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Abstract. The objective of this paper is to investigate the p-ίh moment asymptotic sta-
bility decay rates for certain finite-dimensional Itό stochastic differential equations. Motivated
by some practical examples, the point of our analysis is a special consideration of general de-
cay speeds, which contain as a special case the usual exponential or polynomial type one, to
meet various situations. Sufficient conditions for stochastic differential equations (with vari-
able delays or not) are obtained to ensure their asymptotic properties. Several examples are
studied to illustrate our theory.

Introduction. So much effort has been devoted to the study of optimal control and

filtering of stochastic differential equations. In practice, even from probability theory view-

point, stability of stochastic differential equations is also important. There is an increasing

requirement to study stability for a number of problems from, for instance, physics, biology

and stochastic control, etc. in the sense of either p-th moment or almost sure. As a matter

of fact, there exists an extensive literature in exponential stability of stochastic differential

equations. We mention here Arnold [1], [2], Arnold, Oeljeklaus and Pardoux [3], Chappell

[4] and Has'minskii [5] among others. On the other hand, as is well-known, not all stochastic

systems are exponentially stable. However, it is worth pointing out that some of them are in-

deed stable but subject to a certain lower decay rate which is different from exponential decay,

for instance, polynomial or logarithmic one. In particular, for stochastic differential equation

theory itself it appears to be useful to extend the usual exponential stability concepts to a more

general stable decay function. Let us start with the following examples for our motivation of

the work.

EXAMPLE 0.1. Consider a one-dimensional Itό stochastic differential equation

(0.1) dXt = ——Xtdt + (\+t)-pdWt, t>0,

with initial real data Xo = xo e R1, an ^Γo~measurable random variable with finite second-

order moment. Here p > 1 /2 is a constant and Wt is a one-dimensional Brownian motion.

It is easy to obtain the explicit solution
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By a direct computation and using properties of one-dimensional Brownian motion, we get

immediately that

That is, the solution is not mean square stable with exponential decay. However, we can

deduce that whenever p > 1/2, the solution is mean square stable with polynomial decay.

Moreover, we have

\ogEXt(x0)
2

limsup < — (In — 1).
t-^OQ lθgί

EXAMPLE 0.2. Consider a scalar linear Itό equation

(0.2) dXt = - , * ' , dt + e^XtdWt, t > 0,
(l + oiog(i + 0

with initial data Xo = xo £ Rl, an To-measurable random variable with finite second-order

moment, where Wt is a one-dimensional Brownian motion.

We can easily obtain the explicit solution

Xt=xotxp\[t\- * , t , -l-e-2sλds+ f e-sdW5\ .
Uo L (1 + s)log(l +s) 2 J Jo j

Using the exponential martingale properties, it can be deduced that

log EXt(x0)
2 = log Ex2 - 2 Γ } ds + 1 f e~2sds ,

Jo (1 +s) log( l +s) 2 Jo
which immediately implies that

l i m o

t^oo logt

In other words, the solution on this occasion is not mean square stable with polynomial decay.

However, we have the following logarithmic decay stability

\ogEXt(xo)2

lim sup < - 2 .
r^oo log log t

Motivated by the examples above, in this paper we will carry out a Lyapunov func-

tion programme to study stability of stochastic differential systems with a general decay rate.

There have been several expositions to treat these sort of decay rates different from exponen-

tial one. For instance, in [8] and [16] the polynomial type decay rate was studied to establish

the stability of the traveling wave solutions of a class of determined hyperbolic systems with

relaxation. For stochastic differential systems, the most original work on this aspect goes at

least back to Has'minskii [5] for some possible consideration of certain decays different from

exponential one. More recently, Mao [13], [15] studied the polynomial decay in a system-

atic way in the sense of pathwise with probability one for a class of stochastic differential

equations with respect to Brownian motion. For a class of perturbed stochastic differential

equations with respect to semimartingales, under some circumstances Mao [14] considered

the same kind of decays once more in the sense of almost sure. For the general consideration
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of decay rate, in [12] a careful investigation has been carried out for non-autonomous stochas-

tic differential equations with respect to Brownian motion in the sense of almost sure. In [9]

and [10] some results above have also been generalized to cover infinite dimensional stochas-

tic evolution equation cases. In this paper, we shall devote ourselves to the investigation of

a class of non-autonomous stochastic differential equations for a general stability decay rate

similarly to [12] but in a /7-th moment sense.

1. Stability of Itό equations. Let (Ω, T, [T}t>o, P) be a complete probability space

with the filtration [T}t>o satisfying the usual conditions, i.e., {T}t>o is right continuous and

To contains all P-null sets. Let Wt = (W/, W},... , W™) be an ra-dimensional standard

Brownian motion with Wo = 0. Consider the following n-dimensional stochastic differential

equation:

Xt = f(χti t)dt + g(Xt, t)dWt , t > 0,
(1.1)

where /(* , t) = {f\ . . . , fn)τ : Rn x R+ ^ R\ g(x, t) = ( ^ ) π x m : Rn x R+ ->

βnxm ^g t w o β o r e i measurable functions and to is an To -measurable /^-valued random

vector. In particular, since we shall restrict ourselves to stability analysis, one always assumes

throughout this paper that Equation (1.1) has a unique global solution which is denoted by

Xt{xo) € Rn. We note that under the conditions (1) and (2) of the following Theorems
1.1 and 1.2, the stochastic differential equations (1.1) has a unique global solution which is
denoted by Xt(xo). In fact, for the family {V(t,x), ψ\(t), ψi(t) (resp. ψ^ (t))} of functions as

in Theorem 1.1 (resp. Theorem 1.2), set U(t, x) = 1+V(ί, x) and Ψ(t) = ψ\{t)+ψ2{t) (resp.

ψ3(t)). Then LU(t, x) < Ψ(t)U(t, x), where L is the differential generator associated with

(1.1), and also lim^i^oo U(t, x) = oo. Namely, U(t, x) is a radially unbounded Lyapunov

function satisfying a sufficient condition for nonoccurrence of an explosion, which guarantees

the pathwise uniqueness of a global solution for (1.1). For explosion criteria, see Has'minski

[5, pp. 84-86 and p. 186] and Narita [6], [7].

Before proceeding to our stability arguments, let us firstly give the precise definition of

the /7-th moment stability with general decay rate λ(t).

DEFINITION 1.1. Assume that λ(t) \ +00, as t -> +00, and satisfies λ(t + s) <

λ(s)λ(t) for s, t e R+ largely enough. Equation (1.1) is then said to be the p-th momently

stable, p > 0, with decay λ(ί) of order γ > 0 if there exist a pair of positive constants γ > 0

and C(jto) > 0 such that

E \ X t ( x o ) \ p <C(xo) λ(tΓy , t>0

holds for any Xo = *o € Rn, an .Fo-measurable random vector, or equivalently,

limsup < — γ .

REMARK. Clearly, replacing the decay function λ(t) by eι, \-\-t and log(l +t) leads to

the usual stability behavior with exponential, polynomial and logarithmic decays, respectively.
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Let C 2 ' 1 (Rn x /?+;/?+) denote the family of all functions V(x, t) : Rn x R+ ^ R +

with continuous second-order partial derivatives in x and first-order partial derivatives in t. If

V(x, t) e C2Λ{Rn x R+, J?+), we define an operator L by

LV(x, t) :=—V(x, t) + Σ f(x, t) — V(x, t)

Λ n

o Σ

THEOREM 1.1. LetV(x,t) e C2Λ(Rn x/? + ;/?+) and ψ\(t),ψϊ(t) be two continu-

ous non-negative functions. Assume that for all x e Rn,t e /?+, there exist positive constants

p > 0, m > 0 and real numbers v, θ such that

(1) |jc|^λ(Om < V(x, t), (JC, t) eRn x /?+;

( 2 ) LV(x, t) < ψx{t) + ψ2(t)V(x, t ) , (JC, t)eRn x fl + ;

a t \ nt

ψ\(s)ds\ I ψ2{s)ds
V) iim sup — '- < v, lim sup ^ — — < θ.

t^oc logλ(ί) r^oo logλ(ί)

»2, whenever y := m — θ — v > 0, the solution of Equation (1.1) /s the p-th momently

stable with decay λ(t). Moreover, we have
logE\Xt(x0)\p

(1.2) hmsup — — <-y.
t^oo lθgλ(ί)

PROOF. By Itό's formula and the definition of L, we can derive that
rt /*t n m ^

(1.3) VXXt,t) = V(xo,O)+l LV(Xs,s)ds+ V y ] ^ ( X s , j ) — V(Xs,s)dw£.
Jθ Jθ jT[ j~ι °xi

Since the diffusion term
nt n m o

Jo iΞί kΞ[ " dXi

is a continuous martingale, it is easy to deduce, in addition to the condition (2), that

rt

E(LV(Xs,s))ds)+ ί
Jo

)+ ί
Jo

So, by virtue of GronwalΓs lemma, we derive that

EV(Xt,t) < |^V(jco,O)+ ί

which implies immediately that

log(EV(Xt, 0) < log \EV(XQ, 0) + Γ ψi(s)ds] + ί ψ2(s)ds .
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Therefore, by virtue of the conditions (2) and (3), for arbitrary ε > 0, whenever t > 0 largely

enough, it deduces that

log(EV(Xt, 0) < log[EV(xΌ, 0) + λ(t)v+ε] -

that is,
\og(EV(Xt,t))

limsup - ^ - — \ < (y + ε) + 6> + ε .

Letting ε -> 0 then gives

log(EV(X,,0)
hm sup — — < v + 0 .

t^oo lθgλ(ί)
Finally, in view of the condition (1), we have

lQgE\X,(xo)\P log[λ(tΓmEV(Xt,t)]
hm sup < hm sup

t^oo lθgλ(ί) ~ t^oo lθgλ(ί)

< — [m — (y + θ)]

as required. D

In order to obtain the second main result, we need the following extended Gronwall type

lemma.

LEMMA 1.1. Assume h(t),u(t) e B([0, T], R+), that is, h(t) andu(t) are two bound-

ed Borel measurable non-negative functions. Let w(t) be a continuous, non-negative and

non-decreasing function defined on [0, T], andO < a < 1. Suppose

h(t) < w(t) + f u(s)h(s-)ads , 0 < t < T .
Jo

Then

ί i (l ) T ^
h ( t ) < \ w ( t ) ι ~ a + ( 1 - a ) / u(s)ds\ , 0<t<T.

[ Jo J
PROOF. See [15]. D

THEOREM 1.2. LetV(x,t) e C2Λ(Rn x/?+;/?+) and ψ\(t),ψ2(t), ψ^(t) be three

continuous non-negative functions. Assume that for all x e Rn and t > 0, there exist positive

constants p > 0, m > 0 and real numbers v,θ, η,0 < a < 1 such that

(1) \x\Pλ(t)m < V(x, t), (JC, t) eRn x /? + ;

(2) LV(x,ί) < \/fι(t) + ψ2(t)V(x, t) + ψ3(t)V(x, t)a, (JC,0 e i ? " x/? + ;

(fψx{s)dsλ f
(3) limsup ^ ^ ^ < y, limsup ̂  < 0(1 - α),

^oo1^ logλ(ί) " r^ooP logλ(ί) "

limsup V;° ^ < 1/(1 - α ) .
lθgλ(ί)
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Then, whenever γ := m — θ — W η > 0, the solution of Equation (1.1) is the p-th momently

stable with decay rate λ(t). Moreover, we have

\ogE\Xt(xo)\p

(1.4) limsup < — γ .
t->oo lθgλ(ί)

PROOF. Using the same notation and a similar argument as in the proof of Theorem

1.1, we can get

EV(Xt,t)<EV(xo,O)+ ί E(LV(Xs,s))ds,
Jo

which, together with the condition (2) and the Holder inequality, immediately implies that
ft

EV(Xt, t) < EV(x0, 0) + / (ψ\(s) + ψ2(s)EV(Xs, s) + ψ3(s)EVa(Xs, s))ds

•5) ./
< EV(XQ, 0) -j- / [ψ\(s) + ψ°2(s)EV(Xs, s) + ψ3(s)(EV(Xs, s))a]ds .

So, by virtue of Gronwall's lemma, we easily derive that

Γ f* f{ Λ ί ft
EV(Xt,t)< £V(jt o ,O)+ / ψ\(s)ds+ / ψ3(s)(EV(Xs,s))ads exp /

L Jo Jo J \Jo
Once again invoking Lemma 2.1, we derive that

EV(Xt, t) < \EV(XΌ, 0) + Γ ψι(s)ds] exp if ψ2(s)ds\

O f' \ (ι }

I ψ2(s)ds I ψ3(s)ds\
o J Jo J

Therefore, noticing the conditions (2) and (3), for arbitrary ε > 0, whenever ί > 0 largely

enough, it is easy to deduce that

1

logEV(X(t),t) <γ—^log{[EV(xo,0)-

+ (0 + ε)logλ(ί) + ε,

which, together with the condition (3), immediately implies that

log(EV(Xt,t))
lim sup < (vVη + ε) + θ + ε.

t^oo lθgλ(ί)

Letting ε -> 0 then gives

log(EV(Xt,t))
lim sup < v V η + θ .

r^oo logλ(ί)

Finally, by virtue of the condition (1), we have

logE\X,(x0)\P r log[λ(tΓmEV(Xt,t)]
lim sup < lim sup

r^oo logλ(ί) " r^oo logλ(ί)

< -\m- (v vη + θ)]

as required. D
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Lastly, let us study several examples to close this section.

EXAMPLE 1.1. Let us first return to Example 0.1, i.e., consider a one-dimensional Itό

stochastic differential equation

dXt = —Xtdt + (1 + t)~pdWt, t > 0

with initial data Xo = xo e R1, where p > 1 /2 is a constant and Wt is a one-dimensional

Brownian motion.

We construct the Lyapunov function as follows:

V(x, t) = (1 + t)2px2 , t e R+ , x e R1 .

It is easy to deduce that

LV(x,t) = 1.

Using Theorem 1.1, we can obtain that whenever p > 1/2, the solution is the second mo-

mently stable with polynomial decay. Moreover, we have

lim sup log EX] < -(2p - 1).
logί

EXAMPLE 1.2. Let us once again return to Example 0.2, i.e., consider a scalar linear

Itό equation

dXt = - ^ - -dt + e-'XtdWt, t > 0
(l+ί)log(l+ί)

with initial data Xo = *o £ Rl» where Wt is a one-dimensional Brownian motion.

We construct the Lyapunov function as follows:

V(x, t) = (log(l + t))2x2 , t eR+ , x eRι .

A direct computation easily deduces that

LV(x9t) = e~2tV(x,t).

Using Theorem 1.1, we can obtain that the solution is the second momently stable with loga-

rithmic type decay. Moreover,

lim sup log EX2 < -2 .
r^oo log log t

2. Stability of delay stochastic systems. Let / > 0 and denote by C ([-/, 0], R n) the

space of all continuous functions defined on [—/, 0] with values in Rn. We introduce a norm

over this space by

||u|| =max{|w(s)| : -/ < s < 0}, ue C([-/, 0], Rn).

At the moment, let L2(Ω, To, P\ C([—l, 0],Rn)) denote the family of all To -measurable

C([-/, 0], flΌ-valued random variable η(t) with E\\η\\2 < oo.
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In this section, we shall carry out a Lyapunov function approach to study the p-th mo-

ment stability for a class of stochastic differential equations with time delays:

(2.1)
dXt = t - m , t)dt + g(Xt, Xt.m, t)dWt , t > 0

with initial data Xt = η(t) e L2(Ω, Fo, P; C([-/, 0], Rn)),-l <t < 0. Here / :RnxRnx

i ? + -> Rn,g :RnxRnxR + -> Rn are two measurable mappings and <$(•) : [0, σo) -> [0,/],

/ > 0, is a continuous function which shall play the role of variable delays. We shall also

assume that the equation (2.1) has a unique global solution which is denoted by Xt(xo) € Rn.
In particular, we could also define the stability with a general decay rate of the solutions of
the equation (2.1) in a totally similar way to Definition 1.1.

In order to obtain our main consequences, we need the following lemmas.

LEMMA 2.1. Assume that T > I > 0 and y(t) is a continuous, nonnegative function
defined on [—/, T]. Let w(t) be a continuous, nonnegative, nondecreasing function defined
on [0, T] and u(t), v(t) be two continuous nonnegative functions. Assume that

I u(s)y(s)ds + ί
Jo Jo

(2.2) y(t)<w(t)+l u(s)y(s)ds+ I v(s)y(s - 8(s))ds , 0 < ί < 7\

Then for any 0 < t < T

(2.3) y(t) < w{t) + / v(s)dsί
Jo

sup y(r) I exp{ ί u(s)ds+ ί v(s)ds\

DPROOF. See [15].

LEMMA 2.2. Assume that T > I > 0 and y(t) is a continuous, nonnegative function

defined on [—/, T]. Let w(t) be a continuous, nonnegative, nondecreasing function defined

on [0, T] and u(t), v(t) be two continuous nonnegative functions. Let 0 < a < 1 and δ(t) be

defined as above. Assume that

y(t) < w(t) + f u(s)y(s)ds + f v(s)y(s - δ(s))ads .
Jo Jo

Then

(2.4) y(t) < exp I (—^— j ί u(s)ds 1 MVίf)1"* + (1 - &)2a ί v(s)dsj

where N(t) = w(t) + [2 sup_z<r<0 y(r)]a fc v(s)ds.

PROOF. See [15]. D
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Suppose V(x, t) e C2Λ(Rn x /? + ; /?+), and define the function LV(x, y, t) as follows.

For arbitrary x,y e Rn, ΐ e /?+, we set

r) n r)

LV(x, y, t) :=—V(x, t) + Y f(x, y, t) — V(x, t)
at f̂  axi

m

Σ
i

Σ

THEOREM 2.1. LetV(x,t) e C2Λ(R" xR+;R+) and ψλ(t),ψ2(t),ψi(t) be three

continuous non-negative functions. Assume that for all x, y € R" and t > 0, ίΛere ex/ίί

positive constants c\ > 0, C2 > 0, p > 0, m > 0 and real numbers v, θ, γ such that

(1) cι\x\Pλ(t)m <V(x,t) <c2\x\pλ(t)m, (x,t) eRn xR + ;

(2) LV(x,y,t)<ψι(t) + ψ2(t)V(x,t) + ψ3(t)V(y,t), x, y e Λ", ί € [0, +oo);

ίj ψι(s)dsj ί
(3) limsup ^ ^ '- < v, Iimsup

ί
logλ(ί) - ^oo logλ(ί)

limsup — < γ.
t^oo lθgλ(ί) ~

Then the solution of Equation (2.1) satisfies

^ _ [ m _ ( y + ( c z / c i ) θ + (C2/ci)λ(/)
lθgλ(/)

PROOF. By Itό's formula and the definition of L, we can derive that

V(Xt, t) = V(x0, 0) + ί LV(XS, Xs-δ{s), s)ds

(2.5) rt n m

Since the diffusion term

ί Σ J29ik

pt n m £

/ /^,£^,9l (%s, Xs-δ(s),s)-—
^ 0 ι = l k=l i

is a continuous martingale, it is easy to deduce from the condition (2) that

EV(Xt, t) < EV(x0, 0) + f ELV(XS, Xs-δ(s), s)ds
Jo

<EV(xo,O)+ I (ΨΊ(S) + ψ2(s)EV(XS, s)
Jo

+ψ3(s)EV(Xs-δ{s),s))ds
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for all t > 0. A direct application of the condition (1) and Definition 1.1 to (2.6) yields that

c\E\Xt\Pλ{t)m <EV(xo,O) + f (
Jo

which, in addition to Lemma 2.1, immediately yields that

aE\Xt\Pλ(t)m < \EV(X0, 0) + Γ ψι(s)ds

+ ( c 2 / c i ) λ ( / ) m f ψ3(s)ds\ sup \η(r)\p\\
JO L-/<r<0 JJ

• exp (I {c2/cx)ψ2(s)ds + ί'(c2/cι)λ(l)mψ3(s)ds)

for all t > 0. Therefore, for t e R + large enough, we derive for arbitrary ε > 0

< log EV(x0, 0) + (c2/c,)λ(/)m f ψ3(s)ds sup \η(r)\
[ J |

/ ψ3(s)ds sup I
«/0 |_-/<r<0

λ(ί) v+ε

m [(c2/ci) / ψ2(s)ds + {c2/c\)λ(l)
JO JO

7'
Jo

sup \η(r)\P

+ (c2/c\)(θ + ε) logλ(ί) + {c2/c\)λ(!)m(γ + έ) logλ(ί),

which implies immediately that

l i m s u p ^g{cxE\Xt\n{t)m) <v + £ + (C2/C{)(Θ + ε) + (C2/Cι)λ(l)m(y + ε).
r_>oo logλ(ί)

Letting ε ->- 0 then gives

,.ms w w i < „ + + ( C 2 / C ] ) λ ( ; Γ ) /.
r^oo logλ(ί)

Finally, we have
\ogE\Xt(η)\P \og[λ(tΓm(cιE\Xt\Pλ(tΓ)]

lim sup < lim sup
r_>oo logλ(ί) r^oo logλ(ί)

< -\yn - (v + (c2/cι)θ + (c2/ci)λ(/)my)]

as required. D

THEOREM 2.2. Lei ̂ l(0 ? V̂ 2(0» ^3(0 be three continuous non-negative functions.
Assume that for all x e Rn and t > 0, there exist positive constants c\ > 0, c2 > 0, p > 0,
m > 0 tfTid r̂ β/ numbers θ, v, p, 0 < α < 1 5wc/z ί/zαί

(1) ci |x|^λ(ί)m < V(x, t) < c2|jc|^λ(ί)m, (x, t) eRn x /? + ;



MOMENT DECAY RATES OF SOLUTIONS 91

(2) LV(x,y,t) < ψ\{t) + ψ2{t)V{x,t) + t-i(t)V(y,t)a, x, y e Rn, t e [0, +oo);

) . /'<
log I / ψι(s)ds\ / ψ2(s)ds

(3) limsup x;° w . ^ < 0 , l i m s u p ^ — _ - < v ( l - α ) ,
r-̂ oo logλ(ί) r^cx) logλ(ί)

/ f<
log( / ψ?>(s)ds

limsup — — < p(l — αf).
r-̂ oo logλ(ί)

ί/ẑ  solution of Equation (2.1) satisfies

l i m s u p l o g W W I _ [ m _ ( ( / ) v + Θ v p)].
t^oo lθgλ(ί)

PROOF. Using the same notation as in the proof of Theorem 2.1, we can derive from

(2.6) and Lemma 2.2 that for arbitrary ε > 0

dE\Xt\Pλ(t)m

< exp ( ( (

C

Λ

2 \ f ψ2(s)ds j ( (EV(X0, 0) + [2 sup |^(r)
I V c i ( l - α ) / Λ ) J IV L -/<r<0

•(cf/ci)λ(/)αm f ψ3(s)ds+ f ψχ(s)ds) +(c%/Cι)2aλ(lTm f
Jo Jo / Jo

for all t > 0 large enough.

Therefore, by virtue of the condition (3), we have

< (c2/cι)(v 4- ε) logλ(ί) + log ί £ V(JC0, 0) + λ(t)θ+ε

»J rX fl

+ (c2/ci)λ(/) 2 sup |^(r) |^ / -
L -l<r<0 J Jo

+ (c«/c1)2αλ(/rmλ(o ( 1-° f ) ( p + ε )

which implies immediately that

limsup — w ^ Λ —- < (c2/c\)(v + ε) + (θ + ε) v (p

Letting ε ->• 0 then gives

Finally, we have

lim sup — - — — < lim sup
lθgλ(ί)

log(ci^^λ(ίΓ)
limsup — — < (c2/c\)v + θ v p .

r^oo logλ(ί)

lim sup

lθgλ(ί) t^oo lθgλ(ί)

< -[m-((c2/cι)v + θ vp)].

D
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EXAMPLE 2.1. Consider a one-dimensional stochastic constant time delay equation

dXt = -γ^~t

χtdt + Λ-X^dt + (1 + tyPg(Xt)dWt

with initial data Xt = η(t), t e [—/, 0], where g(-) : Rι —• Rι is a bounded, Lipschitz

continuous function, Wr is a one-dimensional Brownian motion and p, I are two positive

numbers.

We construct the Lyapunov function as follows:

V ( x , t ) = ( l + t ) 2 p x 2 , t e R + , x e R x .

We can deduce that there exists a positive constant M > 0 such that

LV(x, y, t) < y^ ^

Using Theorem 2.1, we can obtain that whenever p > 1 + l2p/2, the solution is the second

momently stable with polynomial type decay. Furthermore, we have

log*

EXAMPLE 2.2. Let / > 0, p > 0 and 0 < a < 1. Assume that η(t) : [-/, 0] x Ω ->

Rι is an .Fo-measurable process and δ( ) : [0, oo) —> [0, /] is the delay function. For t > 0,

consider a stochastic Itδ equation with variable time delays.

ίdXt = -pXtdt + e-vV-a)t\Xt-m\adWt,

lX, = ?7(ί), ί € [ - / , 0 ] ,

where Wr is a one-dimensional Wiener process and v e R1 is a certain real number.
We construct the Lyapunov function as follows:

V(x,t) = e2ptx2, t eR+ , JC e f l 1 .

A direct computation deduces that

LV(x, y, t) = 2pV(x, t) - 2pV(x, t)

Using Theorem 2.2, we can therefore obtain that whenever v > 0, the solution is the second
momently stable with exponential type decay. Furthermore,

\ogE\Xt(η)\2

limsup < — 2v .
f-^oo t
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