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Abstract. Let G be a non-unimodular solvable Lie group which is a semidirect product
of R™ and R". We consider a codimension one locally free volume preserving action of G on
a closed manifold. It is shown that, under some conditions on the group G, such an action is
homogeneous. It is also shown that such a group G has a homogeneous action if and only if
the structure constants of G satisfy certain algebraic conditions.

Introduction. By a locally free action of a Lie group G, we mean an action all of
whose isotropy subgroups are discrete. A locally free action @ then induces a foliation Fg
whose leaves are given by the orbits of @. The primary purpose of this paper is to investigate
the behavior of codimension one locally free actions of some solvable Lie groups on closed
manifolds.

To begin with, let G be a nilpotent Lie group. Then, from the point of view of foliation
theory, Hector, Ghys and Moriyama [8] proved that the codimension one foliation Fg is
almost without holonomy. That is, each non-compact leaf of F¢ has trivial leaf holonomy
([7, IV-2.11}). This implies that the qualitative structure of F¢ is comparatively simple.

When G is solvable but not nilpotent, the structure of F¢ is more complicated. Even in
the case where G is the real affine group

w3 )

which is the simplest non-nilpotent solvable Lie group, it is known ([5, Propositions II.1.4 and
I1.1.5]) that all leaves of F¢ are dense and there exists a leaf with non-trivial leaf holonomy.
However, by assuming the existence of an invariant volume form, Ghys obtained the following
remarkable result, which shows the smooth rigidity of codimension one locally free Aff*(R)-
actions.

THEOREM ([5, Theorem B]). Let G be Afft(R). Let ® : G x M — M be a locally
free G-action of class C" (r > 2) on a closed smooth 3-manifold M. Suppose that the action
& preserves a volume form of class C°. Then & is C "=\_conjugate to a homogeneous action.

t,xeRI,

To be precise, let ¢ and @’ be C"-actions of a Lie group G on manifolds M and M’,
respectively. Then @ and @’ are said to be C*-conjugate (s < r) if there exist an isomorphism
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¢ of G and a C*-diffeomorphism f from M to M’ such that f o ® = &' o (¢ x f). IfaLie
group H contains G and a cocompact discrete subgroup I” as well, then G acts on the compact
homogeneous manifold H/I" by left translations. Such an action is called a homogeneous
action. Note that a homogeneous action preserves the natural volume form of H/I" that is
induced from a right and left invariant volume form of H.

Following the above theorem of Ghys, several rigidity results have since been obtained
for actions of Lie groups other than Aff*(R) ([1], [2] and [6]).

In this paper, we consider non-nilpotent solvable Lie groups G which are semidirect
products of R™ and R", and study the rigidity of codimension one locally free volume pre-
serving actions of G. To state our main results, we fix some notation.

For consistency with the case of Afft(R) = R, x R, we use the multiplicative notation
for R™. Since the group structure of G = R% x R" is determined by a homomorphism
¥ :R"} — Aut(R") = GL(n, R), we write the semidirect product by R’} x y R". We assume
that ¥ is diagonalizable. By changing the semidirect product structure of G if necessary, we
may assume furthermore that v is locally injective, and in particular m < n (Lemma 1.1).

Take abasis {e; |1 < j <m}of R™ andputdyr(e;) =: Aj € M(n,R), where dy is the
differential of . Then the matrices {A ;} are simultaneously diagonalizable. Denote by )L,.j
the i-th diagonal element of the diagonalized form of A ;, and by Ay the n X m-matrix whose
i-th row vector is given by A; := (A}, A,.z, oA (1 <0 < n). We call Ay the structure
matrix of G = R xy R" (see Section 1.1). Put 8 := Y_7_| A;.

A main theorem of this paper is the following.

THEOREM1. Let G = R" xy R" (0 < m < n) and M an (m + n + 1)-dimensional
connected closed orietable smooth manifold. Let ® : G x M — M be a locally free smooth

action preserving a volume form $2 of class C°. Suppose that the homomorphism  is diago-
nalizable, locally injective and the structure matrix Ay of G satisfies

B ¢ {aifA;, biRA; —MNA|0<a;,b; <1, 1<, jk=<n}.
Then M is a solvmanifold and @ is C*°-conjugate to a homogeneous action.

The other result is the following theorem which gives a necessary and sufficient condition
for G = R} xy R" to have a codimension one homogeneous action. Two n x m-matrices
A and A’ are said to be equivalent if A’ = K AP, where K is an n-square matrix which
exchanges rows of A and P € GL(m, R).

THEOREM 2. Let G =R" xy R" (0 < m < n). Suppose that the homomorphism
is diagonalizable, locally injective and the structure matrix Ay, of G satisfies
Ai#0 (1 <i=<n) and B¢ ({xA;,A;—Aj|l1 =i, j=<n}.
Then, G has a codimension one homogeneous action if and only if the (n + 1) X m-matrix
(A:p, —B"" is equivalent to a matrix A satisfying the following conditions.

(1) There exist uy x m-matrices A(k) (1 < k < d) such that A" = (A1), AQ2)', ...,
Ad)H.
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(2) Foreachk (1 <k <d),let )»{ (k) be the (i, j)-element of A(k). Then each number
exp(:l:)»{ (k)) is an algebraic integer, and there exists an algebraic integer oy of degree uy
such that exp Al (k) = o (expAl (k) € Q@) (1 < j < m,1 <i < w). Here
{a,fi) |1 <i < u, ok(l) = id} is the set of all conjugation mappings of Q (ay).

The assumptions on the structure matrices in Theorems 1 and 2 depend only on their
equivalence classes, thus, only on the isomorphism classes of the Lie groups G (Lemma 1.2
and Proposition 1.3). If m < n, then the set of isomorphism classes of {R7 x4 R"| Ay
satisfies the assumptions of Theorems 1 and 2} has the cardinality of a continuum. Among
them, only countably many Lie groups have codimension one homogeneous actions from
Theorem 2, and hence, have codimension one locally free volume preserving actions on closed
manifolds from Theorem 1 (Corollary 4.4). If m = n, then the group R”, xy R" is isomorphic
to AffT (R)’ xﬁf(C )" for some non-negative integers / and r such that /+2r = n (Proposition
1.4), where Xf:f(C) denotes the universal covering group of the complex affine group. As a
corollary of Theorem 2, it is shown that such a Lie group has a codimension one homogeneous
action (Corollary 2.5).

This paper is organized as follows. In Section 1, we investigate fundamental properties
of Lie groups of the form R xy R". In Section 2, we study cocompact discrete subgroups
of Lie groups of the form R x,, R"™*! and then prove Theorem 2 and Corollary 2.5. Section
3 and Section 4 are devoted to proving Theorem 1. The proof of Theorem 1 is given by
improving the methods developed in [5], [2] and [6].

Throughout this paper, by manifolds we mean connected closed orientable smooth man-
ifolds, and by actions we mean smooth actions unless otherwise specified. We use the follow-
ing notation:

1. Forv e C", Rv (resp. Jv) denotes the real (resp. imaginary) part of v.

2. R denotes the multiplicative group of positive real numbers.

3. Forx,y € C", x -y denotes the standard inner product X'y = >, x; Ji.

4. For an n-row vector u and an z#-column vector v, the product uv as matrices is often
written by the same notation u - v.

5. E, denotes the n-square identity matrix and J denotes the matrix (? —0] )

6. For n;-square matrices A; (1 < i < k), we denote by diag(A;, Az, ..., Ag) the
(Zf-‘zl n;)-square block-diagonal matrix.

7. M(n,m,K) (resp. M(n, K)) denote the set of all K-matrices of type n x m (resp.
n X n).

1. On the group R} x, R". In this section we study basic properties of Lie groups
of the form R7 x R".

1.1 Structure matrix of the group R} xy R". Lett = (f1,12,--- ,tm)' € R™, X =
(x1,x2,+++,x,)" € R", and let expt be the vector (¢!, e”2, ..., e™)" € R’}. We denote
by R} xy R" the semidirect product group of R’} and R" determined by a homomorphism
¥ 1 RT — Aut(R") = GL(n, R). By definition, R} xy R" is the direct product R x R"
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as a set, and the multiplication law is given as follows ([10, p. 18]):
(expt, x)(expt’, x') = (exp(t +t), x + Y (expt)(x)), t,t eR™ x,x eR".

In this paper, we always assume that the homomorphism ¥ is diagonalizable. That is,
we assume that the matrix dy (t) is diagonalizable over C for any t € R™, where dy : R™ —
M (n, R) denotes the differential of .

Take a basis {ej |1 < j < m} of R™ and put dy/(e;) =: A;. Choose a complex n-
square matrix U which simultaneously diagonalizes {A; |1 < j < m}, and let A{ be the i-th
diagonal element of U . jU. Let Ay € M(n, m, C) be the matrix whose (i, j)-element is
A{ . We call the matrix Ay the structure matrix (with respect to {e;} and U) of the semidirect
product group G = R’} xy R". Denote by A; € C™ the i-th row vector of Ay. Note that, if
A; € C™ \ R™, then there exists a permutation ¢ € S,, such that A; = Agiy (1 <i <n).

Two matrices A, A’ € M(n, m, C) are said to be equivalent if A’ = K AP, where K is
an n-square matrix which exchanges rows of A and P € GL(m, R). It is easy to see that the
equivalence class of the structure matrix Ay does not depend on the choice of {e;} or U.

Denote by N the maximal connected nilpotent normal subgroup of G ([13, p. 2]).

LEMMA 1.1. (1) IfR-rank(Ay) =m —s (s > 0), then the group G = R} xy R"
has another semidirect product structure G = R T_"s Xy R "+ where R-rank(Ay) =m—s.
(2) R-rank(Ay) = m ifand only if Ng = {1} xy R".

PROOF. Suppose R-rank(Ay) = m — s. Choose a basis {e’j |1 < j <m}of R™ such
that the subset {e; |m—s+1 < j < m} spans the kernel of d : R™ — M (n, R). Define a ho-
momorphism ¢" : R"}™° — GL(n+s,R) by 1//’(exp(e’j)) = diag(t/f(exp(e’j)), E)(<j<
m—s), and consider the semidirect product R"} ~* x,» R"*5. Then it is easy to see that the map
(exp(z;f’=1 tje’j), X1yee, X)) > (exp(Z';’;ls tje’j), (X1, .+ s Xny tm—st1s - - - » Im)) deter-
mines an isomorphism from G = R xy R" to R} ™* xys R"**. Obviously the homomor-
phism ¢’ is diagonalizable and R-rank(Ay/) = m — s. Thus we have proved (1) and the
sufficiency part of (2) because Ng D {1} xy+ R"*S.

We prove the necessity in (2). Suppose Ng 2 {1} xy R". Choose (exps,X) € Ng \
{1} xy R"™. Then the d-th iterated commutator of (expas,X) (@ € R) and (1,X) (x' €
R") is given by [(expas, X), - - - , [(expas, X), [(expas, x), (1,x)]]---1 = (1, (Y (expas) —
id)4(x')). Since Ng is nilpotent, there is d > 0 such that (Y(expas) — id) = 0 for any
a € R. This implies Ays = 0 and R-rank(Ay) < m. O

Note that R-rank(Ay) = m if and only if ¥ is locally injective, that is, di is injective.
By Lemma 1.1(1), in considering a semidirect product R} xy R", we may assume that the
homomorphism ¥ is locally injective (and in particular, m < n). Put D(n,m) := {R"} xy
R" | ¢ is diagonalizable and locally injective}, and let D(n, m) denote the set of isomorphism
classes of D(n, m). From Lemma 1.1, we obtain the following.
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LEMMA 1.2. Let G be a Lie group. Then G € D(n, m) if and only if the following
conditions are satisfied: (1) N6 = R" and G/Ng = R™. (2) The natural exact sequence
15 Ng - G — G/Ng — 1 has a splitting &€ : G/Ng — G. (3) The homomorphism
¥ : G/Ng — Aut(Ng) determined by 1(y (h))(g) = £(h)i(9)€(h)~" (g € NG, h € G/Ng)
is diagonalizable.

Let S(n,m) := {A € M(n,m, C)|R-rank(A) = m and A = K A for some row ex-
changing matrix K}. The structure matrix of a semidirect product group G = R xy R" €
D(n, m) belongs to S(n, m). Let S(n, m) denote the set of equivalence classes of matrices in
S(n, m).

PROPOSITION 1.3. The map R xy R" — Ay induces a bijection from D(n, m) to
S, m).

PROOF. We show the well-definedness of the induced map. Suppose G = G/Ng Xy
Ng and G’ = G'/Ng' Xy Ng' (G, G’ € D(n, m)) are isomorphic by ¢ : G — G’. Then
the isomorphism ¢ naturally induces two isomorphisms ¢o : N6 — Ng' and ¢1 : G/Ng —
G'/Ng, which satisfy the following condition:

¢51(1ﬁ/(¢1(exm))(¢o(X))) =Y (expt)(x), expte G/Ng, xe Ng.

It follows that the groups G and G’ have equivalent structure matrices. The rest of the proof
is easy and is omitted. a

Lemma 1.2 and Proposition 1.3 imply that D(n, m)ND(n’, m’) = @ if (n, m) # (n', m’),
and the equivalence class of the structure matrix of G € U, , D(n, m) is determined by its
isomorphism class. It is easy to see that the assumptions on structure matrices in Theorems 1
and 2, and in the succeeding Propositions as well, depend only on their equivalence classes.
By these reasons, as the structure matrix of a given Lie group G € D(n, m) we may take any
representative in its equivalence class.

1.2. Canonical coordinates. Let/ and r be non-negative integers such that / 4+2r = n.
We say that A € S(n, m) is of type (I, r) if A has [ real row vectors and 2r non-real row
vectors. In that case, we say that A is well-arranged if the last 2r row vectors are non-real
and Apyoj 1 = A (1< j <r).

Let G = R xy R" € D(n,m). We also say that G is of type (/, r) if its suucture
matrix Ay = (A{ ) is of type (I, r). For such a G, up to equivalence, we may assume that
Ay is well-arranged, and can take a coordinate (expt, x) of G so that the differential dv (t)
is given by the following real canonical form.

dy(t) = diag(ZA{tj, . Z)Jt,, (Z(‘Tik,+])tj>E2 + (Z(MH,):,)
(L.1) = i
(Z(W‘Hzr 1)’1')E2 + (Z(~‘)‘lj+2r 1)‘j)1> .

J=1

Such a coordinate of G will be called a canonical coordinate.
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From now on, we assume that the structure matrix of G € D(n, m) is well-arranged and
G has a canonical coordinate, unless otherwise specified.

1.3. The case of m = n. Let G,(l,r) be the Lie group R’} Xy, R" in D(n,n),
where the homomorphism ¥, (I, r) is defined by

dyn(, r)(t) = diag(ty, ... , 41, G Ex + e ), oo (r E2 + 114020 7))

It is easy to see that the group G, (1, r) is isomorphic to Afft(R)! x Xt?f(C ).

PROPOSITION 1.4. Let G = R, xy R" € D(n,n) be of type (I,r). Then G is
isomorphic to Afft(R)! x Aff(C)’.

PROOF. Let
P = (A}, A AL RAL L RAL 5, RA S AL S AL S A, )
Then it is easy to see that Ay P~! = Ay, ¢,,. From Proposition 1.3 it follows that G is
isomorphic to G, (I, r), and hence to Afft(R)" x Aff(C)". O

1.4. Lie algebraof R xyR". LetG = R’j: Xy R"™ € D(n, m)beof type (I, r). Then
the Lie algebra G of right invariant vector fields on G is generated by the following elements:

a
Xi=— (A=<i<n),
ax,-
3
Yi=———Y M —
J al‘j I;kxk(a)C)

k
-2 C D\ k=1 | g ) X
e B OX142k—1 T\ 0

4 i 0 0
+ ) (Mg )(Jw 2k<—-> - X 2k—l< )) (l=j=m.
,; 2= B " Ox142k

They satisfy the following commutation relations:

Xi, Xi1=1Y;,Yy1=0 (1 <ii'<sn 1<j,j sm)),

Y, Xid=AXi (A<i<ll<j<m)),

[Y;, Xi4k—11= (9‘)»f+2k_1)X1+2k—1 + (5)»{+2k_|)xl+2k ,

1Y), Xivak] = —(3M] o0 ) X1g2k—1 + A gD X1k (1< j<m 1<k <r).

For an element ¢ = (expt,x) of G, the left translation L, and the inner automorphism
Ad(g) = LgR -1 act on these vector fields according to the following formulas:

(Lo)sX; =YX, (1<i<l),

Xi+2j-1 MA2j-1)t ~ Xi42j-1
L = 1+2j-1 —(JAj42i—1) - )J
( g)* ( X1+2j ) e exp((—(3 1+2j—1) )J) Xl+2j

14 (1=j=n,

(1.3)
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1 r

(L)¥j =Y+ > MxaXe+ D Ay ) Orraem1 Xisakot + X X142k
k=1 k=1

r
- Z(SK{+2k_,)(XI+2le+2k—1 —xi42k—1X142) (1= j<m).
k=1

1.5.  Unimodular Lie group containing R x y R”. Let G be a Lie group. The modular
function A : G — R is defined by A(g) = |det(Ad g)|, which measures the deficiency
of left invariance of the right invariant volume form of G. The Lie group G is said to be
unimodular if A(G) = 1. In particular, if G is connected, G is unimodular if and only if it
has a biinvariant volume form. It is easy to see that a Lie group is unimodular if it contains a
cocompact discrete subgroup.

Let G = R" xy R" € D(n, m). Denote by B the real row m-vector ) ;_, A;. From the
formula (1.4), the modular function A : G — R is given by A(expt, x) = exp(}__, A; -
t) = exp(B8 - t).

PROPOSITION 1.5. LetG = R7 Xy R" € D(n, m). Suppose that the structure matrix
Ay of G satisfies

Ai#0 (1 <i<n) and B ¢{xA;, Ai—Aj|1=i,j<n}.
Then there exists uniquely an (m+n+1)-dimensional simply connected unimodular Lie group
H which contains G as a subgroup.

PROOF. Consider the Lie group G = R'J'r' X R"™! € D(n + 1, m), whose structure
matrix A 7 is given by (A://, —B"". Note that the group G is unimodular and there is a natural
embedding of G into G.

We prove the uniqueness. Let H be an (m + n + 1)-dimensional simply connected
unimodular Lie group which contains G. Suppose G is of type (I, r), and let {X; (1 <i <
n), Yj (1 < j < m)} be the basis of the Lie algebra G of G given in (1.2). From the

assumption on Ay, we can take a vector t = (1, f2, ... , tn)' € R™ which satisfies
B-t#£0, (BEA) t#0(<i<l), A-t£0(1<i<l),

1.5 . ~

(15 Ai=PB)-t#A; -t (1=<i,j<n), RAgu-1)-t#0A=<k=<r).

Forsuchat, putY := 37, t;¥;. Then we have
[Y,Y;1=0(1<j<m), [Y,Xi]l=(A -9X; (1=<i=<]),
(1.6) ¥, Xpyok—1 — V=1X142] = (Argok—1 - Oyt — vV=1X132)
¥, Xiqae—1 + V=1X1426] = (Arsak - OKpran-1 +V=1Xp420) (1 <k <7).
Let H be the Lie algebra of H, and take Z € H \ G. Since H is unimodular, we have

tr(adY) = 0. Hence, from (1.6), the bracket [Y, Z] is given by —(8 - )Z + Z?:I a;X; +
Y71 b;Y; for some a;,b; € R. Put T := Z + 3 i ciXi + 37, d;Y), where dj =
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—bi/B-)(1 <j<m)ci=—a/(B+A;)-t) (1 <i<I]),and

(CI+2k—l) _ ((mAI+2k—l +B) -t  —QAnau-1)-t )_l (—al+2k-|) (d<k<r)
Cl+2k RBAp2-1) -t RApu-1+8) -t —a 42k -
Then, an easy calculation shows that [Y, T] = —(8 - t)T.

Next we show [X;,T] = 0 (1 < i < n). From the Jacobi identity for the triple
(Y, X;, T), we have [Y, [X;, T]] = ((A; — B) - t)[X;, T]. This shows that (A; — B) - t
would be an eigenvalue of ad Y if [X;, T] # 0. However, from (1.5) and (1.6), we see that
it is not the case, and hence [X;, T] = 0. Replacing X; by X, 4211 £ v/—1X 42, we also
obtain [X;12¢—1, T] = [X;424, T] = 0.

Similarly, the Jacobi identity for the triple (Y, Y;, T) gives the identity [Y, [Y;, T]] =
—(B-V)[Y;, T]. This shows that [Y;, T] = aT forsomea € R. From (1.3) and tr(adY;) =0,
we conclude that [Y;, T] = —(}_7_, A{)T.

The Lie algebra H is spanned by the vector fields {T, X; (1 <i <n), ¥; (1 < j <m)}
whose bracket products are now completely determined. Since H is isomorphic to the Lie
algebra of G, the simply connected Lie group H is isomorphic to G. O

2. Homogeneous actions. The object of this section is to prove Theorem 2.

2.1. Eigenvalues of commuting integer matrices. In this subsection, we investigate a
relation between the eigenvalues of commuting integer matrices.

Let Q () be an algebraic number field of degree u. Denote by O(«) C Q («) the subring
of all algebraic integers in Q («). As a Z-module, O(«) has a Z-basis consisting of u algebraic
integers wy, wy, ... , wy. Such a basis is called an integral basis. Put B = {1, «, . .. sty
and B’ = {wy, ..., w,}. Then both B and B’ are Q-bases of the Q-vector space Q («). Let
{o@ |1 < i < u) be the set of all conjugation mappings of Q (), where o (1) is the identity
map (see, e.g., [4]).

For an element y € Q(«), define a linear transformation T, of the Q-vector space
Q(a) by T,(x) = yx for all x € Q(x). Denote by [T)]p~ the matrix of T}, with re-
spect to a basis B”. When y = «, the matrix [7,]p~ has distinct eigenvalues o V() =
a,0P(a),..., 0" (), and is diagonalizable. Since each y € Q () is expressed as a Q-
polynomial Z;‘;(; asa® (as € Q), the matrix [T, 15" = g;(; as([Ty]p7)* is diagonalizable
and has eigenvalues 0 (V(y), s @ (y), ..., 0® (y). If y is a unit in O(e), then the matrix
[T)]p liesin GL(u, Z).

Let h(x) = > 5_gsx* be an irreducible monic Q-polynomial of degree u. Consider the

companion matrix U (k) of h(x):

Uh) =

If @ is a root of h(x), then U (k) coincides with the matrix [T, ]p.



LOCALLY FREE ACTIONS OF SOLVABLE LIE GROUPS 249

The following sublemma is well-known (see, e.g., [3, Proposition 6 in §5, Chapter VII]).

SUBLEMMA 2.1. Let C € GL(n + 1,Q) and xc(x) the eigenpolynomial of C. Let
xc(x) = hi(x)ha(x)---ha(x) be the decomposition of xc(x) into irreducible monic Q-
polynomials. If C is diagonalizable, then there exists a non-singular rational matrix P such
that

P~'CP = diag(U(hy), U(hy), ..., U(hg)).

Now we prove the main lemma of this subsection.

LEMMA 2.2. Let{A;|1 < j < m} be commuting, diagonalizable real (n + 1)-square
matrices such thatexp Aj € SL(n+1,Z) for any j. Let diag(n!, Aé, .. n_H) be a simulta-
neousely diagonalized form of A; (1 < j < m), and let A be the matrix whose @i, j)-element
is )»ij. Then there are an integer vectort = (t|, 1, ... , tm)' € Z™ and a positive integer p for
which the following hold.

PutA:=p Z';‘zl tjAj, and let hy(x)ha(x) ... hq(x) be the Z-irreducible decomposi-
tion of the eigenpolynomial of exp A.

(1) There exists a non-singular rational matrix P such that

P~ (exp AP = diag(U (h1), U(h2), ..., U(hy)),
P~'(exp pA;)P = diag(B,(1), Bj(2), ..., Bj(d)) (1<j=<m),
where Bj(k) € GL(ux, Q) and uy = deghi(x) (1 <k <d).

(2) Foreachj(l1 < j<m)andk (1 <k <d),thereexistbji; € Q (0 <s < uk - 1)
such that Bj(k) = Z“k ! bjksU (hi)*. Hence, denoting by ay a root of hy(x) and by o,

id, 0(2) (“") the conjugation mappings of Q(ay), the matrices U (hy) and B; (k) are

szmultaneously diagonalized to

diag(o}" (@), 0> (@) ... . o™ () and  diag(B] (k). B (K). ..., B, (K)),
re;pectively, where ,Blj(k) = Z""__O bjks(ax)® and ,Bij(k) = ak(i)(ﬂ{(k)). Moreover each
B} (k) is a unit in O(a).

3) Putl(k) := Zf;,' uy (1 < k < d). Then there exists a permutation t € Sy such
that B} (k) = exp(pAy ;4 y4y)) for any i, j and k.

PROOF. Denote by A; the i-th row vector of A. For each i,i’, consider the sub-
group K;i» = {t € Z™|(A; — Ay) -t € 2n+/—1Q} of Z™. Take an integer vector t =
t, ta, ... tm)' € (Urankk“,<m K,-,v)c and a positive integer p such that p(A; — Ay) €
2w +/—1Z™ whenever A; — Ay € 2m/—1Q™. Put A = pzl 1 tjAj. Then the set of eigen-

values of A (resp. pA;)is given by {pA; - t|1 <i < n+ 1} (resp. {pA{ |1 <i<n+1}).
It is easy to see that, for each i,i’ (1 < i,i’ < n + 1), the following three conditions are
equivalent:

(A) rank K;» =m, (B) exp(pA; -t) =exp(pAy -t),
(©) exp(pr)) = exp(pAl) (1< j <m).
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From the implication (B) = (C), it follows that each eigenvector of exp A is also an eigenvec-
tor of exp pA; for each j.

On the other hand, from Sublemma 2.1, there is a non-singular rational matrix P such
that P~!(exp A)P = diag(U(h;), U(h3), ... ,U(hg)). For each k (1 < k < d), take a
matrix V (k) diagonalizing U (ht), and put V := diag(V(1), V(2),...,V(d)). Then the
matrix PV diagonalizes exp A, and hence exp pA; for each j. This shows that there exist
Bj(k) € GL(ug, @) such that P‘l(exp pA;j)P = diag(B;(1), Bj(2), ..., Bj(d)). Hence
we have proved (1).

Let ay be a root of hx(x) and take the basis B = {1, ax, (ax)?, ... , (ax)“ '} of the Q-
vector space Q (). Then we can define a linear map 7 (k) of Q (ax) by [T; (k)]s := Bj(k).
Since U (hy) and B (k) are commutative and U (hx) = [T, 18, the linear maps Ty, and T (k)
are also commutative. Therefore we have, for each x = Z?"z _0] as(ag)’ € Q(ay),

up—1 up—1 up—1
T,~<k)( > as(ak)S) =Y aTi(k)(Ty,)* (1) = ( > as(ak)S>T,-<k)(1>.

s=0 s=0 s=0

This shows that T} (k) is the linear map given by T;(k)(x) = T;(k)(1)x. Put ﬂlj(k) =
T;(k)(1). Then there exist bjz; € @ (0 < s < uy — 1) such that ,BIj(k) = Z?":Bl b ks (o),
and hence the matrix [T (k)]s = B, (k) is of the form Z?k:_ol bjks[To 1 = Z?k:?)l bjksU(hp)*.
Since exp(+pA;) € SL(n + 1, Z), each number ,Bij (k) is a unit in O(ay ). This proves (2).
The assertion (3) follows from the definition of the numbers { ﬁij k)}. O

2.2. Cocompact discrete subgroups of R X R"*1. In this subsection we give a nec-
essary and sufficient condition for a unimodular Lie group H = R x,, R e D(n+1,m)
to have a cocompact discrete subgroup.

LEMMA 2.3. LetH =R7 [><<pR"+l be a group in D(n+1, m). Let I" be a cocompact
discrete subgroup of H. Then the following hold.

(1) The intersection Iy := I' N R"*" is a cocompact discrete subgroup of R"+! =
{1} xy R

(2) The quotient I := I'/Ty C R is a cocompact discrete subgroup of R =
H/({1} xy R"1).

(3)  With respect to any generating sets {expe; |1 < j <m}of I'and {f; |1 < i <
n + 1} of I'y, the homomorphism ¢ : RT — Aut(R"*!'y = GL(n + 1, R) is expressed as
follows: Put dp(e;) =: Aj € M(n+ 1,R) (1 < j < m). Then the matrices {Aj} are
commutative,exp Aj € SL(n + 1,Z) and <p(exp(Z';’=l tje;)) = exp(Z';’=l 1iAj).

PROOF. Obviously, I is discrete in R"*!. From Lemma 1.1(2), the normal subgroup
R"*! of H coincides with Ny. By a theorem of Mostow ([13, Theorem 3.4]), Ny N I is
cocompact in Ny. Hence (1) is proved.

. L b . . L
The extension 1 — R"*! - H = R™ — 1 induces continuous maps R"*!/I —

H/T 5 R} /. The quotient R’} /I is the continuous image of the compact space H/I'
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by 7 and hence is compact. Suppose I is not discrete in R”}. Then there is a sequence
{expte |k = 1,2,...} in I such that limy_,cexpty = expto € I'T1 C R’} and expty #
exp too for all k. From (1) there is a compact fundamental domain K C R"*+! for the subgroup
Iy C R"!. So, for each k, we can take a lift (expty, xx) € I' of expty € I such that
x; € K. Because the sequence {(expty,Xx)} C I is both discrete and lies in a compact
subset of R’} x R™! it is a finite set. This contradicts the choice of {exp tx}. We have thus
proved (2).

We now prove the third assertion. From (1) and (2), the group Iy (resp. 1) is isomor-
phic to Z"*! (resp. exp(Z™)). For any element expt € I and its lift (expt,x) € I'", we
have (expt, 0)Ip(expt, 0! = (expt, x)Ip(expt, x)~! = Ip. It follows that p(expt) €
AutR"™!', Ip) == {f € Aut(R")| f(Iy) = Ip). The group Aut(R"+!, I) is identi-
fied with GL(n + 1, Z), whenever we choose a generating set of I'y. Obviously, ¢(I7) C
SL(n+1,2). O

Now we are in a position to prove the main proposition of this subsection.

PROPOSITION 2.4. Let H =R"} b<(,,R”+l be a unimodular Lie group in D(n+1, m).
Then H contains a cocompact discrete subgroup if and only if the structure matrix Ay, of H is
equivalent to a matrix A satisfying the following conditions.

(1) There exist A(k) € M(ug, m, C) (1 < k < d) such that A" = (A1), AQ)', ...,
AN,

(2) Foreach k (1 < k < d), there exists an algebraic integer oy of degree uy such
that exp 1] (k) = o, (exp A{ (k) € Q(o” (@) (1 < j <m,1 < i < uy). Here {o” |1 <
i < uy, ak(l) = id} is the set of all conjugation mappings of Q (ax), and A{ (k) denotes the
(i, j)-element of A(k). .

(3) Each number exp(:{:/\ij (k)) is an algebraic integer.

PROOF. Suppose that H contains a cocompact discrete subgroup. From (3) in Lemma
2.3, we can choose a basis {ej |1 < j < m} of R™ such thatexpA; € SL(n + 1,Z) for
Aj = dy(e;). We apply Lemma 2.2 to these matrices {A;}. Then the structure matrix
Ap = A = ()\{ ) of H is equivalent to a matrix A whose (i, j)-element is pA{(i), where
A e Sn+1,m), p e Zand vt € S,4 are as in the lemma. The matrix A satisfies the
conditions (1)—(3) from Lemma 2.2.

Next we prove the sufficiency. From (2), for each j (1 < j < m), we can define a
linear automorphism T (k) of @ (o) by T;(k)(x) = (exp A{ (k))x. Let B’(k) be an integral
basis of O(«y). Then, there exists V (k) € GL(ux, C) such that V(k)_'[Tj(k)]B/(k)V(k) =
diag(exp A (k), exp A4 k), . .. , exp AL, (k). From (3), [Tj(k)1p'x) € GL(ux,Z). Because
H is unimodular, ZZ=1 Z:‘i | k{ (k) = 0. It follows that the matrix X ; := diag([T;(1)]1p/(1),
[T;)]s @), --- - [Tj(d)]p@a)) isin SL(n+1, Z). Itis easy to see that there exist commuting,
diagonalizable matrices C; € M(n+ 1, R) such that (a) exp C; = X and (b) the eigenvalues
of Cjare A/ (k) [1 <i <uy,1 <k<d)
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Now define a homomorphism ¢’ : R — SL(n + 1,R) by ¢'(exp(t1, ... ,tm)") =
exp(}_7_; t;C;), and put H' := R X R"*!. From (a), H' contains a cocompact discretAe
subgroup I"’ := exp(Z™) X Z"*!. From (b), the structure matrix of H' is equivalent to A,
and hence to A,. Thus H' is isomorphic to H from Proposition 1.3. Consequently, H also
has a cocompact discrete subgroup. |

It should be remarked that a general theorem of Mostow [11] gives a necessary and
sufficient condition for a solvable Lie group to have a cocompact discrete subgroup. On the
other hand, our conditions in Proposition 2.4 are for Lie groups of the form H = R’} x,R n+l
and are more concrete.

2.3. Proof of Theorem 2. From Proposition 2.4, we can now prove Theorem 2 in
Introduction.

PROOF OF THEOREM 2. Let H be an (m + n + 1)-dimensional simply connected
unimodular Lie group which contains G. From Proposition 1.5, H is isomorphic to G =
R" X R™! € D(n + 1, m) whose structure matrix Ay is given by (Al —B"!. Thus the
theorem follows from Proposition 2.4. O

In the case where m = n, we obtain a corollary of Theorem 2.

COROLLARY 2.5. LetG =R', Xy R" (n > 2) be a group in D(n, n). Then G has a
codimension one homogeneous action.

Note that, when n > 2, the asumptions that (1) A; # 0 (1 < i < n)and 2) B ¢
{£A;,A; — Aj|1 < i, j < n}in Theorem 2 follow from the local injectivity of ¢». When
n = 1, the condition (2) does not hold. But, in this case, the Lie group G = Rﬂr Xy R!'is
isomorphic to Afft (R) and the conclusion of the corollary is true (see, e.g., [5]).

To prove Corollary 2.5, we first show a lemma.

LEMMA 2.6. For each integer s > 2 and a pair of non-negative integers (t, u) such
that t + 2u = s, there exists an irreducible monic Z-polynomial of degree s which has t real
roots and 2u non-real roots.

PROOF. For the given integer s, let fi(x) = (=1 '(x — 4)(x — 4%)...(x — 4%),
and {fs(a;)} (@] < a2 < -+ < as—1) be the set of all local maxima and minima of f;(x).
Obviously one has (1) 4 < o; < 4+! (1 <i <5 —1)and (2) fs(a2j—1) > 0 > fi(a2j)
(j=12,...). Putg; := (4 +4/+1)/2 (1 <i < s+ 1). Then, by some calculations, one
can show (3) fs(a1) = fs(a1) = 36 and (4) | fs(ai+1)| = | fs(ai)| = 2| fs(ai-1)| 2 <@ < ).
Let ug be the largest integer such that 2ug < s. From (2), (3) and (4), we have (5):

0 < fsla) =2 < fi(ay) < fs(a3) — 2 < fs(@3) <
- < fs@@ug—1) = 2 < fs(@ug-1) < | fs(@ue+1)| — 2.

For each integer u (0 < u < ugp), put f5.,(x) ;= fs(x) — (| fs(@2u+1)| — 2). Then the monic
Z -polynomial f; ,(x) is irreducible from Eisenstein’s Irreducibility Criterion. Furthermore,
from (5), the polynomial fs ,(x) has exactly 2u non-real roots. O
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PROOF OF COROLLARY 2.5. Suppose G is of type (I, r). Then from Proposition 1.4,
G is isomorphic to G,(l,r) = R Xy, qr) R" = AffH(R)! x AT’f(R)’. From Lemma 2.6,
there is a real algebraic integer « whose minimal polynomial has (/ + 1) real roots and 2r
non-real roots. Take a system of fundamental units & := {§;|1 < j < [ 4+ r} of Q(@)
(see, e.g., [4, IV.4]). As before, let {o1) = id, 0@, ..., 0™*tD} be the set of all conjugation
mappings of O («). By rearranging the numbering if necessary, we can assume, for each j, that
oD(&;) (1 <i <1)and o *+2r+D(&;) are real numbers and the others satisfy o (+21-1)(&;) =
o +20(£,) (1 < i <r). Note that 37 log |0 (§;)| = O for each j.

Define the (I + r)-square matrix Log = and the r x (I + r)-matrix Arg & by:
log o (€)) if 1<i<l,
loglo@==DE)| ifl+1<i<l+r,

(i, j)-element of Arg & = arg(a(l+2i_')($j)) 1<i<r.

_AfLlogZz 0
As '_2(ArgE JTEr) '

(i, j)-element of Log & = [

Put

It is well-known that detLog Z # 0. Thus the matrix Az is non-singular. Consider the
product matrix

A= (M) Az, where B=(1,...,1,2,...,2,0,...,0).
—ﬂ N e N N
! r r
Then the exponential of the (i, j)-element of Ais O’(i)@ j)2 ifl <j<l+4+r,and 1 if
I+r+1<j<I+2r, and lies in O(c ¥ (x)). So the matrix A satisfies the conditions (1)
and (2) in Theorem 2 with d = 1 and «; = «. The corollary follows from Theorem 2. a

In [14], the first author studied the classification of codimension one homogeneous ac-
tions of Afft(R)".

3. Existence of an equivariant transverse vector field. Let G = R’} xy; R" be a
group in D(n, m), and let M be an (m + n + 1)-dimensional closed orientable manifold. The
purpose of this section is to prove that, for a volume preserving locally free action ¢ of G on
M, there exists uniquely an equivariant transverse vector field of class C°. That is, we prove
Proposition 3.1 stated below.

3.1. Statement of the result. We have a natural homomorphism @* from the Lie al-
gebra G of right invariant vector fields on G to the Lie algebra X'(M) of smooth vector fields
on M, which is defined by
m f(P(exptX, p)) — f(p)

0 t
Here C;O(M ) is the set of germs of smooth functions at a point p in M. Since @ is locally
free, the vector field @ T(X) is nowhere zero if X # 0. To simplify the notation, we denote
®*(X) by X*. For g € G, we denote the diffeomorphism @(g, ) of M by @, and the
induced homomorphism (@) (resp. (®4)*) of X' (M) (resp. A\ T*(M)) by g« (resp. g*). An

PT0,p(f) = li . XeXM)and feCP(M).

1
—
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element g € G acts on a vector field X* as follows: g, X* = g.(P (X)) = @H((Lg)«X) =

(Lo X",
Let {X},..., X}, Y[, ..., Y} be the vector fields on M which are induced from the
basis {X1, ..., Xn, Y1,..., Yn} of G given in Section 1.4. Recall the modular function A :

G — R is given by A((expt, x)) = exp(Z;'=1 A; - t) = exp(B - t). Here A; is the i-th row
vector of the structure matrix Ay and B =Y || A;.

PROPOSITION 3.1. Let G =R" xy R" (0 <m < n) be a group in D(n, m), and let
M be an (m+n+1)-dimensional connected closed orientable manifold. Let ® : GxM — M
be a locally free action which preserves a volume form §2 of class C°. Suppose that the
structure matrix Ay of G satisfies

B ¢ {aiRA;, bjRA; —RAL|0<a;,b; <1,1<i,j,k <n}.
Then there exists uniquely a vector field T of class C® on M such that
() QXF, ..., X5 Y ... Y5 T)=1 and (2) 9T = A(g)~'T forany g€G.

3.2. Homothety equivariance. In this subsection, we show the following lemma.

LEMMA 3.2. Let G, M, ® and S2 be the same as in Proposition 3.1. Then there exists
uniquely a vector field T of class C° satisfying the following conditions:

(1) QX5 ..., XY .., Y5 T)=1,
(2) (expt, 0),T = A((expt, 0)~'T = e P'T  forany t e R™.

We prove the lemma through four steps.

Step 1. We assume G is of type (I, r), and use a canonical coordinate of G so that
dy(t) is described as in (1.1).

From a theorem of Ghys ([5, Theorem Al)), the above volume form £2 is smooth. Take a
smooth vector field Z on M satisfying $2(X7, ..., X;, Y, ..., Yy, Z) = 1. Then for each
g = (expt, x) € G we have, from (1.4),

l=g¢"QX],.... X0 Y ..., Y0, 2Z)
= Q(Q*XT, ey g*X:, Q*Yl*» e g*Y,f,, 9+2Z)
=ePQXT, XYY 0 Z).
Thus we can write g4 Z = e #tZ (mod(X*, ... X5 Y, ..., Yr)). Hence, foreacht € R™,

there are families of smooth functions {d)f |1 <k <m}and {1//{‘ |1 <k < n}on M, indexed
by t, such that

m n
@3.1) (expt, 0,2 = e P1Z + ) gbvy + ) ukx;.
k=1 k=1

These functions satisfy the following transition formulas.
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SUBLEMMA 3.3.

(3.2) Bppe =€ POg + O 0 Piexp-trgy (L <k <m),
(3.3) V= Py + e Y 0 Py (ISP <),

1+2j-1 1+2j-1

+2j - +2j

Lo vy
(3.4 Yy g ,

+ MA2j-1t exp((3As42j-1 - t')J) ( tl+2j (exp(—t ),0)) a=<j<r).

Vi 7 0 Plexp(-1),0)

PROOF. From (3.1) and (1.4), the right hand side of
(exp(t’ +t),0).Z = (expt’, 0), o (expt, 0),Z

is calculated as

m n
Pz et S o+ Y ovix |
k=1 k=1

m ]
+ D 0 Plexp-).0 i + D Vi © Plexp—ty 0y X}

,
1+2j-1 ; :
+ Z Ve T 0 Plexp(—t),00€” (€08 b X[yp;y +sinb; X))
j=1

.
1+2j ; .
+ ) U 0 Blexp(-),0¢% (= sinb Xy +cosb;Xf1o))
j=1

where we put Ajqj—1 -t =aj+bj/—-1 (1 <j<r, aj,bj € R). The lemma follows
immediately from this identity. O

Let CO(M) denote the space of all continuous functions on M with the distance function
d induced from the supremum norm || ||. Any vector field T of class C? satisfying (1) in
Lemma 3.2 is described as

m n
(3.5) T=2+) Fyp+> G'x;, FH.G*ecm).
k=1 k=1

We show that, by choosing suitable continuous functions F¥ and G, the vector field T satis-
fies the equivariance condition (2) in Lemma 3.2.

Step 2. In this step we choose the functions F k(1 < k < m). From (3.5), (3.1) and
(1.4), we have

m m
(expt, 00,7 = e P1Z+ Y ¢f¥F + ) Frobiepno¥y (mod(XF,- -, X3).
k=1 k=1
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Hence the vector field T satisfies the congruence (expt, 0),7 = e PtT (mod(X*, ..., X))
if and only if each of the function F k (1 < k < m) satisfies the equality
(3.6) F* = e‘“(d)f + F* o ¢(exp(—t),0)) .

For each k (1 < k < m) and each t € R™, consider a continuous operator Ut" from
CO(M) to itself defined by

Utk(F) = e’“((ﬁf + Fo ¢(exp(—t),0)) .

Obviously, we have d (Utk(F ), Ut"(F ")) = ePtd(F, F'). So the operator Ut’f) is Lipshitz con-
tracting and has a unique fixed point if 8 - tp < 0. From the assumption on Ay, the vector
B is non-zero, and hence such a vector ty can be chosen. Furthermore, from the identity
¢¢.¢ = bf ¢ and (3.2), the family of operators {U{ |t € R™} is abelian. Thus if F} is a fixed
point of U, ’f) then, for an arbitrary t € R™, the function U{‘(Fé‘ ) is also a fixed point of Ut’f).
Consequently, from the uniqueness of the fixed point of Ut’(‘), there exists uniquely a continu-
ous function Fé‘ on M which is a common fixed point of the operators Utk forany t € R™,
and satisfies (3.6). Using this function Fé‘ as F* in (3.5), we obtain

m
(3.7 (expt, 0),T = e—ﬁ"<z +) F* Y,j‘) (mod(X*, ..., XY).
k=1
Step 3. Next we choose the functions G' (1 <i <) in(3.5). From (3.7), (3.1) and
(1.4) we have

m 1
(expt, 0),T = e-ﬁ"(z +y Fky,:) + Y Wi+ MG 0 Diexp(-0.0) X}

k=1 i=1

(mod(Xf+1, e, X;*+2,)).
Foreachi (1 <i <) andeacht € R™, define an operator Vti on CO(M) by
Vi(G) := P (Wi + UG 0 Pexp(—1).0)) -

Then we have d(V, (G), V{(G')) = e#+4)td(G, G'). From the assumption on Ay, we can
choose a vector tg with (8 + A;) - tg < 0. The commutativity of the operators {V{ } follows
from (3.3). Thus, as in Step 2, there exists uniquely a function G’ which is fixed by Vti for
any t € R™. Using such a G' in the expression (3.5) of T, we obtain

m i
(3.8)  (expt,0),T = e‘ﬂ~t(Z +Y Fryp 4y G"X,.*) mod(Xfy1s - Xfia)) -

Step 4. Lastly, we consider the functions G'+2/~! G'*2/ (1 < j < r) in (3.5). In this
case we define an operator Wt’ on the product space Co%(M) x CO(M) as follows:

142j—1
(G R » Lo Go® —t),0

W (G’) = l( 1;/l+2j ) + M exp((3A1s2j-1 - 0) (G’ o ¢((ZP:( :)) 0))>] '
t -4,
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Again we have

(30 () ()= (€) (1)

From the assumption on Ay, we can choose a vector ty such that (8 + RA;12;_1) - to < 0.
The commutativity of the operators {Wt/ } follows from (3.4). Thus, as in Steps 2 and 3, using
the unique pair of functions (G/*2/=!, G!*%/)! fixed by W/ for all t € R™, we obtain

n n
(expt, 0),T = (expt, 0)*(2 +Y Fryp 4y G"X;;) — o Ptr
k=1 k=1

Through Steps 1 to 4, we have found a continuous vector field 7 which satisfies (1) and
(2) in Lemma 3.2. By the construction, the vector field T is unique. This completes the proof
of Lemma 3.2.

3.3. G-equivariance. Next we show that the vector field T in Lemma 3.2 is equivari-
ant by any g € G = R’} xy R". Namely, we prove the following

LEMMA 3.4. Let G, M, ® and $2 be the same as in Proposition 3.1. Let T be a vector
field satisfying (1) and (2) in Lemma 3.2. Then g,T = e PT for any g = (expt, x) € G.

For g = (expt, x) € G, there exists a family of continuous functions ,u’é and ”5 on M
indexed by g € G such that

m 14
(3.9) (expt,X), T = e PT+ Y pbyy +) vixy.
k=1 k=1

We prove the lemma by showing that the functions u’; and vz are identically zero. By the
assumption we have

k k
(3.10) Hexpt,0) = Veexpt.0) = 0-

In the following, we omit the detail of calculations.
3.3.1. Nullity of “Is(r From (3.9) and (1.4), for ¢ = (expt, x) and h = (expt’,x) €
G, the following congruence is derived.

m
(hg)sT = e PHOT + 3 (e PUuk + ub o &)Y (mod(X3, -, X1)).
k=1

Thus the following transition formula holds.
(3.11) whg =Pty + ulod, .

Let f; denote the i-th unit vector in R". Then from (3.10) and (3.11), the following
equalities are derived.

k k _ Btk .
G12) 1) aitegy = Mexpt0)(1af) (exp(—0).0) = Pl iy © Plexp(-n.0) (1 <i <1y,
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k
M(|veﬂMH'zj_,.teXP((:{AH»Zj—l't)J)(xlfI+2j—l+X2fl+2j))
(3.13) Btk i
=€ (1 x B4 -1 +xafi12)) © Dexp-1),0) (1 =j=r),

k .k k
B.14)  p( xqxy = K1 T H(1x) © P-x) »
k .k _ Bt k
(3.15) Hexpt,x) = H(1.x)(expt,0) = € p H1x) -

Hence we obtain the following relations on the supremum norms of ,u’;.

k . .
(3.16) Mgy orityg Il = €ty agyll - (1 <i <),
P S PUN
3.17) (Le exp((IAi4+2j—1)I)(xifi42j-1+x2M1425))
. _ Bty k .
=e Hu(l»xlfl+2j—l+)(2fl+2j)” A=j=nr),
k
(3.18) 1t oy I < o I+ iy 11
Letx = (x1,x2,...,x)" € R". Then from (3.18), we have
] r
k k k
Ilp‘(l,x) = Zl “M(infi)” + Z ||M(1sxl+2j—lfl+2j—l+XI+2ij+2j)" ’
i= j=1

From this inequality and (3.15), to prove u’(‘expt,x) = 0, it is sufficient to show /‘]((1, af) =
u’(‘]’ sazjorfiszjor i i) = 0(1 <i <1,1 < j < r). For notational convenience, we
put (x); := x142j-1f112j—1 + x142jfi42;. For a fixed k (1 < k < m), define non-decreasing
functions r,.k and ch’f on R U {0} by

of(d) = sup llufypyll A <i<D and of@d:= sup |lufy )l A=<j=r.
|xi|=d [Ix);ll=d

We first show rik =0( <i <), and hence /j“fl,x;t'i) =0.

SUBLEMMA 3.5. (1) Foreachi(l <i <l)andt e R™, we have
(3.19) thetitr) = ePtch(r) foramy r > 0.

(2) Foreachi(l <i <l)andt e R™ such that A; -t # 0, we have

ﬂ
(3.20) tX(d) =d %tk (1) forany d > 0.
(3) Foreachi(l <i <l),we have
(3.21) th(d) < (d + 1)tFQ) forany d > 0.

PROOF. The first assertion follows directly from (3.16). The second assertion follows
from (3.19) by putting = 1 and d = e?i*t,

It follows from (3.18) that T,-k d+d) < tik d) + tik (d"). Ford > 0, choose a positive
integer a such thatd < a < d + 1. Then we have t,."(d) < ri"(a) < at,."(l) <d+ l)tik(l).
We have thus proved the third assertion. O

If A; = 0, then from (1) in Sublemma 3.5 we have r,." (r) = eﬂ"rl." (r). Hence, from the
assumption 8 # 0, we obtain tl-k (r) = O for any r > 0. When A; # 0, we first suppose
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B # a; A; (ai > 0). Then we can choose a vector t € R™ such that A; -t < 0 < 8 -t. For
such a t, we have
i (e d) < 7f(d) < Pt d).
Thus, from (3.19) we obtain t¥(d) = e#*'t¥(d) and hence t}(d) =
Next suppose B = a; A; (a; > 0). Then, from the assumption on Ay, a; is larger than 1.
So we can choose a vectort € R™ suchthat0) < A; -t < 8 -t. Putb := (B-t)/(A; -t) (> 1).
Then from (3.20) and (3.21) we have

dbcf(1) = tf(d) < @+ DFQ) forany d > 0.

So we obtain rl.k (1) = 0, and hence r,.k (d) = 0. Thus we have proved r,." d=010<k=<
m,1 <i<l.

Similarly, one can prove a}‘(d) =01 <k <m,1 < j <r),using (3.17) instead
of (3.16). From the nullity of ri" and aj’.‘ , we have the required result y,’; = 0 for any &
(1 <k=m).

3.3.2. Nullity of v’_(;. The nullity of vz (1 < k < n) is proved in a fashon similar to
the case of ,u’;. So we only remark the formulas corresponding to (3.11), (3.12) and (3.13),
but omit the detail of the proof. All the formulas are given under the assumption that u’; =0
(1 < k < m). As before, we put ¢ = (expt,x), A = (expt,x’). We continue to use the
notation (x); = x/+2j—1814+2j—1 + x142;f142;-

SUBLEMMA 3.6. (1) Caseofl <k <.

vfg—e—ﬁt k+eA"t kod>h 1,

k +A t :
Vi etiteny = €T Yty © P00 (1 <i<D),

k = BHAt K <j<
UM exp( A2 O 00) V1w © Pexeno (I=j=n).

(2) Caseofl +1 <k <I1+2r. Letk' := [(k — | + 1)/2] = the largest integer not
greater than (k — 1 + 1) /2.

P21 142K —1 142K~1 o
hg _ Bt Vn at) Vg 0Dy
( 142k > =e < 2K ) +e*®exp(b(t)J) ( 4% o p ,
h Vg

Uhg h=1

vl+2k'—l l+2k ¢(ex (~0.0)

it f: ~t), .

( L *"") = &P exp(b(t)]) ( o ’;,f', P ) (1<is,
YLetitxt) Vit xit) © Plexp(1),0)

pl2k =1 i

(1 e expd® X)) | _ Bt att) b)) d’(x), © P(exp(~1),0) Q<j<
pl+2K = eP"e’ exp pl¥2k ==
(1 ec(®) exp(d(t)])(x)j)

(1 ®);) o ¢(exp(—t),0)
where Apyop—1-t = a®)+b(t)v/—1and Aj12j-1-t = c()+d (/=1 (a(t), b(t), c(t), d(t) €
R).
This completes the proof of Lemma 3.4 and Proposition 3.1.
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4. Proof of Theorem 1. In this section we first prove Proposition 4.1 which states
that the vector field T in Proposition 3.1 is smooth, and then complete the proof of Theorem
1. Let {X1,...,Xn, Y1,..., Yy} be the basis of the Lie algebra of G given in Section 1.4.

PROPOSITION 4.1. LetG =R xyR" (0 < m < n) bea group in D(n, m) and let M
be an (m+n+1)-dimensional connected closed orientable manifold. Let ® : Gx M — M be
a locally free action which preserves a volume form 2 of class C°. Suppose that the structure
matrix Ay of G satisfies

B¢laiRA| —1<a <0, 1<i=<n}.

Suppose furthermore that there exists a CO-vector field T on M such that (X%, ..., Xy,

Yi, ..., Y, T)=1and g,T = A(g)"'T for any g € G. Then the vector field T is smooth.

For the proof we use the invariant manifold theory of hyperbolic diffeomorphisms ([9]).
LetS:={teR™| —B-t>0,—B-t#RA;-t(1 <i <n)}. Choose t € S, and define
u@®) :={ie{l,...,n}| —B-t <RA;-t}. Put F := P(expt,0). Then we have an F-invariant
continuous splitting 7 (M) = E| & E;, where E| (resp. E3) is generated by the vector fields
{X* (i €ut), T} (resp. (X} (i ¢ u(t)), Y;‘ (1 < j < m)}). Let p > 1 be a real number
such that max{|ei't||i ¢ u(t)} < p < e~P*. The splitting E| @ E, satisfies the following
property.

LEMMA 4.2. There exists a smooth Riemannian metric | | of M such that 0 # v €
Ey = |Fu(v)| > plv|,and 0 # v € E; = |Fi(v)| < plvl.

PROOF. Foreaché > 0choose a smooth vector field 75 on M such that (X7, ..., X},
Yf,...,Yy, T5) = 1 and lims,0T5 = T in the Co-topology. Let | |o (resp. | |s) be the
CO- (resp. C*°-) Riemannian metric of M such that the vectors {(X Hp, ¥ ;‘) p» Tp} (resp.
{(X)p, (Y;.*),,, (Ts)p}) are orthonormal at any point p € M. Then, for each § > 0, there
exists £(8) > 0 such that (1) (1 —&(8))|v|o < |v|s < (1 + &(8))|v|p for all v € T (M) and (2)
limg_,0&(8) = 0.

Let p; be a positive number such that p < p; < e #*. From the formula (1.4) and
F.T = e P1T itis easy to see that 0 v € E| = |Fy(v)|o > p1|v]o. Then we have

I}
IFu@ls = (1= €GDIE.@lo > (1 = @) pilvlo = 7 +£E8;P1|U|5-

So, if we choose §; > 0 small enough so that ((1 — £(8))p1)/(1 + £(8)) = p for any § < &y,
then we have |Fy(v)|s > p|v|s (8 < 8;). Similarly we can choose §; < §; so that the metric
| |s also satisfies the second condition if § < §,. O

By Lemma 4.2, the diffeomorphism F' is p-pseudo hyperbolic ([9], §5). From Theorem
(5.5) in [9], the continuous plane field E; is uniquely integrable and is tangent to a CO-
foliation, denoted by W(t), with C*°-leaves.

LEMMA 4.3. The foliation W(t) is preserved by the action @ and is smooth.

PROOF. For each g € G, we have g4 E| = E|. So the action @ preserves the foliation
W(t).
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Let G, be the subgroup of G defined, with respect to the canonical coordinate of G, by
Gy = {(exps, (x1,... , %)) € G|s € R™, x; =0fori € u(t)}.

Consider the restricted action @|g, : G2 x M — M. Then the action @|g, is locally free
and preserves the foliation W(t). Furthermore the orbit foliation .7-'¢|G2 is of complementary
dimension and is transverse to W(t). In other words, the foliation W(t) is a transversely G,
foliation ([7, p. 152]).

We will show the smoothness of W(t) from this fact. Let n; = dim E| and let D be the
unit disc in R™. Take an arbitrary point p € M. Since each leaf of W(t) is of class C*°,
there is a smooth embedding fy : D — M such that fp(0) = p and fo(D) is contained in
a leaf of W(t). Define a C®-map f : D x G2 - M by f(x,g) = ®4(fo(x)). Then there
exists in G a neighbourhood V of the identity element such that f|pxy : D XV — M is an
into diffeomorphism. For each g € G, the image f(D X {g}) is contained in a leaf of W(t)
because ®|¢, preserves W(t). This shows that the foliation WW(t) has a smooth distinguished
chart f|pxy at p. Since p is arbitrary, the foliation WW(t) is smooth on M. a

PROOF OF PROPOSITION 4.1. From the assumption on the structure matrix, for each
i (1 <i <n),thereexistst; € Ssuchthat —g-t; > RA; -t;. Then we have ﬂf’zl u(t;)) =0,
and 7 = (., W(t;) is a one dimensional foliation tangent to T. Note that the foliation 7°

is smooth from Lemma 4.3. Since T is tangent to 7 and satisfies 2(X7],..., X;, Y[, ...,
Yy, T) = 1 for the smooth volume form £2 (see Step 1 in Section 3.2), the vector field T is
smooth. O

We are now in a position to prove Theorem 1 in Introduction. Note that the assumption
on the structure matrix in Proposition 4.1 follows from that in Proposition 3.1.

PROOF OF THEOREM 1. By Proposition 3.1, there exists a continuous vector field T
on M such that 2(XT,...,X;, Y, ..., Yy, T) = land g,T = A(g)~!'T for any g € G.
From Proposition 4.1, the vector field T is smooth.

Let {¢; |t € R} be the flow of M generated by the C* vector field T. Let g € G.
Because g7 = A(g)~!T, we have

(41) ¢go¢,oq§g_1 =¢A(g)"t'

Let G = G x -1 R be the semidirect product of G and R determined by the homomor-
phism A~! : G - Ry C GL(1,R). From (4.1) we can define a smooth action & of G on
M by <13(g, t) = ¢r o ®q. Since the flow ¢ is transverse to the foliation Fp and @ is locally
free, the action @ is also locally free. A locally free action @ of an (m + n + 1)-dimensional
Lie group G onan (m + n + 1)-dimensional connected manifold has a single orbit, and hence
@ is hPmogeneous. It follows thaAt the action @, which is the restriction of @ to the subgroup
G C G, is homogeneous. Since G is solvable, M is a solvmanifold. ]

REMARK. The group G in the proof of Theorem 1 is naturally isomorphic to the Lie
group G constructed in the proof of Proposition 1.5.

From Theorems 1 and 2, we have the following corollary.
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COROLLARY 4.4. Let G = R xy R" be a group in D(n, m). Suppose that the
structure matrix Ay of G satisfies

A #0 (1 <i <n) and ﬂsé{a,-SRA,-,b,-SRAj—SRAk|O§a,-,b,- <1,1<i,j,k<n}.

If the matrix (A',, —B')! is not equivalent to a matrix A satisfying the conditions (1) and
(2) in Theorem 2, then G has no codimension one locally free volume preserving action on a
closed manifold.

When m = n > 2, the structure matrix of G € D(n, n) always satisfies the assumption
on Ay in Theorem 1. Thus, from Proposition 1.5, Corollary 2.5 and Theorem 1, we also
obtain the following concluding corollary.

COROLLARY 4.5. Let G =R’} xy R" (n > 2) be a group in D(n, n). Then we have
the following.

(1) There exists uniquely a simply connected unimodular Lie group which contains G
as a subgroup.

(2) G has a codimension one homogeneous action.

(3) IfG acts on a (2n + 1)-dimensional connected closed orientable manifold locally
freely and preserves a volume form of class C°, then the action is C*®-conjugate to a homo-
geneous action.
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