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Abstract. For each Painleve system, we have a manifold, called the defining mani-

fold, on which the system defines a uniform foliation. In this paper, we describe confluence

processes in these manifolds as deformations of manifolds compatible to those in Painleve

systems.

1. Introduction. The purpose of this paper is to describe confluence processes in the

defining manifolds for Painleve systems, namely, to show a hierarchy of these manifolds.

Each Painleve equation Pj (J = V I, V,...,/) is equivalent to a Hamiltonian system

(Hj) : dx/dt = dHj/dy, dy/dt = —SHj/dx, where Hj is a polynomial of x and v whose

coefficients are rational functions of t. Thus the Hamiltonian system (///) is called the J-th

Painleve system.

For each Painleve system, there is a manifold Ej, called the defining manifold for the

J-th Painleve system, on which the system defines a uniform foliation. The manifold Ej is

a fiber space over the ί-space Bj = P — {the fixed singular points} (P denotes the complex

projective line), containing as a fiber subspace the trivial fiber space C2 x BJ(B (x, y, t)) on

which the system (Hj) defines a nonsingular foliation. It should be noted that the foliation

on C2 x Bj(3 (x, y, t)) is not uniform because the solution of (Hj) may have movable

singularities, but that on Ej is uniform, namely, (i) every leaf is transversal to fibers, (ii) for

every PQ G EJ, any curve in Bj with the starting point πj(Po) (πj denotes the projection

from Ej onto Bj) can be lifted on the leaf passing through the point Po ([4]). Each fiber

Ej(t) over t e Bj, called the space of initial conditions, consists of mutually disjoint C2

and several divisors each of which is isomorphic to C ([4]). The manifold Ej (J φ I) is

described as a patching of several copies of C 2 x Bj by certain birational and symplectic

identifications, and the Hamiltonian on each chart V/(*) = C2 x Bj 3 0 0 ) , )>(*), 0 is a

polynomial of JC(*) and y(*) whose coefficients are rational functions of t holomorphic in Bj

([6], [7]). The Hamiltonian system defined on the whole manifold Ej is called the extended

J-th Painleve system. Note that the space of initial conditions is not compact, but there is no

other Hamiltonian system holomorphic on Ej and meromorphic on some compactification of

Ej than the extended 7-th Painleve system ([6], [8]).
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On the other hand, we know certain confluence processes in Painleve systems ([1]).

Thus it is natural to ask if there exist confluence processes in the defining manifolds Ej's

compatible to those in Painleve systems. In this paper, we establish them as deformations of

manifolds.

This paper is organized as follows. Section 2 is devoted to some preliminaries which are

relevant to state and prove our results. The main results of this paper are given in Section 3,

and proved in the following sections.

2. Preliminaries. In this section, we recall some known facts and recall a lemma

which is used in the proofs of our results.

2.1. We first review the forms of the Hamiltonian functions for Painleve systems ([1]):

1 2

Hyj(x, y, t) = [x(x — 1)(JC — t)y — {κo(x — l)(x — t)

+ κ\x(x -t) + (κt - l)x(x - \)}y + κ(x - t)]

(κ:=^[(κo + κι+κt-l)2 -κ2

0

1 Ί Ί Ί

Hy(x, y, t) =-[x(x - l ) z v z - {KQ(X - 1) + κtx(x - 1) - ηtx}y + κ(x - 1)]

HIV(x, y, t) =2xy2 - {x2 + 2tx + 2κo}y + K^X,

I f 2 2 9 1 Ί
Hur(x,y,t) =-\xΔyΔ - {7700* +κox - W)y + x^ooOo + Koo)x ,

1 2 2 2
Hiπ(x, v, t) —-\2xy — \2ϊ]ootx + (2/co + l)x — 2ηot}y + ̂ 00(̂ 0 +

t

Hu{x,y,t)=l-y2-

HI(x,y,t)=-y2-2x3-tx.

Here x,y, and t are variables and the other Greek letters stand for complex constants.

2.2. We next give descriptions of the defining manifolds £ / s (J φ I) ([6], [7]). In

the following, we distinguish several coordinate systems by labels such as 00,0oo,loo and so

on. The coordinate system U(00), )>(00), t) = (x, y, t) is the original one of V(00) x Bj —

C2 x Bj on which the Hamiltonian system (Hj) is defined. We note that (x(0σo), v(0oo)),

for example, is a coordinate system which is appropriate to observe a 1-parameter family of

leaves passing through the point (JC, y) = (0, 00).

2.2.1. The manifold Eyj for the Vl-th Painleve system is obtained by glueing six

copies V(*) x By 1 3 (*(*), j (*) , t) of C2 x Byi via the following symplectic identifications:

JC(OO) = y(0oo)(κ0 - x(0oo)y(0oo)), y(00) = l/^(0oo),
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JC(OO) = 1 + y(loo)(/q - *(loo)y(loo)), y(00) = l/y(loo),

JC(OO) = ί + j(ίoo)(/cr - x(too)y(too)), y(00) = l/y(ίoo),

jt(OO) = 1/JC(OOO+) , y(O0) = JC(OOO+)(K(+) - Jt(oo0+)y(oo0+)) ,

JC(OOO+) = y(ooO-)(κoo - ;c(ooO-)y(ooO-)), y(ooO+) = l/y(ooO-) ,

where

Byi = C - {0, 1}, /c(+) = (κ0 + /ci + icf - 1 + /Coo)/2,

and V(00) x #y/ is the original space on which the Hamiltonian function Hyi(x,y,t) is

defined.

2.2.2. The manifold Ey for the V-th Painleve system in the case η φ 0 is obtained by

glueing five copies V(*) x By B (*(*), y(*), t) of C2 x By via the following symplectic

identifications:

JC(OO) = v(0oo)(/co - ;t(0oo)y(0oo)), y(00) = l/v(0oo),

JC(OO) = 1 + *(loo), v(00) = •£—; + ^ - ^ - + v(loo),

JC(OO) = 1/JC(OOO+) , y(00) = JC(OOO+)(K(+) - jc(ooO+)y(σoO+)),

JC(OOO+) = y(ooO-)(/Coo - Jc(ooO-)y(ooO-)), y(oo0+) = l/y(ooO-),

where

By = C - {0}, κ(+) = (/co + κt + /Coo)/2,

and V(00) x By is the original space on which the Hamiltonian function Hy(x, y,t) is de-

fined.

2.2.3. The manifold Ejy for the IV-th Painleve system is obtained by glueing four

copies V(*) x Bjy 3 (JC(*), y(*), ί) of C2 x θ/y via the following symplectic identifications:

JC(OO) = y(0oo)(/c0 - ;c(0oo)y(0oo)), y(00) = l/y(0oo),

JC(OO) = l/jt(ooO), y(00) = x(ooO)(/Coo - jc(ooO)y(ooO)),

3 ^ ^ ^
JC(OOOO)-3 JC(OOOO)2 JC(OOOO)

where B\y — C and V(00) x β/v is the original space on which the Hamiltonian function

Hiv(x,y,t)v§> defined.

2.2.4. The manifold £///' for the modified IΠ-rd Painleve system in the case ηoηoo φ 0

is obtained by glueing four copies V(*) x BIΠf 3 (JC(*), V(*), t) of C2 x B]u> via the

following symplectic identifications:

x(00) = x(0oo), y(00) =
JJC(OOO)2 JC(OOO)

JC(OO) = l/jt(ooO), y(00) = x(ooO)((κ0 + #foo)/2 - JC(OOO)V(OOO)) ,

x(ooθ) = x(oo^oo), y(ooθ) = ^ ^ + ^ . +
x(ooηooV x(ooη)
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where BJW = C — {0} and V(00) x Bur is the original space on which the Hamiltonian

function H\w(JC, y, t) is defined.

2.2.5. The manifold Em for the IΠ-rd Painleve system in the case ?7o?7oo φ 0 is ob-

tained by glueing four copies V(*) x Bm 3 (JC(*), v(*), 0 of C2 x BJU via the following

symplectic identifications:

JC(OO) = Jt(Ooo), y(00) = J5f ^ ±
JJC(OOO)2 JC(OOO)

x(00) = 1/JC(OOO), y(00) = JC(OOO)((/C0 + Koo)/2 - jc(ooO)y(ooO)),

JC(OOO) = J C ( O O W ) , 3>(oo0) =

where 5/// = C — {0} and V(00) x 5/// is the original space on which the Hamiltonian

function H///(x, y, t) is defined.

2.2.6. The manifold £7/ for the Π-nd Painleve system is obtained by glueing three

copies V(*) x Bu a (*(*), j (*), ί) of C2 x BJJ via the following symplectic identifications:

JC(OO) = 1/JC(OOO) , 3;(00) = x(ooO)(-α - 1/2 - x(oo0)y(oo0)),

2 ί 2α

x(oo0) = χ(ooσo), y(ooθ) = -j -^ + y(oooo),

x(oooo)4 x(oooo)z x(σooo)

where B/j=C and V(00) x 5// is the original space on which the Hamiltonian function

Hu(x, v, t) is defined.

2.2.7. We remark that each Hamiltonian function ///(*) on the chart V(*) x Bj is a

polynomial of *(*) and v(*).

2.3. We now give the confluence processes in Painleve systems ([1], pp. 142-144).

2.3.1. The confluence process from the Vl-th Painleve system (Hyj) to the V-th one

(Hy) is given by the following diagram:

κ\ -> ηε~ι + κt + 1, κt -> -ηε~ι ,

(x,y,HVi,t) -> (x,y,ε~ιHVI^v(ε), I + εt).

This means the following: By the change of parameters, variables, and functions

κ\ = ηε~ι + kt + 1, κt = —ηε~x ,

JC = X , v = y, HVI =ε~ιHVI-+v, r = l + ε 7 \

the Vl-th Painleve system Jjc/ί/ί = dHVI/dy, dy/dt = -dHVI/dx is changed to a Hamil-

tonian system dX/dT = dHVI-+v/dY, dY/dT = -dHVI->v/dX, because

dy Adx - dHVI Λdt =dY ΛdX - dHVI^y A dT.

The new Hamiltonian Hγj^y is a function of X, Y, T depending also on parameters ku κo,

/Coo, ^. ε. The above diagram implies that the new Hamiltonian in which X, Y, 7\ kt is rewrit-

ten by x, v, t, κt, respectively, is equal to the function εHyi, where JC, V, ί, /cj, κt are replaced

by x, v, 1 + £ί, / ε" 1 + /cr + 1, —ηε~ι, respectively.
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We see

l( D( " 1 " εt)y2 - {κo(x - l){x - 1 - εt)

+ κtx(x -l)-(η + εκt + ε)tx}y + κ{ε){x - 1 - εt)],

where /c(ε) := [(/co + Ό ) 2 — ̂ oo2]/4. Notice that Hγi^y(ε) is a polynomial of x and y, and

it tends to Hy as ε -» 0. This property holds in each of the following processes.

2.3.2. The confluence process from {Hy) to (///y) is given by:

η -> -ε~2 , κ> -> ε~2 + 2/Coo - KQ , /Coo -• ~^~ 2 ,

(jc,>;,/fv,O-> l-^x, — y, -^-//v
\V2 ε Vϊε

2.3.3. The confluence process from (//y) to (/////0 is given by:

(JC, v, //v, 0 -> (1 + ε*, ε" 1 v, HV-+ΠI>(ε), t).

2.3.4. The confluence process from (///v) to (////) is given by:

/co -> ε~6/2, /Coo -> - α - 1/2,

(*,;y, HIV,t)-+ {ε-3{l+22/3ε2x), 2~2/3εy, 22/3ε~xHIv^u{ε), - ε " 3 + 2"2 / 3ε/).

2.3.5. The confluence process from (/////) to (////) is given by:

??o -> - ε ~ 3 / 4 , ôo -> ^ " 3 / 4 ,

/co -^ - ε " 3 / 2 - 2of - 1, /Coo -> ε~3/2,

(x, y, /////, 0 -> (1 + 2εx, {ε'x/2)y, ε-2HIII^II{ε), 1 + ε 2 ί ) .

2.4. The following simple lemma will be used in Sections 4 through 8.

LEMMA 1. Let S or T be manifolds by glueing two copies (JC, y)-space and (w, ι>)-

space or {z, w)-space of C2 via the identification x = \/u, y = u{a — uυ) or x = z +

a/w, y = w, where a is a complex constant. Then S is isomorphic to T provided a φ 0.

3. Main results. We define manifolds SJ^K'S each of which describes the conflu-

ence process from the defining manifold Ej to that Ejζ. The manifold £/_•# is by definition

a complex analytic family of complex manifolds:

εeC

Recall that the manifold Ej depends on some parameters. Let us denote by Ej{ε) for which

the papameters are chosen as in Subsection 2.3 depending on ε, for example, Eyj{ε) is a

manifold given in 2.2.1, where only the parameters are replaced as in 2.3.1. The manifold

SJ->K is constructed so that Ej^κ{ε) for each ε φ 0 is isomorphic to Ej{ε) and Sj-+κ{0)

is isomorphic to EK- Although the latter assertion is easy to see, the former is not trivial.

Therefore we will verify it in Sections 4 through 8.
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Every fiber £/_>#(£, t) of Ej-+κ(ε) over t is a disjoint union of a complex plane C 2

and several complex lines C's. Each confluence process is understood as a collision of two

complex lines. In the following theorems, we use («, v) as a coordinate system of a special

chart appropriate to see the collision. In the identification of (w, υ) with another coordinate

system, we observe a phenomenon such as a generation of a pole of order m + n by a collision

or confluence of two poles of order m and n.

We notice that these confluence processes are compatible with those given in Section 2.

THEOREM 1. Let η φ 0. Then Eyι^y(έ) w obtained by glueing five copies ofC2 x

via the following symplectic identifications:

JC(OO) = v(0oo)(/c0 - Jt(Ooo) y(Ooo)), v(00) = l/;y(0oo),

u u — εt
(η + (κt + l)ε)t

11
M(M — εt) u — εt

JC(OO) = 1/JC(OOO+) , y(00) = jc(ooO+)(ic(+

JC(CX)O+) = j(ooO-)(/Coo - JC(OOO-)v(ooθ-)),

(JC(OO), j(00)) is the coordinate system of the original chart on which the Hamiltonian

function Hyj-^viε) (given in 2.3.1) is defined.

THEOREM 2. 8 y-^i v (ε) is obtained by glueing four copies ofC2 x By^jy(ε) via the

following symplectic identifications:

x(00) = y(0oo)(κ0 - x(0oo)y(0oo)), y(00) = l/y(0oo),

JC(OO) = l/x(ooO), y(00) = JC(OOO)(/COO - Jt(ooO);y(ooO)),

ε~2 + 2/C - KQ + 1t m / m ε ε l J ϊ + t ε + 2/CQQ KQ + 1

w (u-ε/y/l)2 u-ε/y/2

1/2 ί 2/̂ oo-̂ Q + l

u(u-ε/V2)2 (u-ε/VΪ)2 u-ε/VΪ
where

and (JC(OO), v(00)) is the coordinate system of the original chart on which the Hamiltonian

function Hy^iy(ε) (given in 2.3.2) is defined.

THEOREM 3. Let ηoηoo Φ 0. Then εy-+iw(ε) is obtained by glueing four copies of

C2 x By^jjj'(ε) via the following symplectic identifications:

*(00) = *(0oo), 321 ^ ± i
*(0oo)2
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JC(OO) = 1/JC(OOO) , y(00) = x(ooO)((κ0 + Koo)/2 - jt(ooO);y(ooO)) ,

t(ooθ) = u , y(ooθ) = 1 h υ
u u + ε

= : : 1 h υ ,
u(u + ε) u + ε

where

(JC(OO), y(00)) is the coordinate system of the original chart on which the Hamiltonian

function Hy-+m>(ε) {given in 2.3.3) is defined.

THEOREM 4. Sjv^niε) is obtained by glueing three copies ofC2 x BJV-+II(S) via

the following symplectic identifications:

jt(OO) = l/*(ooO), y(00) = jt(ooO)(-α - 1/2 - JC(OCO)J(OOO)) ,

2i/3ε-2 1-\βε-*_t 2a + ε-β/2 ε~6/2
x(ooθ) = u , y(ooθ) = 3— + — + , ' 2 + υ

w3 u2 u u + 22/3^2

2 ί 2α

and ( c(OO), y(00)) is the coordinate system of the original chart on which the Hamiltonian

function Hiy-^u(ε) (given in 23 A) is defined.

THEOREM 5. £///->// (ε) is obtained by glueing three copies ofC2 x BJJJ-^JJ (ε) via

the following symplectic identifications:

*(00) = 1/JC(OOO) , y(00) = jt(ooO)(-α - 1/2 - x(ooO)j(ooO)),

, m , m (e + O / 2 , ε / 2 ( ε + ί ) / 2 ε / 2 + 2c*
x ( o o θ ) = i t , y(ooO) = + — + v ,

M 2
 M (1* + 2ε)2 w + 2ε

2 ί/2 t/2 2OL

+ vu2(u + 2ε)2 (u + 2ε)2 u2 u-\-2ε

where

and (JC(OO), 3̂ (00)) is the coordinate system of the original chart on which the Hamiltonian

function /////_•//(ε) (given in 2.3.5) is defined.

The following theorem is verified by calculation.

THEOREM 6. Each Hamiltonian function Hj-+κ(ε, *) on each *-chart ofεj^κ(ε) is

a polynomial ofx(*) and y(*), and it tends to the Hamiltonian function //A:(*) defined on the

*-chart ofEκ as ε -> 0.
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4. Proof of Theorem 1. Let Eyi(ε) be a manifold given in 2.2.1, where only the

parameters are changed as in 2.3.1. The purpose of this section is to show that Eyj(ε) is

isomorphic to £y/-» v(ε) for each sufficiently small ε φ 0.

Consider a change of time variable t: t -+ 1 + εt, according to 2.3.1. Then Eyj(ε) is

described as a patching of six copies of C2 x #v/-> γ (ε) by the identifications:

(4.1) JC(OO) = y(0oo)(κ0 - jt(0oo)y(0oo)), y(00) = l/;y(0oo),

(4.2) JC(OO) = 1 + y(loo)(ηε-1 + κt + 1 - JC(1 00)3;(loo)), y(00) = l/y(loo),

(4.3) JC(OO) = 1 + εt + y\-ηε~x - JC V ) , y(00) = l/y* ,

(4.4) JC(OO) = 1/JC(OOO+), 3;(00) = JC(OOO+)((KO + κt + Koo)/2 - Jc(ooO+);y(ooO+)),

(4.5) x(oo0+) = ^(oo0-)(/Coo - JC(OOO-MOOO-)) , j(oo0+) = l/y(ooO-).

Here (JC*, y*) is used in place of (x(ίoo), y(too)).

Ίhefiber EVI(ε, t) of EVI(ε) overt e BVI(ε) is a disjoint union of C 2 3 ( c(OO), j(00))

and five complex lines:

Evi(ε, t) = C2U D0oo(t) U Dloo{t) U Di+ e / Oo(ί) U D00O+W u O00O-W ,

where D 0 θo(0 := {j(0oo) = 0}, D l o o ( ί ) := {y(loo) = 0}, D i + e f 0 0 ( ί ) := {j* = 0},

^>ooθ+(ί) := M00O+) = 0} and Dooθ-(0 •= {j(coθ-) = 0}. As ε -+ 0, the divisor

D\+εtOo(t) is going to collide with the divisor Dioo(0 In the following, we choose an appro-

priate coordinate system to observe the collision.

Since η φ 0 by assumption, ηε~ι + ^ + 1 φ 0 for sufficiently small ε φ 0, and hence

a space obtained by patching two copies of C2 x ί, ί G Z?v/_>v(ε), via (4.2) is isomorphic to

the one obtained by the patching

(4.6) JC(OO) = 1 + u, y(00) = (ηε~\ + κt + \)/uf + 1/

on account of Lemma 1. We see that Dioo(ί) = {j(loo) = 0} = {uf = 0}, and (JC(IOO), 0)

and (0,1/) represent the same point on Dioo(0 if *(loo) = — (ηε~ι H- ̂ f + l)ι/.

We also see that a space obtained by patching two copies of C2xt via (4.3) is isomorphic

to the one obtained by the patching

(4.7) JC(OO) = 1 + εt + u", y(OO) = -ηε~ι/u" + v" .

It is easy to see that D\+εtoo(t) = {y* = 0} = {«" = 0}, and (JC*, 0) and (0, v") represent the

same point on D\+εtOQ(t) if JC* = ηε~xυ".

By observing (4.6) and (4.7), we find that a space obtained by patching three copies of

C2 x t via (4.2) and (4.3) is isomorphic to a space obtained by patching two copies of C2 x t

via a relation

(4.8) ( ) + , ym +

u u — εt
It should be noticed that I>ioo(0 = {M = 0} and D\+εtoo(t) = {u = εt}.
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5. Proof of Theorem 2. We prove that Ey(ε) is isomorphic to Sy^iv(ε) for each
εφO.

Let us replace the variables as

JC(OO) -> (£/Λ/2)JC(00) , v(00) -> (V2/ε)yQ0O), f -> 1 + Vϊεt,

according to the known confluence process given in 2.3.2. Corresponding to this, we further
make the following replacements:

jt(Ooo) -* (V2/ε)x(0oo), y(0oo) -

JC(OOO+) -> (v/2/ε)jc(σo0), y(ooO+)

JC(OOO-) -> (β/V2)jt(ooO-), y(ooθ-) -> (V2/ε)y(ooO-).

Then we have another description of Ey(ε) as a patching of five copies of C2 x Bγ-*iv(ε)
by

(5.1) JC(0O) = y(0oo)(κ0 - je(Ooo)y(Ooo)), y(00) =

(5.3) JC(OO) = 1/JC(OOO) , v(00) = JC(OOO)(/COO - x(ooO)y(ooO)),

(5.4) x(ooθ) = y(ooO-)(-ε~2 - jc(ooO-)y(ooO-)), y(ooθ) = l/y(ooO-).

The fiber Ev(ε, t) of Ev(ε) over / e Bv(ε) is a disjoint union of C2 3 (JC(OO), y(00))
and four complex lines:

Ev(ε, t) = C2U Doooif) U D^-iooW U Dooo U Doo0(ί) U Ax>0-(0 ,

where D 0 o o(0 := {̂ (Ooo) = 0}, D ^ - i ^ ί O := U(loo) = 0}, DoooίO := {̂ (ooO) = 0}
and Dooo-(ί) := {y(cx)O-) = 0}. To see that the divisors D^ε-XθQ(t) and Doo0-(ί) collide
with each other as ε -^ 0, we look for a coordinate system which is suitable to see the
collision.

We first note that a space obtained by patching two copies of C2 x t via (5.4) is isomorphic
to the one via a relation

(5.5) JC(OOO) = u\ y(ooθ) = -ε~2/u + ι/ ,

by Lemma 1, and that Dooo-(0 = {y(ooθ-) = 0} = {uf = 0}, and (JC(OOO-), 0) and (0, v')
are the same point on Dooo-(ί) if JC(OOO—) = υ'/ε2.

We next study how one can choose an appropriate coordinate system near the divisor
Ay^g-iooίί) s o * a t ^ e identification of the system with (JC(OOO), ̂ (ooO)) is of simple form.
From (5.2) and (5.3), it follows that

jt(ooθ) = (ε/V2)/(l + x(loo)).
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Considering x(ooθ) = ε/VΪ when x(loo) = 0, we introduce a coodinate u" by

(5.6)

Let us obtain the expression of y(ooθ) in terms of u" and y(loo) by (5.2), (5.3), and (5.6).

By a careful calculation, we have

y °° '

and then take a coordinate υ" by

υ =
ε/y/2 + u"

which is equivalent to

^ ( l o o ) ^ - ^ - 1 ^ / ^ +u")2v" -V2ε~\ε-2 + Koo - κo +l)(ε/Vϊ + u").

The relation between (*(oo0), >(oo0)) and (u", v") is

,(000) = --

From these relations, it follows that a space obtained by patching (x(ooθ), y(ooθ))-space

and (x(loo), y(loo))-space via the relation derived from (5.2) and (5.3) is isomorphic to

the one obtained by patching (x(ooθ), y(ooθ))-space and (u", ι/')-space via (5.7). We can

verify that D ^ - i ^ W = {x(loo) = 0} = {u" = 0} and that (0, y(loo)) and (0, v") with

y(loo) = —(ε/V2)v" — (ε~2 + KOQ — KQ + 1) are the same point on ^^-1^(0-

By observing (5.5) and (5.7), we introduce a coordinate system (w, v) by

JC(OOO) = u,
Γ5 8)

, m £" 2 ε-χ/>/2 + t ε-2Λ-2κoo-KQ + \
y(ooO) = •=— + F + υ .

u (μ- ε/VΪ)2 u - ε/y/2
We can verify that the space obtained by patching (JC(OOO), y(oo)), (JC(OOO—), ;y(ooO—)),

and ( c(lσo), y(lσo))-spaces is isomorphic to that obtained by patching (JC(OOO), y(ooO)) and

(M, υ)-spaces via (5.8), and that Dooθ-(0 = iu = °)' DV2ε~ιoo^ = iu = ^

6. Proof of Theorem 3. We prove that Ey (ε) is isomorphic to Sv-+ur (ε) for suffi-

ciently small ε φ 0. Notice that this Ey(ε) is different from that in Section 5.
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Since ηooε~l, —^oε"1 4- Koo Φ 0 for sufficiently small ε φ 0 by assumption 770*700 7̂  0,

Ey(ε) is described as a patching of five copies of C2 x By^jjjf(ε) via

JC(OO) = z', y(00) = ηooε~l/z' + wf,

JC(OO) = 1 + JC(IOO) , y(00) = ^ - , + ^ - ± - + y(loo),
JC(IOO)2 JC(IOO)

JC(OO) = 1/JC(OOO+) , y(00) = Jt(ooO+)((κ0 + *oo)/2 - ;c(ooO+)y(ooO+)),

jt(ooO+) = z" , y(oo0+) = ( - w e " 1 + *«>)/*" + u/'

by Lemma 1.

In accordance with the process in 2.3.3, we consider the replacement

JC(OO) -> 1 + ε c(OO), y(00) -• £ ^

and coresponding to this, we make the following replacements:

JC(IOO) -> £jc(0σo), y(loo) -> ε~ιy(0oo),
> jc(ooO)/(ε + JC(OOO)) ,

y(cx)0+) -* (1 + ε - ^ ί o o O ) ) ! - ^ + /fcχ,)/2 + (ε + x(cx)0))y(oo0)].

Then we have another description of Ey(ε) as a patching of five copies via

(6.1) 1 + εx(00) = z, ε-ιy(00) = ηoo£~l/z 4- w',

(6.2) *(00) = x(0oo), y(00) =
JC(OOO)2 x(0oo)

(6.3) JC(OO) = 1/JC(OOO) , y(00) = JC(OOO)((/C0 + *oo)/2 - Jc(ooO)y(ooO)),

(6.4)
I k~f\ 4- κ~, .

+ jc(ooO))y(σoO) =

The fiber Ey (ε, t) of Ey (ε) over / is a disjoint union of C2 B (x (00), y (00)) and four complex

lines

Ev(ε, t) = C2U D^-i^it) U

where D ^ - i ^ W := {z' = 0}, Z W 0 := k(0oo) = 0}, Dooo(0 := {x(ooθ) = 0} and

Dooo-(t) := {z" = 0}. As ^ -• 0, the divisors D_ε-\oo(t) and Dooo-(0 are going to collide

with each other, and thus we must look for a coodinate system suitable to see the collision.

We first seek a coordinate system for D^-i^it) simply related to the system ( c(ooθ),

y(ooθ)). By (6.1) and (6.3), we have

and JC(OOO) = — ε if 7! = 0. Therefore we introduce u1 by

(6.5) x(oo0) = -ε + u .
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A careful calculation by means of (6.1),(6.3) and (6.5) shows

, -Voo£~l + (/c0 + /Coo)/2

+ f
u'

Then, introducing 1/ by

1 + (AΓO + ΛΓoo)/2
V =

-ε + u' (-ε + u1)1

we have

(6.6) jc(ooO) = - ε + iί', y(ooθ) = ^ " ^ + i/.
w

Note that D ^ - i ^ ί f ) = [zr = 0} = {w' = 0}, and that (0, wf) and (0, υr) related by

represent the same point on D_ε-\OQ(t).

We next choose a suitable coordinate system for the divisor Dooυ-(0 = W = 0} which

is simply related to the coordinate system (x(ooθ), y(ooθ)). By (6.4), we have

JC(OOO) = ε z 7 ( l - z"),

and x(ooθ) = 0 if z" = 0. Therefore we introduce «" by

(6.7) jt(ooO) = w".

By making use of (6.4) and (6.7), we have

1 , ^oo^"1 + (/co - AΓOO)/2 ε „

+ +
Therefore, introducing v" by

„ _ ηoo£~l + (AΓQ - AΓoo)/2

we obtain a coordinate system (u", υ"), which is related to (JC(OOO), y(ooθ)) by

(6.8) JC(OOO) = u\ y(ooθ) = -fr*> f i~1 + l c°° + υ/'.
u"

We can verify that A>oo-(0 = W = 0} = {wr/ = 0}, and that (0, w") and (0, v") related by

-w" + εv" = ηooε-1 + (/co + /Coo)/2

represent the same point on £>ooθ-(0
Observing (6.5) and (6.8), we introduce a coordinate system (u, v) by

(6.9) JC(OOO) = u , v(ooθ) = 1 h υ .
u u + ε

It is verified that D^-i^it) = {u = —ε] and Dooθ-(ί) = {« = 0}

7. Proof of Theorem 4. In this section, we show that Eiv(ε) is isomorphic to

8iy-+u(ε) for each ε φθ.
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By Lemma 1, Eiy(ε) is described as a patching of four copies of C2 x #/v_*//(ε) via

JC(OO) = z , y(00) = (ε-6/2)/zf + wf,

JC(OO) = 1/JC(OOO) , y(00) = x(ooO)(-a - 1/2 - jc(ooO)y(ooO)) ,

JC(OOO) = JC(OOOO),

1/2 _ ε -3 + 2-2/3g, g-
6/2 + 2α |

y(σoθ) = - -2 — + y(ooσo).
JC(OOOO)3 x(ooσo)z JC(OOOO)

In accordance with the process in 2.3.4, we make the replacement

jt(OO) -* ε " 3 ( l + 2 2 / V J C ( 0 0 ) ) , y(00) -> 2~2/3εy(00),

and corresponding to this,

ε3.x(oo0)

22/3ε2+jc(σoO)

y(ooθ) -* 2 " 2 / 3 £ - 5 ( 2 2 / 3 ε 2 + jc(cx:0)){α + 1/2 + (2 2 / 3 ε 2 + JC(OOO))J(OOO)} .

Then we have another description of Eiγ(ε) by patching four copies of C2 x Bjv->ii(ε) via

(7.1) ε " 3 ( l + 2 2 / V J C ( 0 0 ) ) = zf, 2" 2 / 3εj(00) = (ε~β/2)/zf + w',
(7.2) JC(OO) = 1/JC(OOO) , y(00) = jc(oo0)(-α - 1/2 - JC(ooθ) y(ooθ)),

(7.3) 2 ~ 2 / V 5 ( 2 2 / V + Jc(ooO)){α + 1/2 + ( 2 2 / V + JC(OOO))};(OOO)}

1/2 - ε - 3 + 2 - 2 / 3 ε / ε- 6/2 + 2α

JC(OOOO)3 JC(OOOO)2 x(σooo)

We see that the fiber EIV(ε, t) of EIV(ε) over t is a disjoint union of C2 3 (JC(OO), y(OO))

and three complex lines:

EIV(ε, t) = C2U D_2-2/3ε-2oo(0 U Dooo(0 U Doooo(ί),

where D^-i/^-i^it) := {zr = 0}, Doo0(0 := {αr(ooθ) = 0} and A W ) := {Λ:(OOOO) =

0}. In order to see that two divisors D_2-iβε-2OQ{t) and Doooo(0 collide with each other as

ε -+ 0, we are going to choose an appropriate coordinate system to describe the collision.

First, we seek a coordinate system to describe the divisor D_2-2βε-2oo(t) so that it is

simply related to (JC(OOO), y(ooθ)). From (7.1) and (7.2), it follows that

jt(ooθ) = 2 2 / V / ( - l + ε V ) ,

and x(ooθ) = — 22/3ε2 if in particular z! — 0. Hence we take u! as

(7.4) jc(ooO)

From (7.1), (7.2) and (7.4), it follows that

~6/2 6_ ε~6/2 g-6/2 + or + l
y ( o o 0 ) _ _ _ _ _ _
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Therefore, introducing v' as

we have

ε~^ 12
(7.5) JC(OOO) = - 2 2 / V + w', y(σoθ) = — + i/.

u'

We can verify that D_2-2/3ε-2oo(t) = {z' = 0} = {u* = 0}, and that the points (0, w') and

(0, v') related by

w' + 2 2 / V ι / = ε3(ε-6/2 + or + 1/2)

represent the same point on D_2-2βε-2oo(t).

Secondly, we choose a coordinate system for the divisor A x ^ ^ ) simply related to

( c(ooθ), y(ooθ)). Taking the first equation of (7.3) into account, we choose a variable un

as
(7.6) JC(OOO) = u".

Notice that x(oooo) = 0 corresponds to u" = 0. By making use of (7.3) and (7.6), we obtain

2i/3£-2 2 - 1 / 3 ε " 4 - ί ε- 6/2 + 2α

Therefore, by introducing v" by

we have

(7.7) x(ooθ) = a", y(ooθ) = - = - ^

It is verified that Aχ>oo(ί) = U(ooσo) = 0} = {wr/ = 0}, and the points (0, j(oooo)) and
(0, v") related by

Koooo) - 2 2 / 3 ε " 1 υ " = - ε - 3 ( ε - 6 / 2 + a - 1/2)

represent the same point on Dσooo(0
Lastly, by observing (7.5) and (7.7), we introduce a coordinate system (w, v) by

jt(ooθ) =u ,

( 7 8 )
2 ε 2 ε ί ε/2 + 2α ε / 2

j (ooθ) = 3 — + '- + ' + v .
u3 u2 u u + 22'3f2

We can verify that D_2-2/3e-2oo(ί) = {u = -2 2/ 3ε 2} and £>oooo(0 = {« = 0}.

8. Proof of Theorem 5. We show that £///(ε) is isomorphic to £///_>.//(ε) for each
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The manifold Em(ε) is described as a patching of four copies of C2 x Bju(ε) via

ε~3t/4 ε~3/2 + lot
JC(OO) = *(0oo), y(00) = ' + y(0oo),

JC(OO) = l/x(ooO), y(00) = *(ooO)(-α - 1/2 - x(ooO)y(ooO)),

ε~3t/4 ε~3/2
x(ooθ) = x(ooηoot), y(ooθ) = -y + — + y(ooηoot).

xiooηt)2 x(ooηt)
Acoording to the confluence process given in 2.3.5, we make the replacements

JC(OO) -> 1 + 2£jc(00), y(00) -+ y(00)/(2ε), t -> 1 + £2ί

and corresponding to this,

. J ( o o θ ) ^ 2 g + x ( θ θ Q )

 [ α + 1/2 + (2g +
2ε

Then we have another description of Em (ε) by patching of four copies of C2 x

via

1 +2εjt(00) =JC(OOO),

x(0oo)2 x(

(8.2) t(OO) = l/*(ooO), y(00) = x(ooO)(-a - 1/2 - .

x(ooθ)

( g 3 ) 2ε+x(ooO)
= x\ - ^ - [ α + l / 2 + (2ί+jc(ooO)MooO)]

Here (JC*, y*) := (JC(OO^OOO, y(oo^ooθ)-

We see that the fiber Em{ε, t) of Em(ε) over ί is a disjoint union of C2 3 (JC(OO), y(00))

and three complex lines:

-, 0 = C2 U D_€-ι/2oo(t) U Dooo(r) U ̂ ^ - 3 ^ 4 ( 0 ,

where D_ε-ι/2oo(t) := {x(0oo) = 0}, Z W O := {x(ooθ) = 0} and D^-z^^t) := {x* =

0}. As ε tends to 0, the divisors D_ε-\/2oo(t) and D^^jμit) collide with each other. In the

following, we look for an appropriate coodinate system which is suitable to see the collision
o f D-e-'/2oo^) a n d Ax>£-3,/4<».

We first obtain an coodinate system of a neighborhood of D_ε-\,2θQ(t), so that it is

related with (JC(OOO), y(ooθ)) in simple form. Since the right-hand side of

jt(ooθ) = 2ε/(- l+jt(0oo))

is — 2ε if c(Ooo) = 0, we introduce a variable u' by

(8.4) JC(OOO) = -2ε + u.
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We see that

t m (£~2 + 0/2 ε~3/2 +
y(θθO) = -z —

ua u'u'
ε~3/2 + a- 1/2 2ε

and then introduce a variable υf by

, ε~3/2 + a- 1/2 2ε

—2ε + w' (—2s + «')

The relation between (JC(OOO), y(ooO)) and (u\ v') is given by

(8.5) JC(OOO) = — 2ε + u , j(ooθ) = z 1- υ r ,

and D_ e -i / 2 o o (ί) = {JC(OOO) = 0} = {w7 = 0}.

We next obtain an appropriate coodinate system of a neighborhood of D^^f^it). Since

the right-hand side of

. JC(OOO) = 2ε;c*/(l -jc*)

is 0 if x* = 0, we introduce a variable u" by

(8.6)

Then we have

Therefore, introducing a variable υ" by

3 26:
v" = - '\ ,; ' +

we have

(8.7) *(ooO) = «",

Now, observing (8.5) and (8.7), we take a coordinate system («, v) defined by

JC(OOO) = M ,

( 8* 8 ) (ε-2 + O/2 ε~3/2 (ε'2 3

Then we can verify
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