I_{2} \rightarrow D^{3} \tilde{\times} R P^{1} \times 1_{1} \subset R P^{4} \times I_{1}$.

Lemma 5.2 (see [23]). With the notation above, we have the following:
(a) $M^{5}$ is a $\mathrm{Pin}^{+}$-manifold.
(b) Let $\Phi^{+}$be a Pin ${ }^{+}$-structure on $M^{5}$, and $\Phi_{i}^{+}$be the Pin ${ }^{+}$-structure on $R P_{i}^{4} \subset \partial M^{5}$ induced by $\Phi^{+}$. Then $\Phi_{1}^{+}$coincides with (resp. is inverse to) $\Phi_{2}^{+}$if and only if $k$ is odd (resp. even). Consequently, $\eta\left(R P^{4}, \Phi_{1}^{+}\right)=\eta\left(R P^{4}, \Phi_{2}^{+}\right) \bmod 2 Z$ if and only if $k$ is odd.
(c) The isotopy class of an imbedding $\gamma: D^{3} \tilde{x} R P^{1} \rightarrow R P^{4}$ representing the nontrivial element of $\pi_{1}\left(R P^{4}\right)$ is detected by the eta-invariant of the "source" $R P^{4}$ equipped with the Pin ${ }^{+}$-structure transfered by $\gamma$ from the standard Pin ${ }^{+}$-structure on the "target" $R P^{4}$.

Proof. Proof of the assertion (a) is similar to that of Proposition 4.2. The assertion (b) is nothing but Lemma 6 in Section 4 of [23] and its proof is similar to that Proposition 4.3. The assertion (c) follows from (b) and the well-known fact that there exist precisely two isotopy classes of imbeddings $\gamma: D^{3} \tilde{\times} R P^{1} \rightarrow R P^{4}$ representing the generator of $\pi_{1}\left(R P^{4}\right)$, which differs by the (unique) non-trivial automorphism of the bundle $D^{3} \tilde{x} R P^{1} \rightarrow R P^{1}$.

Now, let us recall that the Brieskorn sphere $\Sigma(3,5,19)$ is a characteristic submanifold for the Fintushel-Stern involution on $S^{4}$ ([10], [23]). It is a Seifert manifold over $S^{2}$ with associated unnormalized Seifert invariants $((1,1) ;(3,-1) ;(5,-2) ;(19,-5))$. Let $P^{3}$ be the involution on $\Sigma(3,5,19)$ "contained" in the natural $S^{1}$-action. In Proposition 5.2 below we will apply the following convention. A diffeomorphism $\Theta_{i}^{3}: D^{2} \times S^{1} \rightarrow D^{2} \times S^{1}, i=$ $2,3, \ldots$, will be considered also as an imbedding $\Theta_{i}^{3}: D^{2} \times S^{1} \times 1_{i} \subset S^{3} \times I_{i} \rightarrow D^{2} \times$ $S^{1} \times 1_{i-1} \subset S^{3} \times I_{i-1}$; for $\Theta_{i}^{3} \sim_{Z_{2}} \Theta_{i}^{4}: D^{3} \times S^{1} \subset S^{4} \rightarrow D^{2} \times S^{2} \subset S^{4}, i=2,3, \ldots$, we apply a similar convention. Moreover, an imbedding $\left(\Theta_{1}^{3}, \Theta_{1}^{4}\right):\left(D^{2} \times S^{1}, D^{3} \times S^{1}\right) \rightarrow$ ( $\left.\Sigma(3,5,19), S^{4}\right)$ will be identified with its copy: $\left(D^{2} \times S^{1} \times 1_{1}, D^{3} \times S^{1} \times 1_{1}\right) \subset\left(S^{3} \times\right.$ $\left.I_{1}, S^{4} \times I_{1}\right) \rightarrow\left(\Sigma(3,5,19) \times 1, S^{4} \times 1\right) \subset\left(\Sigma(3,5,19) \times I, S^{4} \times I\right)$.

Proposition 5.2. There exist a sequence of equivariant maps $\Theta^{3}=\left(\Theta_{1}^{3}, \ldots, \Theta_{8}^{3}\right)$, where $\Theta_{1}^{3}:\left(T_{1}\right.$, ant $) \subset\left(S^{3}\right.$, ant $) \rightarrow\left(\Sigma(3,5,19), P^{3}\right)$ and $\Theta_{i}^{3}:\left(T_{1}\right.$, ant $) \subset\left(S^{3}\right.$, ant $) \rightarrow$ ( $T_{2}$, ant $) \subset\left(S^{3}\right.$, ant) for $i>1$, and the associated sequence of equivariant maps $\Theta^{4}=$ $\left(\Theta_{1}^{4} \sim_{Z_{2}} \Theta_{1}^{3}, \ldots, \Theta_{8}^{4} \sim_{Z_{2}} \Theta_{8}^{3}\right)$, where $\Theta_{1}^{4}:\left(D^{3} \times S^{1}\right.$, ant $) \rightarrow\left(S^{4}, T_{F S}^{4}\right)$ and $\Theta_{i}^{4}:\left(D^{3} \times\right.$ $S^{1}$, ant $) \subset\left(S^{4}\right.$, ant $) \rightarrow\left(D^{2} \times S^{2}\right.$, ant $) \subset\left(S^{4}\right.$, ant $)$ for $i>1$, such that the following conditions are satisfied:

Let two sequences of $Z_{2}$-manifolds defined to be

$$
\left(\tilde{M}_{0}^{5}, T_{0}^{5}\right)=\left(S^{4} \times I_{0}, T_{F S}^{4} \times i d\right)
$$

and for $1 \leq i \leq 8$

$$
\begin{gathered}
\left(\tilde{M}_{i}^{5}, T_{i}^{5}\right)=\left(\tilde{M}_{i-1, \Theta_{i}^{4}}^{5^{\prime}}, T_{i-1, \Theta_{i}^{4}}^{5}\right) \\
\left(\tilde{N}_{0}^{4}, P_{0}^{4}\right)=\left(S^{4} \times 1_{0}, T_{F S}^{4}\right)
\end{gathered}
$$

and for $1 \leq i \leq 8$

$$
\left(\tilde{N}_{i}^{4}, P_{i}^{4}\right)=\left(\tilde{N}_{i-1, \partial \Theta_{i}^{4}}^{4}, P_{i-1, \partial \Theta_{i}^{4}}^{4}\right)
$$

Then the following hold.
(a) Any map $\Theta_{i}^{3}, i=2,3, \ldots, 8$ satisfies $\Theta^{3}=\Theta^{3}( \pm 2)$.
(b) $\tilde{N}_{i}^{4}$ is the connected sum of $i$ copies of $S^{2} \times S^{2}$.
(c) $\left(\tilde{N}_{8}^{4}, P_{8}^{4}\right)$ contains, as a characteristic submanifold, a $Z_{2}$-manifold $\left(\tilde{N}_{8}^{3}, P_{8}^{3}\right)$ which is diffeomorphic to ( $S^{3}$, ant).

It is to be stressed that $\tilde{N}_{8}^{3}$ need not to be obtained from $\Sigma(3,5,19)$ by doing the Dehn surgeries on the maps $\Theta_{i}^{3}$.

Proof. We have to define appropriate maps $\Theta_{i}^{3}, \Theta_{i}^{4}$. In [23, pages 19-21] we proved that there exist two sequences of equivariant imbeddings $\left(\tilde{\chi}_{1}^{3}, \ldots, \tilde{\chi}_{5}^{3}\right)$ and $\left(\tilde{\chi}_{6}^{3}, \ldots, \tilde{\chi}_{8}^{3}\right)$ (resp. $\left(\tilde{\chi}_{1}^{4}, \ldots, \tilde{\chi}_{5}^{4}\right)$ and $\left(\tilde{\chi}_{6}^{4}, \ldots, \tilde{\chi}_{8}^{4}\right)$ ), such that the following conditions are satisfied:
(1) $\quad \tilde{\chi}_{1}^{3}$ (resp. $\left.\tilde{\chi}_{6}^{3}\right):\left(D^{2} \times S^{1}\right.$,ant $) \rightarrow\left(\Sigma(3,5,19), P^{3}\right) \subset\left(S^{4}, T_{F S}\right)$ is a diffeomorphism onto $T(19,-5)($ resp. $T(3,-1)) \subset \Sigma(3,5,19)$, an invariant normal neighbourhood of the singular orbit corresponding to the Seifert invariants $(19,-5)$ (resp. (3, -1 )).
(2) For any $i=2,3,4,5,7,8, \tilde{\chi}_{i}^{3}:\left(D^{2} \times S^{1}\right.$,ant $) \rightarrow\left(D^{2} \times S^{1}\right.$, ant $) \subset\left(S^{3}\right.$, ant $)$ is a diffeomorphism of the form $\chi^{3}( \pm 2)$.
(3) $\quad \tilde{\chi}_{1}^{4}:\left(D^{3} \times S^{1}\right.$, ant $) \rightarrow\left(S^{4}, T_{F S}\right)$ satisfies $\tilde{\chi}_{1}^{4} \sim_{Z_{2}} \tilde{\chi}_{1}^{3}$, and similarly for $\tilde{\chi}_{6}^{4}$.
(4) For any $i=2,3,4,5,7,8, \tilde{\chi}_{i}^{4}:\left(D^{3} \times S^{1}\right.$,ant $) \rightarrow\left(D^{2} \times S^{2}\right.$,ant $) \subset\left(S^{4}\right.$,ant $)$ satisfies $\tilde{\chi}_{i}^{4} \sim_{Z_{2}} \tilde{\chi}_{i}^{3}$.
(5) Consider the map $\tilde{\chi}_{1}^{3}$ (resp. $\tilde{\chi}_{6}^{3}$ ) as a map from $T_{1} \times 1_{1} \subset S^{3} \times I_{1}$ (resp. $T_{1} \times 1_{6} \subset$ $S^{3} \times I_{6}$ ) onto $T(19,-5) \subset \Sigma(3,5,19) \times 1_{0} \subset \Sigma(3,5,19) \times[0,1]_{0} \subset S^{4} \times[0,1]_{0}$ (resp. $\left.T(3,-1) \subset \Sigma(3,5,19) \times 1_{0}\right)$, and let $\tilde{\chi}_{1}^{4} \sim_{Z_{2}} \tilde{\chi}_{1}^{3}, \tilde{\chi}_{6}^{4} \sim_{Z_{2}} \tilde{\chi}_{6}^{3}$. Similarly, consider the map $\tilde{\chi}_{i}^{3}, i=2,3,4,5,7,8$, as a map $T_{1} \times 1_{i} \subset S^{3} \times 1_{i} \rightarrow T_{2} \times 1_{i-1} \subset S^{3} \times I_{i-1}$, and let $\tilde{\chi}_{i}^{4} \sim_{Z_{2}} \tilde{\chi}_{i}^{3}: D^{3} \times S^{1} \times 1_{i} \rightarrow D^{2} \times S^{2} \times 1_{i-1}$. Let

$$
\left(\tilde{K}_{0}^{5}, I_{0}^{5}\right)=\left(S^{4} \times I_{0}, T_{F S}^{4} \times i d\right)
$$

and for $1 \leq i \leq 8$

$$
\left(\tilde{K}_{i}^{5}, I_{i}^{5}\right)=\left(\tilde{K}_{i-1, \tilde{x}_{i}^{4}}^{\prime}, I_{i-1, \tilde{x}_{i}^{4}}\right)
$$

Also, let

$$
\left(\tilde{L}_{0}^{4}, J_{0}^{4}\right)=\left(S^{4} \times 1_{0}, T_{F S}^{4}\right),
$$

and for $1 \leq i \leq 8$

$$
\left(\tilde{L}_{i}^{4}, J_{i}^{4}\right)=\left(\tilde{L}_{i-1, \partial \tilde{\chi}_{i}^{4}}, J_{i-1, \partial \tilde{\chi}_{i}^{4}}\right) .
$$

Then $K_{8}^{5}$ is a Pin $^{+}$-bordism from $F R P_{F S}^{4}=S^{4} \times 0_{0} / T_{F S}^{4}$ to eight copies of $R P^{4}$ (namely $S^{4} \times$ $0_{i} / a n t$ ) and some manifold $L_{8}^{4}$. Moreover, ( $\tilde{L}_{8}^{4}, J_{8}^{4}$ ) contains, as a characteristic submanifold, a Seifert manifold $\tilde{M}_{8}^{3}$ which is $Z_{2}$-equivariantly diffeomorphic to ( $S^{3}$, ant).

Note that any $K_{i}^{5}$ is a $\mathrm{Pin}^{+}$-manifold by Lemma 5.2(a). Therefore, any $\tilde{L}_{i}^{4}$ is the connected sum of $i$ copies of $S^{2} \times S^{2}$ by standard arguments. Thus ( $\tilde{L}_{8}^{4}, J_{8}^{4}$ ) satisfies the conditions (b) and (c), and all the maps ( $\tilde{\chi}_{i}^{4}, \tilde{\chi}_{i}^{3}$ ) but ( $\tilde{\chi}_{6}^{4}, \tilde{\chi}_{6}^{3}$ ) satisfy the condition (a). Define $\Theta_{i}^{3}=\tilde{\chi}_{i}^{3}$ and let $\Theta_{i}^{4} \sim \Theta_{i}^{3}$ for $i \neq 6$. In order to define $\left(\tilde{\Theta}_{6}^{4}, \tilde{\Theta}_{6}^{3}\right)$, let us observe that there exists an equivariant diffeotopy $h_{t}: \tilde{L}_{5}^{4} \rightarrow \tilde{L}_{5}^{4}$ such that $h_{0}=i d$, and $\Theta_{6}^{4}$ (=by definition $h_{1} \circ \tilde{\chi}_{6}^{4}$ ) maps $D^{3} \times S^{1} \times 1_{6}$ into $D^{2} \times S^{2} \times 1_{5} \subset \tilde{L}_{5}^{4}$ and satisfies the condition that $\Theta_{6}^{4} \sim_{Z_{2}} \Theta_{6}^{3}$ for some $\Theta_{6}^{3}( \pm 2 k): T_{1} \times 1_{6} \rightarrow T_{2} \times 1_{5} \subset S^{3} \times 1_{5}$, where $k=0$ or 1 . (In fact, use 1-connectivity of $\tilde{L}_{5}^{4}$ to build an equivariant diffeotopy which "moves" $\tilde{\chi}_{6}^{4}\left(D^{3} \times S^{1} \times 1_{6}\right)$ from its initial position to $D^{2} \times S^{2} \times 1_{5} \subset \tilde{L}_{5}^{4}$; next observe that $\Theta_{6}^{4} \sim_{Z_{2}} \Theta^{3}(l): T_{1} \times 1_{6} \rightarrow T_{2} \times 1_{5} \subset S^{3} \times 1_{5}$ for some $l$, which must be even since $\Theta_{6}^{4}$ is equivariant; then use the fact that there exist precisely two equivariant isotopy classes of automorphisms of the bundle $D^{3} \times S^{1} \rightarrow S^{1}$ ). It is clear now that ( $\tilde{M}_{8}^{5}, \tilde{N}_{8}^{4}$ ) is diffeomorphic to ( $\tilde{K}_{8}^{5}, \tilde{L}_{8}^{4}$ ) and therefore ( $\tilde{N}_{8}^{4}, P_{8}^{4}$ ) contains, as a characteristic submanifold, a manifold ( $\left.\tilde{N}_{8}^{3}, P_{8}^{3}\right) \simeq\left(S^{3}\right.$, ant), since $\tilde{L}_{8}^{4}$ enjoys an analogous property. This proves the assertion (c).

In order to complete the proof of the assertion (a), it sufficies now to show $k= \pm 1$. But

$$
M_{8}^{5}=F R P_{F S}^{4} \times I \cup_{D^{3} \tilde{\times} R P^{1} \times 1} R P^{4} \times I_{1} \cup \cdots \cup_{D^{3} \tilde{\times} R P^{1}} R P^{4} \times I_{8}
$$

Therefore, by Lemma 2(b), (c) above, it sufficies to prove that the Pin $^{+}$-structures $\Phi_{i}^{+}=$ $\Phi^{+} \mid R P^{4} \times 0_{i} \subset \partial M_{8}^{5}, i=5,6$, induced by any Pin $^{+}$-structure $\Phi^{+}$on $M_{8}^{5}$ coincide; or, equivalently, that for a fixed $\mathrm{Pin}^{+}$-structure $\Phi^{+}$on $K_{8}^{5}$ the Pin $^{+}$-structures $\Phi_{i}^{+}=\Phi^{+} \mid R P^{4} \times$
$0_{i} \subset \partial K_{8}^{5}, i=5,6$, coincide. In order to prove this assertion, let us note that $L_{8}^{4}$ is the connected sum of $R P^{4}$ and some 1-connected Spin-manifold $L_{z}^{4}$ and $\tilde{L}_{8}^{4}=L_{z}^{4} \#-L_{z}^{4}$ (the connected sum of $L_{z}^{4}$ with some fixed orientation and $L_{z}^{4}$ with reversed orientation). We claim that the manifold $L_{z}^{4}$ is a Spin-boundary. In fact, $\tilde{L}_{8}^{4}$ is obtained from $S^{4}$ by doing eight surgeries on some imbeddings $D^{3} \times S^{1} \rightarrow S^{4}$, therefore $\tilde{L}_{8}^{4}$ is the connected sum of eight copies of $S^{2} \times S^{2}$ (the possibility of appearing here $S^{2} \tilde{\times} S^{2}$, the $S^{2}$-bundle over $S^{2}$ with $w_{2}\left(S^{2} \tilde{\times} S^{2}\right) \neq 0$, is excluded, since $\tilde{L}_{8}^{4}$ is a Spin-manifold). Thus $L_{z}^{4}$ is a Spin-manifold with the second Betti number $=8$, and hence sign $\left(L_{z}^{4}\right)=0$ by Rohlin's theorem. Therefore $L_{z}^{4}$ is a Spin-boundary, as claimed.

Consequently, $\eta\left(L_{8}^{4}, \Phi_{L}^{+}\right)=\eta\left(R P^{4}, \Phi_{z}^{+}\right) \bmod 2 Z$, where $\Phi_{L}^{+}$is the Pin $^{+}$-structure on $L_{8}^{4}$ determined by $\Phi^{+}$and $\Phi_{z}^{+}$is the Pin $^{+}$-structure on $R P^{4}$ determined by the restriction of $\Phi^{+}$to the $R P^{4}$-part of $L_{8}^{4}$. Now, using Lemma 2(b) above, one sees easily that

$$
\eta\left(R P^{4}, \Phi_{1}^{+}\right)=\eta\left(R P^{4}, \Phi_{2}^{+}\right)=\cdots=\eta\left(R P^{4}, \Phi_{5}^{+}\right) \bmod 2 Z
$$

and

$$
\eta\left(R P^{4}, \Phi_{6}^{+}\right)=\eta\left(R P^{4}, \Phi_{7}^{+}\right)=\eta\left(R P^{4}, \Phi_{8}^{+}\right) \bmod 2 Z
$$

(see the definition of $\tilde{\chi}_{i}^{3}$ and $\theta_{i}^{3}$ ). In [23] we proved that $\eta\left(F R P_{F S}^{4}, \Phi\right)= \pm 7 / 8 \bmod 2 Z$ for any Pin $^{+}$-structure $\Phi$. Without loss of generality we can assume that $\eta\left(F R P_{F S}^{4}, \Phi_{0}^{+}\right)=7 / 8$ $\bmod 2 Z$, where $\Phi_{0}^{+}=\Phi^{+} \mid F R P_{F S}^{4}$. Thus

$$
7 / 8=\eta\left(F R P_{F S}^{4}, \Phi_{0}^{+}\right)=5 \eta\left(R P^{4}, \Phi_{5}^{+}\right)+3 \eta\left(R P^{4}, \Phi_{6}^{+}\right)+\eta\left(R P^{4}, \Phi_{z}^{+}\right) .
$$

Since $\eta\left(R P^{4}, \Phi\right)= \pm 1 / 8 \bmod 2 Z$, it follows that $\eta\left(R P^{4}, \Phi_{6}^{+}\right)=\eta\left(R P^{4}, \Phi_{5}^{+}\right) \bmod 2 Z$. Thus $\Phi_{6}^{+}=\Phi_{5}^{+}$and the assertion (a) is proved.

The argument for (b) is the same as the analogous statement for $\tilde{L}_{8}^{4}$ given above. Now Proposition 2 is proved.

Remark 5.2. Proposition 3 above shows that the Fintushel-Stern involution on $S^{4}$ can be obtained from an involution on $4 \# S^{2} \times S^{2} \# 4 \# S^{2} \times S^{2}$, which permutes the two copies of $4 \# S^{2} \times S^{2}$ and "desuspends" to the ordinary antipodal involution on $S^{3}$ by killing $H_{2}\left(4_{\#} S^{2} \times\right.$ $S^{2} \# 4_{\#} S^{2} \times S^{2}$ ) by an equivariant surgery. We suspect that a bit more detailed description of this surgery could provide a transparent formula for $T_{F S}$.

Now we can formulate the main technical proposition of this section, which provides us with a suitable tool (an equivariant stratified cobordism), that will enable us later to identify $\Sigma T_{F S}^{4}$. Let

$$
\Theta_{i}^{5}=G: D^{3} \times S^{2} \times 1_{i} \subset S^{5} \times I_{i} \rightarrow D^{3} \times S^{2} \times 1_{i-1} \subset S^{5} \times I_{i-1}
$$

and

$$
\Theta_{i}^{6}=\bar{G}: D^{3} \times S^{3} \times 1_{i} \subset S^{6} \times I_{i} \rightarrow D^{3} \times S^{3} \times 1_{i-1} \subset S^{6} \times I_{i-1}
$$

for $i=2,4,6,8$. Similarly,

$$
\Theta_{i}^{5}=\Gamma: D^{3} \times S^{2} \times 1_{i} \subset S^{5} \times I_{i} \rightarrow D^{3} \times S^{2} \times 1_{i-1} \subset S^{5} \times I_{i-1}
$$

and

$$
\Theta_{i}^{6}=\bar{\Gamma}: D^{4} \times S^{2} \times 1_{i} \subset S^{6} \times I_{i} \rightarrow D^{4} \times S^{2} \times 1_{i-1} \subset S^{6} \times I_{i-1}
$$

for $i=3,5,7$. In order to define $\Theta_{1}^{5}: D^{3} \times S^{2} \times 1_{1} \rightarrow D^{3} \times S^{2} \times 1_{0}$ and $\Theta_{1}^{6}=$ : $D^{4} \times S^{2} \times 1_{1} \rightarrow D^{4} \times S^{2} \times 1_{0}$, we proceed as follows. There exist precisely two isotopy classes of smooth imbeddings $h: D^{3} \times S^{1} \rightarrow S^{4}$ detected by the trace of the surgery on $h$, and $h$ extends to an imbedding $D^{3} \times S^{2} \rightarrow S^{5}$ if and only if the trace of the surgery on $h$ is $S^{2} \times S^{2}$. This is precisely the case of the map $\Theta_{1}^{4}$ of Proposition 2 , and we define $\Theta_{1}^{5}: D^{3} \times S^{2} \times 1_{1} \subset S^{5} \times 1_{1} \rightarrow D^{3} \times S^{2} \times 1_{0} \subset S^{5} \times 1_{0}$ to be an equivariant extension of $\Theta_{1}^{4}$ such that $\Theta_{1}^{5}\left(D^{3} \times S^{2}\right) \cap S^{4}=\Theta_{1}^{4}\left(D^{3} \times S^{1}\right)$. Next we define $\Theta_{1}^{6}: D^{4} \times S^{2} \times$ $1_{1} \subset S^{6} \times 1_{1} \rightarrow D^{4} \times S^{2} \times 1_{0} \subset S^{6} \times 1_{0}$ to be an equivariant extension of $\Theta_{1}^{5}$ such that $\Theta_{1}^{6}\left(D^{4} \times S^{2}\right) \cap S^{5}=\Theta_{1}^{5}\left(D^{3} \times S^{2}\right)$. It follows from Proposition 2 and Lemma 1 together with the definition of the maps $G, \Gamma, \bar{G}, \bar{\Gamma}$ that $\Theta_{i}^{n}$ essentially extends $\Theta_{i}^{n-1}$ for $i=1, \ldots, 8$ and $n=5$, 6 .

Thus, using Propositions 1 and 2 and Remark 1, we can form a triple of $Z_{2}$-manifolds

$$
\left(\left(\tilde{M}_{i}^{5}, T_{i}^{5}\right),\left(\tilde{M}_{i}^{6}, T_{i}^{6}\right),\left(\tilde{M}_{i}^{7}, T_{i}^{7}\right)\right), \quad i=0, \ldots, 8
$$

such that

$$
\left(\tilde{M}_{0}^{n+1}, T_{0}^{n+1}\right)=\left(S^{n} \times I_{0}, \Sigma^{n-4} T_{F S}^{4} \times i d\right)
$$

where $n=4, \ldots, 6$, and $\Sigma^{0} T_{F S}^{4}=T_{F S}^{4}$, and

$$
\left(\tilde{M}_{i}^{n+1}, T_{i}^{n+1}\right)=\left(\tilde{M}_{i-1, \Theta_{i}^{n}}^{n+1^{\prime}}, T_{i-1, \Theta_{i}^{n}}^{n+1}\right) .
$$

Similarly, a triple of $Z_{2}$-manifolds

$$
\left(\left(\tilde{N}_{i}^{4}, P_{i}^{4}\right),\left(\tilde{N}_{i}^{5}, P_{i}^{5}\right),\left(\tilde{N}_{i}^{6}, P_{i}^{6}\right)\right), \quad i=0, \ldots, 8
$$

such that

$$
\left(\tilde{N}_{0}^{n}, P_{0}^{n}\right)=\left(S^{n} \times 1_{0}, \Sigma^{n-4} T_{F S}^{4}\right),
$$

and

$$
\left(\tilde{N}_{i}^{n}, P_{i}^{n}\right)=\left(\tilde{N}_{i-1, \partial \Theta_{i}^{n}}^{n}, P_{i-1, \partial \Theta_{i}^{n}}^{n}\right)
$$

It is clear that $\left(\tilde{M}_{i}^{n}, T_{i}^{n}\right)\left(\right.$ resp. $\left.\left(\tilde{N}_{i}^{n-1}, P_{i}^{n-1}\right)\right)$ is a characteristic submanifold of $\left(\tilde{M}_{i}^{n+1}\right.$, $\left.T_{i}^{n+1}\right)\left(\right.$ resp. $\left.\left(\tilde{N}_{i}^{n}, P_{i}^{n}\right)\right), n=5,6,7, i=0, \ldots, 8$. An argument completely analogous to the one used in the proof of Proposition 1 in Section 4 shows that $\tilde{N}_{i}^{5}$ is a homotopy sphere for any even integer $i$. Moreover, an easy homological argument shows that $\tilde{N}_{i}^{6}$ is a homotopy sphere for even $i$. Thus we get the following

Proposition 5.3. There exists a smooth $Z_{2}$-manifold $\left(\tilde{M}^{7}, T^{7}\right)$ (where $T^{7}$ is fixed point-free) such that the following conditions are satisfied:
(a) $\partial\left(\tilde{M}^{7}, T^{7}\right)=\left(S^{6}, \Sigma^{2} T_{F S}^{4}\right) \sqcup 8\left(S^{6}\right.$, ant $) \sqcup\left(\tilde{N}^{6}, P^{6}\right)$, where $P^{6}$ is an involution of a homotopy sphere $\tilde{N}^{6}$.
(b) $P^{6}$ desuspends to an involution $P^{5}$ of a homotopy sphere $\tilde{N}^{5} \subset \tilde{N}^{6}$.
(c) $\left(\tilde{N}^{5}, P^{5}\right)$ has a characteristic submanifold $\left(\tilde{N}^{4}, P^{4}\right)$ such that $\tilde{N}^{4}$ is diffeomorphic to the connected sum of eight copies of $S^{2} \times S^{2}$. Moreover, $\left(\tilde{N}^{4}, P^{4}\right)$ has a characteristic submanifold $\left(\tilde{N}^{3}, P^{3}\right) \simeq\left(S^{3}\right.$, ant $)$. Thus $N^{3}, N^{5}$ and $N^{6}$ are homotopy projective spaces.
(d) $\quad \partial M^{7}=F R P_{F S}^{6} \sqcup 8 R P^{6} \sqcup N^{6}$, where $F R P_{F S}^{6}=S^{6} / \Sigma^{2} T_{F S}^{4}$. Moreover, $M^{7}$ is a Pin ${ }^{c}$-manifold and any Pin ${ }^{c}$-structure $\Phi^{c}$ on $M^{7}$ induces the same Pin ${ }^{c}$-structure on any of two copies of $R P^{6} \subset \partial M^{7}$. Consequently, $\eta\left(F R P_{F S}^{6}, \Phi_{F S}^{c}\right)=8 \eta\left(R P^{6}, \Phi_{1}^{c}\right)+\eta\left(N^{6}, \Phi_{N}^{c}\right)$ $\bmod Z$, where $\Phi_{1}^{c}\left(\right.$ resp. $\Phi_{N}^{c}$, resp. $\left.\Phi_{F S}^{c}\right)$ is the Pin ${ }^{c}$-structure on $R P^{6}\left(\right.$ resp. $N^{6}$, resp. $\left.F R P_{F S}^{6}\right)$ induced by $\Phi^{c}$.

Proof. We define ( $\tilde{M}^{7}, T^{7}$ ) to be ( $\tilde{M}_{8}^{7}, T_{8}^{7}$ ) of Proposition 2 and apply Propositions 1 and 2 to prove (a), (b) and (c). The assertion (d) follows immediately by Proposition 3 of Section 4.
6. Proof of main theorems. In this section we prove Theorems B and C in Section 1 , thus establishing all the results of this paper. Let us start with two technical lemmas which will be needed later.

Lemma 6.1. Let $T^{n}$ be an involution on $S^{n}$ which desuspends to an involution $T^{n-1}$ on a homotopy sphere $\Sigma^{n-1} \subset S^{n}$, where $n=4,5,6$. If $n=4$, assume additionally that $\Sigma^{n-1}$ cuts $S^{n}$ into two submanifolds diffeomorphic to the ordinary disc $D^{4}$ (note that an analogous condition for $n>4$ is always satisfied). If $\left(\Sigma^{n-1}, T^{n-1}\right)$ is equivalent to ( $S^{n-1}$, ant), then $\left(\Sigma^{n}, T^{n}\right)$ is equivalent to ( $S^{n}$, ant).

This follows from the fact that any autodiffeomorphism of $S^{n-1}$ extends to an autodiffeomorphism of $D^{n}$ for $n=4,5,6$ ([9],[17]). Now we can formulate a technical lemma which enables us to detect certain involutions of 5 -dimensional spheres basing on some data about their characteristic submanifolds.

Lemma 6.2. Let $P^{5}$ be a smooth fixed point-free involution of $S^{5}$ such that the following two conditions are satisfied:
(a) There exists a characteristic submanifold $\left(\tilde{X}^{4}, P^{4}\right) \subset\left(S^{5}, P^{5}\right)$ such that $\tilde{X}^{4}$ is diffeomorphic to the connected sum of $2 k$-copies of $S^{2} \times S^{2}$ for some integer $k<8$.
(b) There exists a characteristic submanifold $\left(\tilde{X}^{3}, P^{3}\right) \subset\left(\tilde{X}^{4}, P^{4}\right)$ such that $\left(\tilde{X}^{3}, P^{3}\right)$ is diffeomorphic to ( $S^{3}$, ant).
Then $P^{5}$ is smoothly conjugated to the ordinary antipodal map ant: $S^{5} \rightarrow S^{5}$.
Proof. We give only a brief outline of the proof. The details, which are standard and rather dull, could be provided by the reader without undue difficulty.

First, let us note that $\tilde{X}^{4}=L_{0} \cup_{S^{3}} L_{0}^{\prime}$ for some 1-connected Spin-manifold $L_{0}$ and $L_{0}^{\prime}=P^{4}\left(L_{0}\right)$. Thus $\tilde{X}^{4}$ is the equivariant connected sum of two copies of some 1-connected Spin-manifold $L$. Moreover, the second Betti number of $L$ is $<16$ by the assumption (a). Consequently, $|\operatorname{sign}(L)|<16$, and therefore $\operatorname{sign}(L)=0$ by the Rohlin theorem. Thus $L$ is stably diffeomorphic to the connected sum of $k$ copies of $S^{2} \times S^{2}$ by a well-known theorem of Wall ([30]).

Now we build an equivariant cobordism from $C_{0}=\left(\left(\tilde{X}^{4}, P^{4}\right),\left(S^{5}, P^{5}\right),\left(S^{6}, \Sigma P^{5}\right)\right)$ to $\left(\left(S^{4}, a n t\right),\left(S^{5}, a n t\right),\left(S^{6}, a n t\right)\right)$ as follows. First we do on $C_{0}$ a sequence of $l$ stratified equivariant surgeries of type (1,2,2), away from $S^{3} \subset \tilde{X}^{4}$, so as to get a $Z_{2}$-cobordism from $C_{0}$ to $\left.C_{1}=\left((k+l) \# S^{2} \times S^{2} \cup_{S^{3}}(k+l) \# S^{2} \times S^{2}, P_{1}^{4}\right),\left(\tilde{M}_{1}^{5}, P_{1}^{5}\right),\left(\tilde{M}_{1}^{6}, P_{1}^{6}\right)\right)$. Next, we kill $\pi_{2}\left((k+l) \# S^{2} \times S^{2} \cup_{S^{3}}(k+l) \# S^{2} \times S^{2}\right)$ by a sequence of stratified equivariant surgeries of type $(2,2,2)$, away from $S^{3}$, and we get a new triple $\left(\left(S^{4}, P_{2}^{4}\right),\left(\tilde{M}_{2}^{5}, P_{2}^{5}\right),\left(\tilde{M}_{2}^{6}, P_{2}^{6}\right)\right)$. Now, we kill $\pi_{2}\left(\tilde{M}_{2}^{5}\right)$ by a sequence of equivariant surgeries of type $(2,2)$ on $\left(\tilde{M}_{2}^{5}, \tilde{M}_{2}^{6}\right)$, away from $S^{4}$, and we get $\left(\left(S^{4}, P_{2}^{4}\right),\left(S^{5}, P_{3}^{5}\right),\left(\tilde{M}_{3}^{6}, P_{3}^{6}\right)\right)$. Finally, we kill $\pi_{2}\left(\tilde{M}_{3}^{6}\right)$ and $\pi_{3}\left(\tilde{M}_{3}^{6}\right)$ by equivariant surgery, away from $S^{5}$, and we get a quadruple of $Z_{2}$-manifolds $\left(\left(S^{3}, a n t\right),\left(S^{4}, P_{2}^{4}\right),\left(S^{5}, P_{3}^{5}\right),\left(S^{6}, P_{4}^{6}\right)\right)$. Using Lemma 6.1 we see that all these involutions are equivalent to the standard "antipodal" involution. Passing to quotient manifolds, we get a Pin ${ }^{c}$-cobordism from $\left(F R P^{5}=S^{5} / P^{5}, F R P^{6}=S^{6} / \Sigma P^{5}\right)$ to ( $R P^{5}, R P^{6}$ ). Thus $\eta_{c}\left(F R P^{5}\right)= \pm 1 / 16 \bmod Z$, and Lemma 6.2 follows from Corollary 4.1(b).

Essentially the same arguments apply to prove the following generalization of Lemma 6.2 .

Lemma 6.3. Let $P^{5}$ be an involution of $S^{5}$ such that the following two conditions are satisfied:
(a) There exists a 1-connected characteristic submanifold $\left(\tilde{X}^{4}, P^{4}\right) \subset\left(S^{5}, P^{5}\right)$ and a characteristic submanifold $\left(\tilde{X}^{3}, P^{3}\right) \subset\left(\tilde{X}^{4}, P^{4}\right)$ such that $\left(\tilde{X}^{3}, P^{3}\right)$ is diffeomorphic to ( $\left.S^{3}, a n t\right)$.
(b) Let $\tilde{X}^{4}=L_{0} \cup_{\tilde{X}^{3}} L_{0}^{\prime}$, where $L_{0}^{\prime}=P^{4}\left(L_{0}\right)$.

Assume that $\operatorname{sign}\left(L_{0}\right)=0$. Then $P^{5}$ is smoothly conjugated to the ordinary antipodal map ant: $S^{5} \rightarrow S^{5}$.

Remark 6.1. Lemma 6.2 is no longer true if we relax the assumption that $k \leq 8$. However, it remains valid also for $k=8$ by a theorem of Donaldson. In fact, $\operatorname{sign}\left(L_{0}\right)=$ 0 also in this case, since $L_{0}$ is a smooth 1-connected 4-manifold with $b_{2}\left(L_{0}\right)=16$, the boundary of which is $S^{3}$, and which has even intersection form, and we get the required equation combining theorems of Rohlin and Donaldson.

Now the proof of Theorem B is immediate. We apply Lemmas 6.1 and 6.2 to the objects described in Proposition 3 of the previous section, and we see that $\left(\tilde{N}^{5}, P^{5}\right) \simeq\left(S^{5}\right.$, ant $)$ and $\left(\tilde{N}^{6}, P^{6}\right) \simeq\left(S^{6}\right.$, ant $)$, and therefore $\eta\left(N^{6}, \Phi_{N}^{c}\right)= \pm \eta\left(R P^{6}, \Phi^{c}\right)= \pm 1 / 16 \bmod Z$. Thus

$$
\eta\left(F R P_{F S}^{6}, \Phi_{F S}^{c}\right)= \pm 7 / 16 \bmod Z
$$

and

$$
\eta^{c}\left(F R P_{F S}^{5}\right)= \pm 7 / 16 \bmod Z
$$

Consequently, $F R P_{F S}^{6}=S^{6} / \Sigma^{2} T_{F S}^{4}$ (resp. $F R P_{F S}^{5}=S^{5} / \Sigma T_{F S}^{4}$ ) is diffeomorphic to $F R P_{3}^{6}$ (resp. $F R P_{3}^{5}$ ) by Corollary 1 in Section 4, thus proving Theorem B.

Now let us turn to the proof of Theorem C.

We start with the "if"-implication. So let us assume that the involutions $\Sigma T_{1}^{4}$ and $\Sigma T_{2}^{4}$ are smoothly conjugated. Then we can regard the $Z_{2}$-manifold ( $\left.\tilde{Z}^{6}, T^{6}\right)=\left(S^{5} \times\right.$ $\left.I, \Sigma T_{1}^{4}\right)$ as an equivariant cobordism from $\left(S^{5}, \Sigma T_{1}^{4}\right)$ to $\left(S^{5}, \Sigma T_{2}^{4}\right)$ having a fixed identification $\left(S^{5}, \Sigma T_{2}^{4}\right) \simeq\left(S^{5} \times 1, \Sigma T_{1}^{4}\right)$. Thus ( $S^{5} \times 0, \Sigma T_{1}^{4}$ ) contains ( $S^{4}, T_{1}^{4}$ ) as a characteristic submanifold, and ( $S^{4}, T_{2}^{4}$ ) is a characteristic submanifold of ( $S^{5} \times 1, \Sigma T_{1}^{4}$ ). Fix a classifying map $f_{1}: F R P_{1}^{5}=S^{5} \times 0 / \Sigma T_{1}^{4} \rightarrow R P^{N}, N$ large, for the $Z_{2}$-bundle $S^{5} \rightarrow F R P_{1}^{5}$ such that $f_{1}$ is transversal to $R P^{N-1}$ and $f_{1}^{-1}\left(R P^{N-1}\right)=F R P_{1}^{4}=S^{4} \times 0 / T_{1}^{4}$. Similarly, fix a classifying map $f_{2}: F R P_{1}^{5} \simeq F R P_{2}^{5}=S^{5} \times 1 / \Sigma T_{2}^{4} \rightarrow R P^{N}$ for the $Z_{2}$-bundle $S^{5} \rightarrow F R P_{2}^{5}$ such that $f_{2}$ is transversal to $R P^{N-1}$ and $f_{2}^{-1}\left(R P^{N-1}\right)=F R P_{2}^{4}=S^{4} \times 0 / T_{2}^{4}$ (the existence of such maps follows by an easy obstruction-theoretic argument). Since both $f_{1}$ and $f_{2}$ are classifying maps for the unique non-trivial $Z_{2}$-bundle over $F R P_{1}^{5}$ and $F R P_{2}^{5} \simeq S^{5} \times 1 / \Sigma T_{1}^{4}$ respectively, they extend simultaneously to the classifying map $F: Z^{6}=F R P_{1}^{5} \times I \rightarrow R P^{N}$ for the non-trivial $Z_{2}$-bundle $S^{5} \times I \rightarrow F R P_{1}^{5} \times I$. Make $F$ transversal to $R P^{N-1}$ so as $F^{-1}\left(R P^{N-1}\right) \cap \partial Z^{6}=F R P_{1}^{4} \sqcup F R P_{2}^{4}$, and let $Z^{5}$ be the connected component of the manifold $F^{-1}\left(R P^{N-1}\right)$ which contains $F R P_{1}^{4}$. An easy point-set argument then shows that $Z^{5}$ contains also $F R P_{2}^{4}$, and therefore $Z^{5} \subset Z^{6}$ is a cobordism from $F R P_{1}^{4}$ to $F R P_{2}^{4}$. Let $\tilde{Z}^{5} \subset \tilde{Z}^{6}$ be the obvious cover of $Z^{5}$, and observe that ( $\tilde{Z}^{5}, T^{5}=T^{6} \mid \tilde{Z}^{5}$ ) is a characteristic submanifold of ( $\tilde{Z}^{6}, T^{6}$ ). Convert $\tilde{Z}^{5}$ into a 1-connected characteristic submanifold using appropriate equivariant intrinsic surgery (attaching to the original $\tilde{Z}^{5}$, away from its boundary, some pairs of 2-handles inside $\tilde{Z}^{6}$ ). Denote this new characteristic submanifold again by $\tilde{Z}^{5}$ and its quotient by $Z^{5}$.

We will show that $Z^{5}$ is now a $\mathrm{Pin}^{+}$-cobordism from $F R P_{1}^{4}$ to $F R P_{2}^{4}$. In order to prove this assertion, let us observe that $T^{6}$ preserves orientation of $\tilde{Z}^{6}$, while $T^{5}$ reverses orientation of $\tilde{Z}^{5}$, and therefore any circle $S$ in $Z^{5}$ reverses orientation of $Z^{5}$ if and only if it reverses orientation of the normal bundle $\xi$ to $Z^{5}$ in $Z^{6}$. Thus $w_{1}\left(T Z^{5}\right)=w_{1}(\xi)$ and $w_{2}\left(T Z^{6}\right) \mid Z^{5}=w_{2}\left(T Z^{5} \oplus \xi\right)=w_{2}\left(T Z^{5}\right)+w_{1}^{2}(\xi)$. But $\pi_{1}\left(Z^{5}\right)=\pi_{1}\left(Z^{6}\right)=Z_{2}$ and one sees easily that $w_{1}(\xi)=w \mid Z^{5}$, where $w$ is the generator of $H^{*}\left(Z^{6} ; Z_{2}\right) \simeq H^{*}\left(F R P_{1}^{5} ; Z_{2}\right)$, which is the truncated polynomial algebra over $Z_{2}$ generated by $w \in H^{1}\left(F R P_{1}^{5} ; Z_{2}\right)$. Moreover $w_{2}\left(T Z^{6}\right)=w^{2}$. Thus, using the expression for $w_{2}\left(T Z^{6}\right) \mid Z^{5}$ given above, we get $w^{2} \mid Z^{5}=$ $w_{2}\left(Z^{5}\right)+w^{2} \mid Z^{5}$ and $w_{2}\left(Z^{5}\right)=0$, as claimed. Therefore $F R P_{1}^{4}$ is in $^{+}$-cobordant to $F R P_{2}^{4}$. But $F R P_{1}^{4}$ is homeomorphic to $F R P_{2}^{4}$ by the Freedman's topological $s$-cobordism theorem, and hence $F R P_{1}^{4}$ is stably diffeomorphic to $F R P_{2}^{4}$ or to $F R P_{2}^{4} \# K$ (where $K$ is the Kummer surface) by [15]. But [ $K$ ] $\neq 0$ in $\Omega_{4}^{\text {Pin }^{+}}$. Consequently, $F R P_{1}^{4}$ is stably diffeomorphic to $F R P_{2}^{4}$. This proves the "if" part of Theorem C.

In order to prove the "only if" implication of Theorem C, let us recall that there exist precisely two stable diffeomorphism classes of 4-dimensional homotopy projective spaces represented by $R P^{4}$ and $F R P_{F S}^{4}$ (in order to prove this use the above-mentioned result of [15] and the fact that the eta-invariant of the Pin $^{+}$-operator completely detects elements of $\Omega_{4}^{\text {Pin }^{+}}=Z_{16}$ ). Thus it sufficies to prove that, given an involution $T_{0}^{4}$ on $S^{4}, \Sigma T_{0}^{4}$ is smoothly conjugated to the usual antipodal involution (resp. to $\Sigma T_{F S}^{4}$ ) provided that $F R P_{0}^{4}=S^{4} / T_{0}^{4}$
is stably diffeomorphic to $R P^{4}$ (resp. to $F R P_{F S}^{4}$ ). So let us assume that $F R P_{0}^{4}$ is stably diffeomorphic to $F R P_{F S}^{4}$, and fix an even integer $k$ so as $F R P_{0}^{4} \# k_{\#} S^{2} \times S^{2} \simeq F R P_{F S}^{4} \# k_{\#} S^{2} \times$ $S^{2}$. Let $C_{0}=\left(X^{5}, S^{5} \times I, S^{6} \times I\right)$ be a standard cobordism from $\left(k_{\#} S^{2} \times S^{2}, S^{5}, S^{6}\right)$ to ( $S^{4}, S^{5}, S^{6}$ ) (we use the fact that $k$ is even to construct such a cobordism). Fix an arc $\gamma \subset X^{5}$, which meets $k \# S^{2} \times S^{2}$ (resp. $\left.S^{4}\right) \subset \partial X^{5}$ transversally, precisely at $\gamma(0)$ (resp. $\gamma(1)$ ). Similarly, fix an analogous arc $\delta \subset F R P_{F S}^{4} \times I$. Next, form the connected sum along $\gamma$ and $\delta$ of $C_{0}$ and $C_{1}=\left(F R P_{F S}^{4} \times I, F R P_{F S}^{5} \times I, F R P_{F S}^{6} \times I\right)$. In this way, we get a Pin $^{c}$-cobordism $C_{2}$ from ( $F R P_{F S}^{4} \# k_{\#} S^{2} \times S^{2} \simeq F R P_{0}^{4} \# k_{\#} S^{2} \times S^{2}, F R P_{F S}^{5}, F R P_{F S}^{6}$ ) to $\left(F R P_{F S}^{4}, F R P_{F S}^{5}, F R P_{F S}^{6}\right)$.

Now, proceeding analogously as in the proof of Lemma 6.2 , we kill $k_{\#} S^{2} \times S^{2} \subset$ $F R P_{0}^{4} \# k_{\#} S^{2} \times S^{2}$ by stratified surgery, and subsequently kill $\pi_{2}$ and $\pi_{3}$ of 5 and 6 -dimensional members of the new triple of manifolds, leaving the 4 -dimensional member unchanged. In this way, we get a $P$ in $^{c}$-cobordism from ( $F R P_{F S}^{4}, F R P_{F S}^{5}, F R P_{F S}^{6}$ ) to ( $F R P_{0}^{4}, X^{5}, X^{6}$ ), where $X^{5}$ and $X^{6}$ are certain homotopy projective spaces. But ( $\tilde{X}^{5}, T_{0}^{5}$ ) (resp. ( $\tilde{X}^{6}, T_{0}^{6}$ )), where ( $\tilde{X}^{n}, T_{0}^{n}$ ) is the universal cover of $X^{n}$, is the smooth suspension $\Sigma T_{0}^{4}$ (resp. the double smooth suspension $\Sigma^{2} T_{0}^{4}$ ) of $T_{0}^{4}$. Thus $\eta_{c}\left(X^{5}\right)= \pm 7 / 8 \bmod Z$, and therefore $\Sigma T_{0}^{4}$ is equivalent to $\Sigma T_{F S}^{4}$, as claimed.

The proof of the corresponding assertion for $F R P_{0}^{4}$ stably diffeomorphic to $R P^{4}$ is completely analogous, and hence is omitted. This concludes the proof of Theorem C. Now all the assertions in this paper are proved.

## References

[1] D. W. Anderson, E. H. Brown and F. P. Peterson, SU-cobordism, KO-characteristic numbers, and the Kervaire invariant, Ann. Math. 83 (1966), 54-67.
[2] D. W. Anderson, E. H. Brown and F. P. Peterson, The structure of the Spin-cobordism ring, Ann. Math. 86 (1967), 271-298.
[ 3 ] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral assymetry and Riemannian geometry I, II, III, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69, 78 (1975), 405-432, 79 (1976), 71-99.
[ 4 ] A. Bahri and P. B. Gilkey, Pin-cobordism and equivariant Spin-cobordism of cyclic 2-groups, Proc. Amer. Math. Soc. 99 (1987), 380-382.
[5] A. Bahri and P. B. Gilkey, The eta-invariant, Pin-bordism, and equivariant Spin-bordism for cyclic 2groups, Pacific J. Math. 128 (1987), 1-24.
[6] W. BROWDER, Surgery on simply-connected manifolds, Moscow (1984) (Russian edition).
[7] W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Bull. Amer. Math. Soc. 73 (1967), 242-245.
[8] S. E. Cappell and J. L. Shaneson, Some new 4-manifolds, Ann. of Math. 104 (1976), 61-72.
[9] J. CERF, Sur les diffeomorphismes de la sphere de dimension trois, Lecture Notes in Math. 53, SpringerVerlag, Berlin-New York, 1968.
[10] R. Fintushel and R. J. Stern, An exotic free involution on $S^{4}$, Ann. of Math. 113 (1981), 357-365.
[11] C. H. Giffen, Smooth homotopy projective spaces, Bull. Amer. Math. Soc. 75 (1969), 509-513.
[12] C. H. Giffen, Weakly complex involutions and cobordism of projective spaces, Ann. of Math. 90 (1969), 418-432.
[13] P. B. Gilkey, The eta-invariant for even dimensional Pin-manifolds, Adv. Math. 58 (1985), 243-284.
[14] R. Gompf, Killing the Akbulut-Kirby sphere, Topology 30 (1991), 97-115.
[15] I. Hambleton, M. Kreck and P. TEichner, Nonorientable 4-manifolds with fundamental group of order 2, Trans. Amer. Math. Soc. 344 (1994), 649-665.
[16] D. Husemoller, Fibre bundles, McGraw-Hill Book Co., New York, 1966.
[17] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres I, Ann. of Math. 77 (1963), 504-537.
[18] R. Kirby, Problems in low-dimensional manifold theory, Proc. Sympos. Pure. Math. 32 (1978), 273-312.
[19] R. Kirby, 4-Manifold problems, Contemp. Math. 35, 513-528, Amer. Math. Soc., Providence, RI, 1984.
[20] S. Lopez de Medrano, Involutions on manifolds, Ergebnisse der Mathematik 59, Springer, 1971.
[21] R. MANDELbAUM, Four dimensional topology, Moscow, 1981 (russian edition).
[22] W. D. Neumann and F. Raymond, Seifert manifolds, plumbing, $\mu$-invariant and orientation-reversing maps, Algebraic and geometric topology, 163-196, Lecture Notes in Math. 664, Springer-Verlag, Berlin, 1978.
[23] W. J. Oledzki, On the eta-invariant of $\mathrm{Pin}^{+}$-operator on some exotic 4-dimensional projective space, Compositio. Math. 78 (1991), 1-27.
[24] W. J. OLEDZKI, Some exotic projective spaces detected by spectral invariants, to appear.
[25] W. J. OledZKI, Exotic involutions of spheres detected by spectral invariants, Preprint Inst. of Math. of Polish Acad. Sci. 534 (1995), 1-308.
[26] W. J. OLEDZKI, Some topological formulas for the eta-invariant of Dirac-type operators, in preparation.
[27] P. Orlik and C. P. Rourke, Free involutions on homotopy $(4 k+3)$-spheres, Bull. Amer. Math. Soc. 74 (1968), 949-953.
[28] S. Stolz, Exotic structures on 4-manifolds detected by spectral invariants, Invent. Math. 94 (1988), 147-162.
[29] R. E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, New Jersey, 1968.
[30] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, London-New York, 1970.

Institute of Mathematics<br>Polish Academy of Sciences<br>SNIADECKICH 8<br>00-950 WARSAW<br>Poland


[^0]:    1991 Mathematics Subject Classification. Primary 57R55; Secondary 53C10, 53C21, 57R60, 58G10, 58G25.
    Key words and phrases. Involutions on spheres, homotopy projective spaces, cobordism, Dirac-type operators, eta-invariant.

