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Abstract. We investigate surfaces of constant mean curvature one in the hyperbolic

three-space with irregular ends, and prove that their irregular ends must self-intersect, which

answers affirmatively a conjecture of Umehara and Yamada. Moreover we also obtain an

explicit representation of a constant mean curvature one surface and a new minimal surface in

the Euclidean three-space.

1. Introduction. In the hyperbolic 3-space, surfaces of constant mean curvature

one (abbreviated to CMC-1) share many properties with minimal surfaces in the Euclidean

3-space. In 1987, Bryant established a hyperbolic analogue of the Weierstrass representation

of minimal surfaces in the Euclidean 3-space for CMC-1 surfaces in the hyperbolic space, and

also showed that even if it has finite total curvature, the hyperbolic Gauss map of a complete

CMC-1 surface can not meromorphically extend across its ends. This is an important differ-

ence between CMC-1 surfaces and minimal surfaces. Subsequently, Umehara and Yamada

made many profound studies on CMC-1 surfaces. In particular, they found a necessary and

sufficient condition of embeddedness of a regular end and constructed many CMC-1 surfaces

subject to certain topological conditions.

If a complete CMC-1 surface is of finite total curvature, then it is conformally equivalent

to a compact surface with finite points removed, and these points correspond to the ends of this

surface. When the hyperbolic Gauss map could meromorphically extend up to an end, then

we call the end regular, and call it irregular otherwise. Umehara and Yamada have constructed

many surfaces with irregular ends, and observed through a lot of numerical computation that

the irregular ends of these surfaces all self-intersect. Based on this observation in [6] they

conjectured that no irregular ends ofCMCΛ surfaces are embedded. In this paper we utilize

an asymptotic analysis of ordinary linear differential equations with irregular singular points

to study this question, and affirmatively answer to their conjecture:

THEOREM. NO irregular ends of CMC A surfaces are embedded.

In addition to proving this, we get an explicit representation of a CMC-1 surface and also

a new minimal surface in the Euclidean 3-space.

In their recent work [2] Collin, Hausworth and Rosenberg also answer this conjecture in

the general case of surfaces properly embedded in the hyperbolic 3-space.
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2. Asymptotic analysis. Let Δ* = {z € C\0 < \z\ < l}bea punctured disc, and / :
Δ* ι-> H3(— 1) a conformal CMC-1 immersion of finite total curvature, which is complete

at the origin z = 0. Suppose that its hyperbolic Gauss map does not meromorphically extend

across the end z = 0. Then, from a result of Bryant [1] or Umehara-Yamada [5], one can

write the Weierstrass data as follows:

(1) g = zμ, μ>0,

(2) ω = z ~ v ω 0 ( l + ω i z + - ) d z , v > 0 ,

for which the Hopf differential is given by

(3) Q = ωdg= μω0z
μ~v~\l +a>iz + - )dz2 ,

where μ — v is an integer. Since the end is irregular, by using a proposition in [1], we know

that μ — v — 1 < —3, namely v — μ > 2.

Now, let F : Δ*\-^> SL(2, C) denote Bryant's representation of the surface / : Δ* \-^

H3(— 1), where Δ* is the universal cover of Δ*, and write F as follows :

which satisfies the equation

(5) (j f
In their paper [5], Umehara and Yamada have showed that F\F^ and F2, F4 satisfy the

following equations (El) and (E2), respectively,

(El) X"-—X'-$[ωX = 0,
ω

(E2) ί
(pco

and the coefficients of (El) and (E2) are given by
/ 00

L
CO ^-^ Crίύ

and
σo

Q = Q' = g'ω= £ qiZ' ,
i=-m

where

and
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If we rewrite the equation (El) as X" = PXr + QX, and set

then we easily get

Ί
This is an ordinary linear homogeneous differential system. Since the end is irregular,

the number m > 3, and hence z = 0 is an irregular singular point of (6). This is a special case

studied in Turrittin's paper [4], which is successfully treated there. The fundamental solutions

of (6) have the representation of convergent generalized factorial series in a sector domain.

Since the functions F\t F3 and their derivatives satisfy the system (6), Bryant's representation

of the end will have an explicit form in a sector domain.

In what follows, following the idea of Turrittin we first compute the canonical form of the

above equation (6), and discuss the question separately in two cases, according to the number

m = 2n, n > 2, or m = In + 1, n > 1. We only treat the even number case (m = 2n) in

detail, and the other case can be dealt with similarly.

Taking the shearing transformation

U = (δijz
n(2n~i))V

to the system (6), where i, j = 1,2, and multiplying the system (6) by z~n, we get

m dV_ = U(\-2n)zn-{ 1 \
K) dz \ Qz2n n{2-2n)zn-χ+Pznl
Applying the normalizing transformation

A
to the above equation (7), the leading coefficient matrix becomes in diagonal form. We have

dW
(8) zn— = (A + B)W,

dz

where

1 1 7

σ0 = y/q-2n , d = -(n-v) , σn = -(3π - 4nz + p~\),

and from now on, B will always denote the sum of terms of zι (i > n). The zero-inducing

transformations

W = (I + zQι)R\, R\ = (I + z2Q2)Ri,... ,
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will change the coefficients matrix of zk into diagonal form, and can not affect that of zι

(i = 1, 2, , k — 1). In fact, substituting

W = (I + zQ\)R\

into (8), we get

(9)

where

(10) M = (I

By using

V + zQirι=I-zQi+z2Q2

{-

and

-(::)
into (9) and (10), the coefficient matrix of z can be computed as

0 2b\ , q-2n+\

i -ι)

In order to let it become in diagonal form, we may choose the entries of the matrix Q\ as

a = d = 0, b = c=q-
4

which is equivalent to that

(0 \

By a straightforward compution the equation (9) takes the following form in which the first

two terms become in diagonal form

(11)
ί

where

q-2n+\

i=2

Λ/, Bi being constant depending only on q-ι% Similarly, applying the zero-inducing transfor-

mations

Ri_ι = (I + z'Qi)Ri, i = 2 , 3 , . . . , / ι - 2 ,

to the equation (11), taking the constant matrix Q, always in the form
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the coefficient matrix of zι (i = 2 , . . . , n — 2) becomes in the diagonal form, and (11) be-

comes

(12) zn~τ~^= ( Σ σ / ;

where

(σn d \ n-ι
[d σn)

Z '

and An_v Bn_{, σ, (/ = 0 , . . . , « — 2) being constant depending only on #;. Finally, we use

the transformation

to the equation (12), where

O ί = ( ° tBn_{-d)βσo\

By setting σπ_i = A'n_χ, the equation (12) becomes

Summing up these, we get the following lemma:

LEMMA 1. Corresponding to the system (7), there exists a transformation

V = S(z)R,

where

S(z) = ( J— ^—
Xy/H—ln \la-2n)

which reduces the equation (7) to the canonical form (13).

To proceed further several new symbols are needed. Setβ = (B[f), Bij =

and
n-\

Pj(z) = ( - iy + 1 ΣσiJ +σnz
n-χ , y = 1,2.

ι=0

If/ φ j , let

A ~ Pj = rU,o + Πj,\z H h njtn-\zn~ι ,

where rι;,o / 0, and define the matrices /}/ by the equations

fij,θΠj + Bijn = 0.

Keeping this notation in mind, we apply the results of Turrittin to the equation (13) to

obtain
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THEOREM 2. The fundamental solutions of the system (13) have the following forms:

where

f\(z) = (σn + σ M _ i ) l n z -
z (n - l)zn~ι '

• = (σn - σ n _ i ) l n z + - ^ - H h , ,
z (« — l )z

n - l

k=\

L ( ) = V s Kijkv(Φ,γ)

~ π ̂ 1 " r t U 1 " r t + y^" / φ ) (zι'n + vγe~iφ) '
y—u

αr^ convergent factorial series provided

(i) constant number Φ φ arg(±σo),

(ii) positive constant γ is sufficiently large,

(iii) |z| is sufficiently small and z is located in one of the sectors

(2Φ - π + 2ε + 4πk)/2(n - 1) < argz < (2Φ + π - 2ε + 4πk)/2(n - 1),

£ > 0 w arbitrary and k — 0, 1, 2 , . . . , n — 2. //ere ί//̂  Λ«J Kijkv are appropriate

known constant matrices.

REMARK. The constant number Φ can be taken arbitrary except arg(±σo), and the

above factorial series are convergent only in a sector domain. When z tends to zero in the

sector domain, £/// (z) also tends to zero.

In the following, we consider problems only in a sector domain which depends on Φ.

Now we return to the beginning equation (El). Then its fundamental solutions X\, X2 take

the following forms:

(14) Xχ(z) = za+σ(\ + A(z))exp(-ζ),

(15) X2(z) = za-σ(l + B(z))expζ,

where

a = n(2n - 1) + -(3n -An2 + /?_i), σ = σn-\ ,
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ζ = ~~ΊΓ*""}~ (n-l)zn-1 '
and A, B are analytic functions, which tend to zero as z tends to zero. On the other hand,

since (El) and (E2) have the same coefficients except /?_i, the fundamental solutions Y\, Yi

of (E2) should have the forms:

(16) Yχ{z) = za'+σ(l + C(z))exp(-0 ,

(17) Yi(z) = za ~σ(l + D(z))expf ,

where

a! = n{2n - 1) + )-{?>n - An2 + p'_x),

and C(z), D(z) have the same properties as A(z), B(z). Recall that p-\ = -v, p'_χ =2μ-v

and μ — v — 1 = — In, so that

(18) a = - ( - « - μ + 1) < 0 , a - a = μ, a+a' = l-n.

3. Main results. Next we establish a lemma which plays an important rule in the rest

of our argument.

LEMMA 3. Let a — a\ + V—1<*2 &£ <z constant complex number, and

p(z) = αoz

a polynomial in z, and ao Φ 0. In the domain [z € C \ 0 < |z| < 1, —π < argz < π},for the

function

zα exp /? IG)
exists an essential singular direction θo G (—π, 7r], ί/zίzί is, there exists a sector

S = {z € C | 0 < \z\ < 1, θo-ε < argz <
such that for any constant number b φ 0, oo, there exists a sequence z\, zi, € 5 satisfying
lim Zi = 0 and

z}*exp/?( - ] = -

PROOF. Set

zαexp/?ί-J =Z?,

and take logarithm of the equation. Then we have
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For convenience, let ao = 1 and write \z\ — r, argZ? = — (β 4- 2/ π ) . Taking the real and

imaginary part the above equation can be written as

(19) αilnr - a2θ -\n\b\-\ (cosmθ + o\(r)) = 0,

(20) a2lnr + aιθ + β-\-2kπ (sinmθ+o2(r)) = 0.
rm

Then (19) and (20) yield

α, 0Lχ{β + 2kπ)+a2\n\b\ + {ct+ct)θ , . 1 ...
— In ί h #2$ + In \b\
m cc\ sin mθ-\-a2cos mθ-\-o(r)

- (cos m0 + o(r)) : — z = 0 .
αi sinm# + «2 cos mθ + o(r)

Now, in (20) mθ is restricted in [π/4, 3π/4], and r is restricted in (0, ro], ro being a very

small constant number. If we choose a sufficiently large positive number ko, when k > ko,

and r = ro, then the left hand side of (20) will be negative for any fixed mθ e [π/4, 3π/4].

On the other hand, when r tends to zero, the left hand side of (20) will be positive. So, for any

mθ e [π/4, 3π/4] and k > ko, there exists a number r e (0, ro] satisfying (20). Choosing the

maximum of such r's, we get a continuous function r = r(θ,k), and r -> 0 when k -> +oo.

Moreover, in (21) the mθ is restricted in a small interval [—ε + π/2, ε 4- π/2] c

[π/4, 3π/4], which guarantees that

1 . . V2
— cosmθ < - , sinm^ >

if a\ φ 0. Now substitute r = r(θ,k) into the equation (21), and choose a sufficiently large

&i > ko such that for every k > k\ the left hand side of (21) is positive when mθ = ε -\- π/2,

and negative when mθ = — ε + π/2. Then by the mean value theorem, given large positive

integers kx, k2, (tending to +oc), there exist mθ\, mθ2, e [—ε+π/2, ε+π/2] satisfying

(21) as well as (19). If <x\ = 0, substitute r = r(θ, k) into (19), and take a sufficiently large

ki > k2 such that for k > £3 the left hand side of (19) is negative when mθ = π/2 + ε, and

positive when mθ = π/2 — ε. Then for sufficiently large integers kι, k2, (tending to +00),

by the mean value theorem, there exist mθ\, mθ2, , e [—ε + π/2, ε + π/2] satisfying (19).

From the pair (#/, kι), we get r, , and consequently the desired points zi = n exp >/—Ϊ0/. It

is easy to see that when fc, tends to +00, r, and 0/ tends to 0, and θo = π/(2m), respectively.

The Lemma is now proved.

REMARK. In general case, if ao = ro exp >/—Tβo> then θo = (π/2 + βo)/m.

We choose a sector domain S which contains an essential direction of the function

By using Lemma 3, we prove the following lemma:
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LEMMA 4. The holomorphic representation F : A* H> SL(2, C) of the surface f :

A* ι-> H3(— 1) can £e chosen as

where ί, are constant numbers.

PROOF. In fact, we may first choose

Fχ=t\Xx, F3

and

F2 = t3Yι+t^Y2, F4 = t'4Yι+t4Y2.

Applying Lemma 3, there exist series z* € S such that

where bk (k = 1, 2, , /) are different constant numbers.
Substitute these bk into the equation det F = 1, and note that lim z\ = 0, a + a! = 1 — n.

Then we get

Since t\ φ 0 and t2 φ 0, this implies that t^ = t'4 = 0 and ίifcj. — t2t?> = 0. The lemma is

proved.

In his paper [1], Bryant pointed out that the end of Enneper's cousin is asymptotic to

every point at infinity. In fact, all of irregular ends have this property. One of our main results

is the following

THEOREM 5. The irregular end f : A* \-+ H3(—l) tends to every point at infinity.

PROOF. By Lemma 4, we get

f = F - F* = \z\2a N(— ( / ^ - I ) ( ' I * t2h~x) + \z\ι M J ,

where

h = zσ exp(-C), N = \h\2 + |/zp2, / = min (-, μ\ ,

and M is a bounded matrix. Recall that μ > 0 and a < 0. Then we see that when z -» 0,

[t\h, t2h~ι] close to every point at infinity 5 ^ of the hyperbolic space H3(— 1). This com-

pletes the prove of Theorem 5.

Another main result is the following

THEOREM 6. No irregular ends of CMC-1 surfaces are embedded.

Before giving the proof, we recall some materials which are needed. The upperhalf space

model (R\, ds2) of / / 3 ( - l ) is given by
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ds2 = {dX\ + άX\ + dX])/x] .

This model is equivalent to the Minkowski model by (see [3])

where

(22) X! + V^ΪXl = (X\ + V^X2)/(X0 ~ X3) ,

On the other hand, from Theorem 2, we can choose a desired small sector domain S

containing any direction θ, only by using suitable Φ and k in there. Without loss generality

we may assume that σo/(n — 1) = 1, and choose the sector domain S which contains the

direction θ — 0, that is, a part of the real axis (otherwise if σo/(n — 1) = roexp>/—ΪA),

choose the sector domain S which contains the direction θ = βo/(n — l)). Note that Lemma 4

is not valid, since the sector may not contain an essential direction of the function z~σ exp ζ.

However, we can also choose F having the form

(23) F=(tlXl

In fact, assume F3 = 54^1 + s2Yi, F4 = s\ Y\ + s^Y2. Note that det F = 1, and when z -> 0

along the real axis (otherwise^ = βo/(n — 1)), the function z~2 σexp2£ -^ 00. Hence

t\S4 = ί2^3 = 0. But t\,t2φ 0, SO S3 = 54 = 0.

PROOF OF THEOREM 6. We consider the problem in the Minkowski model and the

upperhalf space model of H3 (— 1). Note that

z~σ expζ(z) = exp - ^ ( c o s f a - 1)0 + o\(r) 4- V^T(sin(l - n)θ + 02(r))),= exp - ^

where z = r exp yf^AΘ and r is sufficiently small. From (22), (23), the above equation and

\ ^0 - X3

We get the Norm N(r,θ), the Argument <9(r, θ) of the coordinates Xi + \f^ΛX2, and X3 of

the surface in the upper space R\, respectively as

(24) N(r, θ) = |d( l + o3(r))\ exp j ^

(25) θ(r, 0) = -^r(sin(l - ή)θ + o4(r)),



SURFACES OF CONSTANT MEAN CURVATURE ONE 315

2
(26) X3O*, 0) = C2O + o$(r))r a exp -—j-(cos(« — 1)0 + oχ(r)),

where ex, c2 are constant numbers, and 0/ = o(rp) for a positive constant number p > 0. In

a small sector domain defined by

A* = {z e C10 < \z\ < ε , -τr/2 + ε < (n - 1)0 < τr/2 - ε},

the factorial series of fundamental solutions (14) through (17) converge. Choose

[00 ,βi] C [0, π/2(n - 1) - ε/(n - 1)],

[-0p -0O] C ί-π/2(n - 1) + ε/(« - 1), 0],

and 0o > 0Q > 0, 0i < 0J. We take sufficiently small r < εo < ε. At present stage, X3 may

be very large, when (r, 0) € (0, ε0) x ([0o, #1] U [-0| - 0Q]).

First, consider functions X3(r, 0) and X3(r, 0), where

(r, 0) G (0, ε0) x [0o, Θ\], (r, 0) G (0, ε0) x [-0J, - 0 Q ] .

Set X3(r, 0) = X3(r, 0), that is

2(1 +^5(r))exp — ^ ( c o s ^ — 1)0 +6>i(r))
(27) r " 2

= r " 2 α ( l + o5(r))exp — ( c o s ( π - 1)0 + oχ(r)).

Let r = ro < εo, ro being a small constant number, and let 0 vary in [—0j, — 0Q]. Then denote

by Mo the maximum of the right hand side of (27). Take r < π < ro, π being a constant

number, and let 0 vary in [0o, 0i]. Then denote by Mi the minimum of the left hand side of

(27). Fix π such that Mi > Mo Then, for any 0, 0, and r <r\,

^3(r0> $) < ^ 0 < Λ l̂ < ^ 3 ( r , β) .

But X3(r, 0) ->• +00 when r -• 0, and both side of (27) are continuous, so there exists

r G (0, r0] satisfying (27) for any r G (0, n ) , 0 G [0o, 0i] and 0 e [-0j, - 0 Q ] (here we can

choose the maximum of r's). Hence we get a continuous function r = r(r, 0, 0), and r -> 0

when r —• 0.

On the other hand, from (24) it is easily seen that TV -> +00 as r -» 0. Consider two

functions (Xi + V 1 1 ! ^ ) ^ , 0) and (Xi + ^ΪX2)(r, Θ). Set

(28) (Xi + Λ/^TX2)(r, 0) = (Xi + V^X2)(r, θ),

and substitute r = r(r, 0, 0) into (28). By (24) we obtain

2
N(r,0) = |ci(l +^ 3 (r)) |exp Γ(cos(n - l)0 + oi(r)),

rn-\
and

2
A^(r, 0) = |ci(l +6>3(r))|exp r(cos(rc — 1)0 + o\(r)).

ρ - 1
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Moreover, from (27) we have

exp2(cos(ft-l)fl+^(r))/r"-1

 = ϊ~2a (\ + o5(ϊ))

exp2(cos()z - 1)0 + oι(r))/rn~ι r~2a(\ + o5(r)) '

Define the function K(r,θ, 0) by

( θ §) = ?-2a(l+Q5(ϊ)) _ \l+Q3(r)\

' ' . r-2a(l+o5(r)) \l+o3(r)\'

Taking logarithm of (29), and noting that if r -> 0, then f -> 0, rn~x lnr -> 0, and

(30) lim r =

r-^o+r"- 1 cos(n - 1)0

By (30), when θ = -Θ'Q or -θ[, it follows that

,. rn~x cos(n - l)θ cos(n - l)θ0

lim r = < < 1,

r ^0+ rn~ι cos(n - 1)0 cos(n - 1)0^
/ cos(/ι- l)0i \

or > τ > 1 I .
\ c o s ( n - l ) 0 j /

Hence, when r is small enough (it is r < Γ2 < rj, Γ2 being a small constant number),

for any θ e [0o, 0i] the continuous function K{r, θ, θ) has the properties K(r, θ, θf

Q) < 0,

K{r, θ, θ[) > 0. Then, by the mean value theorem, there exists a 0 G [-0J, -0Q] such that

K(r,θ,θ) = 0. Choose 0 as the minimum of those 0'j. Consequently, we get a continuous

function 0 = 0(r, 0), and this implies that
X3(r, 0) = X3(r, 0), iV(r, θ) = N(? , 0),

hold for r < r2 and θ e [0o, 0i]. On the other hand, the Argument of X\ + V^TX2 are

respectively

θ(r, 0) = -—τ(sin(l - π)

and

yίl — 1

Note that sin(l - n)θ < 0 and sin(l - n)θ > 0, and that <9(r, θ) tends to -σo and Θ(r, 0)

tends to +oo, as r -• 0. Hence, for any 0 G [0O, 0I ] , there exists a r such that

<9(r,0)-Θ(r,0) = 2itπ ,

where /: is a sufficiently large integer. Then we have found the points z = r exp >/—T0 and

J = r exp y/—\Θ such that

(Xi + Λ/ Z ΪX2)(Γ, 0) = (Xi + V cΪX2)(r, 0),
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and

Hence the irregular end must self-intersect. Theorem 6 is now proved.

4. An explicit representation of a surface. In their paper [4], Umehara and

Yamada constructed a null immersion from a Riemann surface into SL(2, C). Let M =

C * = C \ { 0 } , and set

g = z~ 3 , ω — -dz .

The pair (#, ω) determine a null immersion F : M -> 5L(2, C), and consequently a CMC-1

surface / : M ->• //3(—1). It has two ends; the one corresponding to z — oo is regular and

embedded, and the other corresponding to z = 0 is an irregular end.

Now we compute the explicit representation of the surface. F\ and F3 satisfy

and the fundamental solutions are

X\ =z exp — , X2 = z exp .

F2 and F4 satisfy

and the fundamental solutions are

y, = z~2(l - V3z + z2) exp — ,

and

γ2 = z~
2(l + V3z + z2) exp - — .

We can easily check that Bryant's holomorphic representation is given by

/ z exp Vϊ/z - z " 2 ( l - V3z + z2) exp V3/zλ

" \-z exp - V3/z z " 2 ( l + Λ/3Z + z2) exp - V3/z/ '

By a proposition in [7], using the inverse matrix F " 1 , we get a dual surface

f« = (F~ι) - (F~{)\

which is a complete CMC-1 surface. The Weierstrass data of the dual surface / # are

G = - ί — ^ exp(2z), Λ = 2 ( ^ ^ ) (exp -2
1 + z \ z )
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The pair (G, Ω) generates a new complete minimal surface in the Euclidean 3-space, its

Weierstrass representation is

x\ = Re ί - - (exp 2z + exp -2z) + - (exp 2z - exp -2z) ) ,

^T ί - (exp 2z - exp —2z) (exp 2z + exp -2z) \ ,X2 =

This minimal surface has two ends, and the one end (z = 0) is an embedded planar end.

I would like to thank the referee for his many helpful suggestions, and also to thank

Professor Rosenberg for sending me their preprint [2].
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